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Abstract

In data science and statistics, metrics are the measures of a quantitative assessment of dataset(s).

In machine learning (ML), metrics are used to monitor the performance of a model during training

and testing (therefore sometimes called ªperformance metricsº) by calculating a distance between

predicted and true outputs. All ML models need a metric to access the model’s accuracy in mapping

the inputs X to the outputs y.

The ML task can be classification or regression, so the performance metrics. Classification is

a supervised learning method that predicts qualitative responses. A classification problem requires

that examples are classified into a finite number of classes. Thus, classification is mapping the

input variables to discrete output variables. Regression is a supervised learning method used to

determine the relationship between independent variables X and dependent variable(s) y. The

regression model is mapping input variables to a continuous output variable(s). There are several

metrics for both problems. To mention a few:

• regression metrics: mean absolute error, mean squared error, root mean squared error, R2;

• classification metrics: accuracy, precision/recall combinations, AUROC (area under receiver

operating characteristics curve).

To understand how close the results are to the objectives in Research and Development projects,

choosing an appropriate evaluation metric for each class of ML is crucial. In geoengineering, the

datasets often exhibit extreme sparsity and observations frequency (e.g., rare events). Therefore,

the application of both ML tasks on such data requires special preprocessing (e.g., under-sampling,

over-sampling, compressing). After ML models are trained on preprocessed data, their output shall

be evaluated using a metric that provides the most comprehensive evaluation of the results.
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1 Introduction

1.1 Machine Learning Algorithms

Machine Learning is applied when it is difficult or impossible to solve a problem with conventional

algorithms. This is often the case for applied problems in nature like in biology or geology, where

huge amounts of often strongly varying data are given to calculate a model. In geology these data

vary vertically and horizontally in the subsurface and are often spatially limited (in geotechnics e.g.

core plugs) or as overall time series (in geophysics e.g. seismic logs). With the implementation

of data banks in geoscience and collecting huge amounts of information over decades, machine

learning (ML) becomes a possibility for data mining to get new or more knowledge out of these

data. ML can be a future possibility to obtain the first real-time models from logging while drilling

or seismics during operation of tunnel boring machines. [21]

In ML the goal is to create a model out of the measured input and output of a natural given

system, often without knowing exactly the physical models in the system are. Figure 1.1 shows

how the loop of a supervised ML task works. S describes the natural system, x is the input and y

the answer of the system. Here f(x) is the function which describes the real system. The learning

machine LM tries to create a model which is able to predict an output ye that is the same or suf-

ficiently similar to y. To perform this task the LM must learn from the real data and so needs the

input and the corresponding output. After the learning, the LM should be possible to predict the

output like the real system or in a sufficiently accurate way. Here three main problems came up

with ML: first no one can guarantee that the LM always produces the exact or sufficiently accurate

answer like the real system S. Second it is difficult to use analytical methods for comparing fe(x)

and F(x). Third the LM can perform well for a lot of examples and then fail at some points. [25]

Figure 1.1: The general learning loop of a supervised learning machine LM. S is the natural system,

x is the input, y is the ouput of S, ye the predicted output of LM (Source: [25])

Like all models, LM have errors and can not predict the output exact like the real system. To

get an idea how well an applied ML algorithm works, performance measuring is needed. Different

ML algorithm categories are known and for each different performance measuring methods, also

called metrics, have been developed in the last decades. ML is categorised in four types:

• Supervised learning

• Semi-supervised learning
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• Unsupervised learning

• Reinforced learning

In contrast to unsupervised learning, supervised learning LM is fed with the input and the output

of the natural system and the operator modifies the supervised LM until the predicted/calculated

output is accurate enough. This thesis will only utilise supervised learning. Three subcategories

are known in supervised learning:

• Classification

• Regression

• Forecasting

In classification every data point in a given data set becomes a label and is categorized. Classifi-

cation algorithms differ by the amount of classes which exists and the amount of labels one data

point can be given. The best example for classification ML is the email filtering algorithm for

"spam" mails. Here the LM classifies the emails by checking different aspects of the mail content.

In regression the LM tries to produce a continuous output value, which can be used numerically.

