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Abstract

The shape memory alloy NiTi is particularly popular for medical applications and
implants due to its excellent biocompatibility and corrosion resistance. Detailed
knowledge of its properties and interactions with other elements is crucial to ensure
a safe and optimal application of the material. The focus of this work is the char-
acterization of NiTi hydrides using the methods of density functional theory and
the VASP code. Based on experimental observations, structural models have been
created for different hydrogen concentrations and distributions. The formation en-
ergy has been calculated and compared between the models to find the most stable
hydride structure. Furthermore, optimal cell parameters for a supercell which is
stabilized in the B2 phase have been calculated using a manual fit and automated
structural optimization. For some possible hydride structures, the elastic constants
have been evaluated to assess mechanical stability. Diffraction patterns have been
simulated and compared to experiments. Through the comparison of the different
models, a few potentially mechanically and energetically stable structures could be
identified. Furthermore, a phase transformation (change in cell shape) as a function
of hydrostatic pressure (volume) has been predicted. Although pressure induced
phase transformations have been reported for pure NiTi before, this analysis sug-

gests that NiTiH exhibits a more complex behavior.
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Ab Initio Untersuchungen von neuartigen

Hydridphasen in NiTi Formgedachtnislegierungen

Anna Margarethe Paulik

Kurzfassung

Die Formgedéchtnislegierung NiTi zeichnet sich durch ihre hervorragende Biokom-
patibilitdt und Korrosionsbesténdigkeit fiir Anwendungen in der Medizintechnik,
insbesondere als Implantatwerkstoff, aus. Kenntnis iiber seine Eigenschaften und
Wechselwirkungen mit anderen Elementen sind entscheidend fiir eine sichere An-
wendung des Materials. Diese Arbeit beschéftigt sich mit der Charakterisierung
von NiTi-Hydriden unter Zuhilfenahme der Dichtefunktionaltheorie und des VASP-
Codes. Basierenden auf experimentellen Ergebnissen wurden Strukturmodelle fiir
verschiedene Wasserstoffkonzentrationen und -verteilungen erstellt. Die Bildungsen-
ergie wurde berechnet und mit den Strukturmodellen verglichen, um die stabilste
Hydridstruktur zu finden. Dariiber hinaus wurden die optimalen Gitterparameter
fiir eine Superzelle, die in einer B2 Matrix stabilisiert ist, iiber eine manuelle und
eine automatische Strukturoptimierung berechnet. Fiir einige der moglichen Hydrid-
strukturen wurden die elastischen Konstanten berechnet, um die mechanische Sta-
bilitdt beurteilen zu kénnen. Auferdem wurden Beugungsbilder simuliert und mit
Experimenten verglichen. Durch den Vergleich der verschiedenen Modelle konnten
einige potenziell mechanisch und energetisch stabile Strukturen identifiziert werden.
Dariiber hinaus wurde eine Phasenumwandlung (Forménderung der Einheitszelle) in
Abhéngigkeit des hydrostatischen Drucks (Volumen) vorhergesagt. Obwohl druckin-
duzierte Phasenumwandlungen bereits in reinem NiTi beobachtet wurden, legt diese

Beobachtung die Vermutung nahe, dass NiTiH ein komplexeres Verhalten aufweist.
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Chapter 1

Introduction

The equiatomic alloy of Nickel and Titanium, NiTi, is an important material for
“smart” applications due to its so-called shape memory effect. There are three
different mechanisms which facilitate the shape memory effect: (1) the reversible
straining of a material well beyond its expected yield-point (pseudoelasticity), (2)
undoing a complex plastic deformation through heating of the material (one-way
effect) and (3) a change between two phases with macroscopically different shapes
through temperature changes (two-way effect). The mechanisms facilitating the

shape memory effect will be further explored in chapter 2.2.