Here, for example, the output can be the price of a house, say 220.000 Euros. In classification this

house would be labeled a specific value class like 200.000-250.000 Euros or which income class is

interested in this house[19]. This thesis will utilise classification and regression.

1.2 Classification Metrics

Classification is used when the data can be categorized into classes. This task can be used in

geoscience for labeling rocks into lithologies based on the content of differente minerals. In classi-

fication different types of algorithms are known. The mosts common is binary classification. Here

the data become only one of two possible labels. Multi-class classifiers apply one label of more

than two possible labels each data point. Multi-label classifiers are able to give more than one label

to every data point. Before the metrics are explained, some basic values and wordings must be

described. For the class on which the performance measuring is done, the labeled data to this class

are called positive, whereas the data labeled to the other classes are called negative. The feature

space is the defined room where all the inputs are located. Output y of a classifier is the label of

the input X. The training tries to minimize the error rate on the training data and testing simulates

a practical application scenario. To obtain a perfect classifier, an infinite number of testing sam-

ples must be given, so the LM gives the same output as the natural system. In reality only a finite

number of samples is given, and here the operator must decide which samples are used for training

and which for testing. [25] describes three evaluation methods:

• Re-substituting test

• Independent dataset test

• Cross validation test (here the Jackknife test and n-fold test)

For the independent dataset tests the given dataset is randomly partitioned into two parts - 70%

of the data for training, the rest for testing. The problem is that for small sample numbers, one

can get a large variance. To minimize this problem one can run the test several times and use the

average performance as an indicator. This can be unsatisfactory. The re-substituting test takes
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the same data for training and testing. This leads to an overestimated performance of the test

and is least recommended. For limited data sets, the cross validation test helps to overcome these

problems. This method can be divided into the the leave-one-out cross validation and the n-fold

cross validation. At n-fold, also all data are used for training and testing. The difference is, that

the dataset is divided into n parts of equal size. Each part is picked once for testing, and for the

other rounds it is part of the training data. So in the k round, part k for testing, and n-1 parts for

training. The metric is figured out by averaging over the whole data set. Normaly n varies betwenn

3-5. Figure 1.2 shows the n-fold testing for n=5. For this kind of testing, the predicted and thr

real results have a negative correlation. This can also happen, even when there is no relationship

between them. This increase with increasing n. The Jackknife test, or also called the Leave-One-

Out cross validation test, uses for n the number of data points given. Here the negative correlation

problem becomes overwhelming. [25]

Figure 1.2: Dataset split into 5 parts equal size, A-E. Every part is used one time for testing and

four times for training.(Source: https://scikit-learn.org)

Real Positive (RP) and Real Negative (RN) describes the label which the natural system would

classify. Predicted Positive (PP) and Predicted Negative (PN) is the output of the LM. True Positive

(TP) and True Negative (TN) are the data which the predicter labeled the same as the natural

system. False Positive (FP) and False Negative (FN) are the incorrectly labeled data by the LM.

The context between these values is often shown in a confusion matrix, like in Table 1.1.

Predicted Positive Predicted Negative

Real True False

Positive Positive Negative

Real False True

Negative Positive Negative

Table 1.1: An example of a confusion matrix

The most common binary metrics are the Sensitivity Equation 1.1 (also True Positive Rate;

Recall), the Specificity Equation 1.2 (also True Negative Rate; Inverse Recall) and the Accuracy

Equation 1.3:

Sen =
T P

T P+FN
(1.1)
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Spec =
T N

T N +FP
(1.2)

Acc =
T N +T P

T N +FN +T P+FP
(1.3)

These three equations are the most common performance measures in classification. Sensitivity

gives the rate of the correct positive samples to all real positive samples. So the grade how well the

predictor identifies positive samples. Specificity is the same for negative samples. The accuracy

measures the ability of the predictor to correctly lablel all samples, independent of the class. These

show a general information about the performance of the LM. Often users are only interested in the

information of positive hits. Here the Positive Predictive Value Equation 1.4 (PPV, also Precision),

the False Discorvery Rate Equation 1.5 (FDR) and the Jaccard Index Equation 1.6 are useful for

this case.

PPV =
T P

T P+FP
=

T P

PP
(1.4)

FDR = 1−PPV =
FP

T P+FP
=

FP

PP
(1.5)

J =
T P

T P+FP+FN
=

T P

n−T N
(1.6)

If the TP should be weighted stronger, it can be multiplied by 2 in the denominator and in the

numerator. This is called the F1-score.[25]

Sometimes datasets are imbalanced. Imbalanced datasets have a significant higher number of

datapoints in one class than in the others. For example, in an automated picture classification of

the rework of waste, it is useful to get out lithium battery cells because of the danger of fire. 99%

of the pictures contain no battery, so they are true negatives. Only 1% are true positives and so the

training data is imbalanced. To reduce this problems in the value of performance measuring, the

Balanced Accuracy Equation 1.7 (BAcc) and the Mathhew´s Correlation Coefficient Equation 1.8

(MCC) are implemented, where -1≤ MCC≤ +1.

BAcc =
1

2
∗ (Sen+Spe) =

1

2
∗ ( T P

T P+FN
+

T N

T N +FP
) (1.7)

MCC =
T P∗T N −FP∗FN

√

(T P+FP)∗ (T P+FN)∗ (T N +FP)∗ (T N +FN)
=

T P+T N −FP∗FN√
PP∗PN ∗RP∗RN

(1.8)

are implemented, where -1≤ MCC≤ +1. The MCC is used especialy when the Jackknife test

criterion is applied on imbalanced data. The BAcc is useful for solving most of the bias problems

in imbalanced data. The MCC is equal to the Chi-Square test on the confusion matrix. Sometimes

predictors are coded that they give a score to the samples and then label the samples according to a

pre-defined cut off value. The decision of the cut off value strongly influences the given metrics. To

eliminate this problem, the Receiver Operating Characteristic (ROC) curve method is introduced.

The relation between the False Positive Rate Equation 1.9:

FPR = 1−Spe =
FP

FP+T N
(1.9)

and the Sensitivity is described using the ROC curve. Figure 1.3 shows a possible ROC curve.

Good performance is shown, when the curve converges to the upper left corner. When the curve

is close to the dashed diagonal, the predictor works randomly. The Area Under the Curve (AUC)

indicates the probability that a randomly picked positive sample gets a higher score than a ran-

domly picked negative sample. The form of the ROC curves can be strongly influenced by highly
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imbalanced datasets. [25]

Figure 1.3: The Receiver Operating Characteristic (ROC) curve is independly of pre-defined cut

off values.(Source: [25])

For the problem of the impact of the ROC curve by imbalanced datasets, the Precision-Recall

(PR) curve is useful. The difference with the ROC is that sensitivity/recall and precision is used

for the coordinates. So the ROC and PR curve are related to each other since every dot on a ROC

curve represents a confusion matrix which leads to the sensitivity and precision for the PR curve.

So the AUC of ROC and PR curves always show the same results. [25]

Until now metrics for binary-class classifier have been discussed. A commonly metric for multi-

class classifiers is the overall accuracy Equation 1.10:

AccOverall =
1

n

m

∑
j=1

T Pj (1.10)

where n is the total number of testing samples, m the total number of classes and TP j the number

of true positives of the j-th class. Here all classes of the predictor are accounted for by one value.

[25]

For multilabel-predictors the performance measure is given by aiming Equation 1.11 (multi-label

PPV), by coverage Equation 1.12 (multi-label coverage), by accuracy Equation 1.13 (multi-label

accuracy), by absolute-true-rate Equation 1.14 and by absolute-false-rate Equation 1.15:

Aim =
1

n

n

∑
k=1

| ye ∩ y |
| ye |

(1.11)

Cov =
1

n

n

∑
k=1

| ye ∩ y |
| y | (1.12)

Acc =
1

n

n

∑
k=1

| ye ∩ y |
| ye ∪ y | (1.13)

AT R =
1

n

n

∑
k=1

δk (1.14)
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AFR =
1

n

n

∑
k=1

1

m
[| ye ∩ y | − | ye ∪ y |] (1.15)

Here δk is an indicator function, which is 1 when the predicted output is completely correct,

otherwise it is 0. This means that for a multi-label predictor, all given labels must be completely

correct. If the predictor gives labels to the sample, and it is incorrect, it is called over-predicting.