These effects can be utilized in a plethora of different applications, most notably
and importantly in the medical field, but also many everyday-life products. Pseu-
doelastic eyeglass-frames, for example, provide not only the advantage that they
are foldable without the need for joints, but they are also more comfortable for the
wearer since they are aligning themselves to better fit the person’s individual face

shape and equalize the applied pressure [1].

In medical applications, shape memory alloys (SMAs), combined with advanced
imaging techniques, have been an enabling technology for modern minimally in-
vasive surgery methods. Implants such as stents (see figure 1.1), which are thin
wire tubes that can keep arteries open, are commonly made from SMAs, specifically
Nitinol, since this mechanism allows for them to be inserted in a very small, folded-

up state via a small incision, which is only possible due to the pseudoelastic effect [2].
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Figure 1.1: Stent with guiding wire (figure taken from [3] under the CC BY-SA 4.0
licence).

The extensive use of NiTi has first started in the 1990s and while a lot of research
has been done on the properties of this material and the shape memory effect, there
is still a lot left to be explored and understood [4]. Some very recent examples of
published research are on the mechanical behavior of Nitinol stents are Ref. [5, 6,
7). For biocompatibility, the interactions of NiTi with other elements and the pos-
sible formation of intermetallic ternary phases can be very critical. A particularly
important question is, what happens when NiTi is exposed to a hydrogen-rich envi-
ronment. Specifically NiTi implants are permanently in a close contact with bodily
fluids and tissues which only very rarely exhibit pH of exactly 7 and thus usually
contain free H* or OH~ ions. Thereby, they may form new ternary phases with
NiTi. In previous experimental research by Dlouhy and coworkers, it has been found
that hydrogen diffuses into the specimen and potentially forms a new intermetallic
hydride phase. The NiTi sample was charged with hydrogen and then examined

using scanning transmission electron microscope (STEM) imaging.

This work aims to further characterize the proposed hydride phase in terms of
its equilibrium cell shape, the atomic fraction and position of hydrogen atoms in
the unit cell, as well as general energetic and mechanical stability. This is achieved
through atomistic simulation, precisely the method of Density Functional Theory
(DFT) and the VASP code (which will be further described in chapter 2.1). The
main purpose of these simulations is to supplement the experimental findings with
data at a scale, which would not be accessible through experiments alone (such as

the most stable positions of hydrogen in the cell).

2 Chapter 1 Anna Margarethe Paulik BSc



Chapter 2

Theory

2.1 Density Functional Theory (DFT)

Density Functional Theory is a so called “first principle” or “ab initio” method of
simulation. The defining characteristic of ab initio methods is, that no specific inter-
atomic potentials have to be fitted and all the necessary information about atomic
interactions can be inferred directly from the basic laws of physics. DFT connects
the classical approach of the Newtonian mechanics, forces acting on masses, with
the quantum mechanical approach using wave functions to describe electronic states.
The relaxation of a structure into its ground state is performed through alternating
electronic and ionic relaxation steps. During an electronic relaxation step, the wave
function corresponding to the ground state of the electronic subsystem is calculated
for fixed positions of atomic nuclei. This is followed by an ionic relaxation step,
during which atomic nuclei are moved in the direction of the calculated residual

forces obtained from the last electronic step.

The separation of the movement of electrons and nuclei is based on the Born-
Oppenheimer approximation. It states, that due to the drastic difference in mass
between electrons and nuclei, if the same force is acting on an electron and a nu-
cleus, the resulting movement of the two different types of particles occurs at vastly
different time scales. During the time that it takes an electron to move, the change
in position of the nucleus is negligible, which means that nuclei can be seen as sta-
tionary during electronic relaxation steps. During electronic relaxation steps, nuclei
are only included in the calculation in a form of a potential landscape acting on the

electrons.
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The state of a system is described by the many-body wave function. The cor-
responding Schrodinger equation is very complex, even when just a relatively small
number of particles is considered. In DFT, the many-body wave function is replaced
by an electron density which results in a single-particle problem. The electron den-

sity, n, is defined as the probability of finding N electrons at a certain position r [8].