If the predictor does not label the sample although it is true, it is called under-predicting. The ATR

describes the frequency of correct predictions. The AFR is the average rate of incorrectly predicted

labels. These values are calculated over-all classes and describe the performance of the predictor

over-all classes. [25]

[10] provides some additional metrics. The authors describe it as quality performance metrics

for one input-class and two output classes. Here the input class is the class for which the predictor

is trained during the training sequence. The output class describes the unknown samples which are

used for the testing. One can decelerate this as binary classifier. The wording was choosen in a

more general way.

The Yoouden´s index Equation 1.16 describes the proportion between correct and wrongly

classified samples:

YOUD = Sen− (1−Spec) (1.16)

The positive Likelihood ratio Equation 1.17 and negative Likelihood ratio Equation 1.18 de-

scribe the ratio between the agreement in class A and the errors in class not A and visa a via:

LR(+) =
Sen

1−Spec
(1.17)

LR(−) =
1−Sen

Spec
(1.18)

Classification Odds Ratio Equation 1.19 combine metrics like FPR and FNR, Sen and Spec in one

parameter:

COR =
LR(+)

LR(−)
(1.19)

Discriminant power Equation 1.20 is called "test effectiveness" and shows the possibility of the

classifier to distinguish between of objects of both classes (A and not A):

DP =

√
3

π
∗ (log

Sen

1−Sen
+ log

Spec

1−Spec
) =

√
3

π
logCOR (1.20)

where DP>1 is OK and >1.5 is good. The Area under the receiver operating curve Equation 1.21

is already described before and can be calculated in this way:

AUC =
Sens+Spec

2
(1.21)

The Gini coefficient Equation 1.22 response the errors during classification and at low values a

good performance of the classifier in this field:

Gini = (2∗AUC)−1 (1.22)
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The G-mean Equation 1.23 can be called the "geometrically averaged accuracy" and shows an

equilibrium between agreements and errors of the predictor:

GM =
√

Sen∗Spec (1.23)

[10] claimed, that for a predictor with two or more input classes the above given wording of

positive and negative does not work any more. Instead the terms "agreement" and "error" values

are used. A value applied and belonging to class A is aA, applied to A but belonging to B is eB,A,

applied to B but belonging to A eA,B and applied to B and belonging to B is aB. T describes the

total number of validation standards, TCA and TCB the total number of standards of classes A and

B Summing up brings:

TCA = aa + eA,B

TCB = eB,A +aB

ACA = aa + eB,A

ACB = eA,B +aB

T = ACA +ACB = TCA +TCB

The Chance Agreement Rate Equation 1.24, also known as the chance-no-error rate, shows the

ratio of agreements due to chance:

CAR =
(TCA ∗ACA)+(TCnA∗ACnA)

T 2
(1.24)

The Chance Error Rate Equation 1.25, also the random error rate, shows the the possibility of an

error when labeling is performed by chance:

CER =
2∗TCA ∗TCnA

T 2
(1.25)

The Kappa coefficient Equation 1.26 describes the ratio of real agreements by considering that

some of them could be assigned by chance:

KAPPA =
Acc−CAR

1−CAR
(1.26)

The Bayes´ conditional probability uses the nomenclature P(assigned class | reference class). Here

all the values are used to show the probability how one label is right or wrong given.