The justification for why each wave function is uniquely correlated with a dis-
tinct electron density is provided by the two theorems of Hohenberg and Kohn |8, 9].
The first theorem says that if two systems of electrons are trapped in two potentials,
Vi(r) and Va(r), but have the same ground state density, then V;(r) — V5(r) = const.
The fact that the energy landscape only differs by an additional constant potential
leads to the conclusion, that the ground state electron density uniquely determines
the potential, except for an additive constant. This means that the potential is
a unique functional of the electron density (up to the additive constant). Conse-
quently, the Hamiltonian must also be a unique functional of the electron density.
The second theorem of Hohenberg and Kohn states that the variational principle
can be used to determine the ground state density, which is the electron density that

minimizes the total energy of the system corresponds to the ground state.

While the variational principle can theoretically be used to calculate the ground
state density, it is usually not very practical, because the interaction between elec-
trons makes the system of equations non-linear. The “Kohn-Sham approach” pro-
poses to replace the system of interacting particles with a system of fictious non-
interacting particles, which corresponds to the same electron density but has no
direct physical meaning. This results in a set of linear equations which significantly

reduces the computational load [8].

The Schrodinger equation for the many electron problem (equation 2.1) gets

replaced by the Kohn-Sham equation (equation 2.3).

HY = E® (2.1)
with
. K2 . .
H=——V*+V, .+ Vi (2.2)
2m,

— 22 Kinetic energy operator (Tp)
Viie ... potential operator of electron-electron interaction

Vit ... external potential operator of atomic nuclei
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. h2 2 / A A
Hys = —5—V+ / wir) dr’ + Vgt + Vxo (2.4)
2me. dreg J | —r|
4;?:0 ﬁfﬁ‘dr’ .. Hartree potential operator (V)

Vxc ... exchange-correlation potential operator

The exchange-correlation potential (Vx¢) describes the interaction between elec-
trons which is missing from the system since the particles described by the Kohn-
Sham equation are non-interacting. This potential cannot be calculated analytically

and must be approximated as described in section 2.1.
The principle of electronic relaxation steps in DFT, using the Kohn-Sham equa-

tion and an estimate for V¢, is schematically shown in figure 2.1.

Nstart

l(e,g,, superposition of Natomic)
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Nerystal convergence? - > Vo = Vy+ Vi + V.
g potentlal eff H xc ext
(7))
c
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2|3 s
O|T X|n
Xz o f
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(1) = 3 [6i(r)

Figure 2.1: Electronic relaxation steps. Using a starting electron density, the po-
tentials are calculated. The Kohn-Sham equation is solved and a new density is
calculated. These steps are then repeated with the new density until convergence is

reached [9].
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Estimating the exchange-correlation potential

As already mentioned in the previous section, in order to calculate the exchange-
correlation potential, an approximation has to be made. One strategy used to esti-
mate the exchange-correlation potential is the Local Density Approximation (LDA).
It is assumed that the exchange-correlation energy density € xc depends only on the
local electron density [8]. The resulting exchange-correlation functional is described

by equation 2.3:

V%%m@ﬂzjﬁux%%m@»w (2.5)

Another approach for estimating the exchange-correlation potential is the Gen-
eralised Gradient Approximation (GGA), described by equation 2.4. In this case,
not only the local electron density, but also its first derivative influence the exchange

correlation energy density € x¢:

W%ﬂMﬂ%=/n@k%¥m@%VMﬂMr (2.6)

2.1.1 The VASP code for DFT calculations

“VASP” is an abbrevation which stands for “Vienna ab-initio simulation package”, a
code which allows for ab-initio modelling of systems on the atomic scale. For this
work the GGA approach described in the previous section has been used to calculate
the exchange-correlation potential. Section 2.1.2 explains how calculations are set

up in VASP and which parameters are necessary.

k-points

k-points describe the sampled points in the first brillouin zone of the reciprocal
lattice and create the mesh for the DFT simulation. The transformation of a real
space integral to a reciprocal space mesh is essentially a fourier transformation. The
integral in real space is transformed to a reciprocal space summation, which can be
solved as an eigenvalue problem. A higher number of k-points used corresponds to

a higher accuracy, but also a bigger computational load [10].

cutoff-energy

Solutions for the Kohn-Sham equation can be found using Bloch’s theorem, which
says that if the potential is periodic, the solutions can be written as a plane wave

multiplied with a lattice-periodic function. Fourier expansion then leads to an in-
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finite sum of functions that depend on just one reciprocal lattice vector each. To
restrict this infinite set of equations, an energy cutoff (which directly corresponds
to a certain maximum reciprocal lattice vector) is chosen, where the expansion is
truncated. This parameter is usually chosen through a convergence test (see chapter
3.1.1) so that the calculation reaches the desired accuracy while demanding as little

resources as possible.

2.1.2 Calculation setup and Input files

In the following, the practical setup and determination of necessary parameters for
the VASP calculations used for this work are discussed. To set up calculations using
the VASP code, several input files must be provided in order to define the unit cell,
the types, numbers and positions of atoms, the pseudopotentials, the number and
distribution of k-points, the cutoff energy, the maximum number of relaxation steps,
as well as other properties relating to, for example, magentism and spins [11, 12, 13,
14].

Convergence test

Two important parameters, which have to be included, are the number of k-points
and the cutoff energy. In order to find the optimal combination that provides the
required accuracy at minimal computational effort, a convergence test is performed;
the cell is electronically relaxed (ISIF = 0; see the following section) using a set of
possible combinations of the two parameters. The energy differences between the
last two relaxation steps before truncation are compared to find the threshold of

convergence.

Figure 2.2 shows the results from the convergence test for the B2-structure (see
section 2.3 for an explanation of the different possible structures of NiTi). When
using the “automatic” distribution of k-points, the exact number of k-points in each
direction of the reciprocal space can be found in the output files. For all further
performed calculations using the orthorhombic unit cell, 55 automatic k-points —
which corresponds to a mesh of 6 x 7 x 11 k-points for the orthorhombic cell — and
a cutoff energy of 500 eV have been used. This combination is well within the area

of convergence, defined by the teal colored areas in figure 2.2.
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Figure 2.2: k-points using the “automatic” setting over cutoff energy; teal colored
regions represent optimal convergence of the calculation with the desired accuracy
of £ 1 meV/at.

As implied in the previous paragraph, the results from the convergence test of the
B2 structure also gives the parameters for the relaxation of orthorhombic structures
with differing amounts of hydrogen. This way the computational effort is minimised,
since the B2 structure contains only one nickel and one titanium atom as opposed
to twelve of each in the orthorhombic unit cell. The simplification is justified by
the fact, that the unit cell of the orthorhombic phase without hydrogen atoms ex-
actly represents twelve B2 unit cells. The k-point density and the cutoff energy
for these two configurations must thus be the same. The influence of hydrogen on
the convergence is assumed to be negligible, since the number of k-points and the
cutoff energy, which have been picked for the calculations are well within the area

of convergence.

INCAR

The INCAR-file is a text file, which specifies different parameters of the calculation
using “tags”. Important parameters for the relaxation of the hydride phase are “EN-
CUT” which specifies the cutoff energy in eV (determined by the convergence test),
“NSW”, which defines the maximum number of ionic relaxation steps (the number of
steps after which the calculation will automatically terminate in case ionic conver-
gence has not been reached), and “ISIF” which defines different modes of relaxation.
A list of the different modes can be found in table 2.1.
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Table 2.1: Different relaxation modes defined by the “ISIF”-tag.

ISIF | relaxation of cell size | of cell shape | of atom positions
0 no no no
2 no no yes
3 yes yes yes
4 no yes yes
) no yes no
6 yes yes no

In the following, an examp