P(A|A) = Prev∗Sen

Prev∗Sen+(1−Prev)∗ (1−Spec)
(1.27)

P(nA|nA) =
(1−Prev)∗Sen

(1−Prev)∗Sen+Prev∗ (1−Sen)
(1.28)

P(nA|A) = (1−Prev)∗ (1−Spec)

Prev∗Sen+(1−Prev)∗ (1−Spec)
(1.29)

P(A|nA) =
Prev∗ (1−Sen)

(1−Prev)∗Spec+Prev∗ (1−Sen)
(1.30)
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where the prevalence is:

Prev =
TCA

T
(1.31)

which can be also expressed as the ratio of all values which actually belong to class A to all given

samples. The problem with the probability performance measurement is the prevalence. [10]

also describes metrics for more than two output classes. The values are like for the two output

predictor, but over-all classes. The overall Agreement Rate Equation 1.32, the overall Error Rate

Equation 1.33, the overall chance agreement rate Equation 1.34, the overall Chance Error Rate

Equation 1.35, and the overall Kappa coefficient Equation 1.36:

overallAR =
∑ai

T
(1.32)

overallER =
T −∑ai

T
=

∑ei

T
= 1−overallAR (1.33)

overallCAR =
∑TCi ∗ACi

T 2
(1.34)

overallCER =
∑TCi ∗ (T −TCi)

T 2
(1.35)

overallKAPPA =
overallAR−overallCAR

1−overallCAR
(1.36)

[22] describes hierachical classifiers as predictors, which label the input with one class, which

is either divided into subclasses or grouped into superclasses. Thus is often used for text and

bioinformatic predictors. Here metrics like Precision, Recall and Fscore can be used like for bi-

nary classifiers. Invariance is used in classification to describe the independence of a metric from

changes in the confusion matrix. For example, the independence of Precision or Recall of True

Negative is beneficial in text classification but adverse in human communication. [22] describes

eight invariances measures for binary confusion matrices, because this can be applied to other clas-

sifiers which are derived from the matrix.

I1: metrics, which stay constant under the exchange of positives and negatives.

[

T P FN

FP T N

]

→
[

T N FP

FN T P

]

(1.37)

The metrics of this invariance are not trustworthy for comparing of classifiers with different or

unbalanced class distributions.

I2: metrics, which stay constant under change of True Negative counts.

[

T P FN

FP T N

]

→
[

T P FN

FP T N

]

(1.38)

I3: metrics, which stay constant under change of True Positive counts.

[

T P FN

FP T N

]

→
[

T P FN

FP T N

]

(1.39)

I4: metrics, which stay constant under change of False Negative counts.

[

T P FN

FP T N

]

→
[

T P FN

FP T N

]

(1.40)
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I5: metrics, which stay constant under change of False Positive counts.

[

T P FN

FP T N

]

→
[

T P FN

FP T N

]

(1.41)

I6: metrics, which stay constant under constant change of positives and negatives.

[

T P FN

FP T N

]

→
[

k1 ∗T P k1 ∗FN

k1 ∗FP k1 ∗T N

]

(1.42)

I7: metrics, which stay constant under constant change of False Negative and True Negative, where

k1 ̸= k2
[

T P FN

FP T N

]

→
[

k1 ∗T P k2 ∗FN

k1 ∗FP k2 ∗T N

]

(1.43)

I8: metrics, which stay constant under constant change of False Positive and True Negative, where

k1 ̸= k2
[

T P FN

FP T N

]

→
[

k1 ∗T P k1 ∗FN

k2 ∗FP k2 ∗T N

]

(1.44)

For the above described invariance measures, Table 1.2 shows the depending metrics. It describes

with + an invariant and with - a non-invariant metric.
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I1 I2 I3 I4 I5 I6 I7 I8

Binarcy Classification

Accuracy + - - - - + - -

Precision - + - + - + + -

Recall/Sensitivity - + - - + + - +

Fscore - + - - - + - -

Specifity - - + + - + - +

AUC - - - - - + - +

Multi-class classification

Average Accuracy + - - - - + - -

Error Rate + - - - - + - -

Precision text classifier - + - + - + + -

Recall text classifier - + - - + + - +

Fscore text classifier - + - - - + - -

Precision multi class classifier - + - + - + + -

Recall multi class classifier - + - - + + - +

Fscore multi class classifier - + - - - + - -

Multi-topic classification

Exact Match Ratio - - - + + - - -

Labelling Fscore - + - - - + - -

Retrieval Fscore - - - - - + - -

Hamming Loss + + + - - + - -

Hierarchical classification

Precision subclass - + - + - + + -

Recall subclass - + - - + + - +

Fscore subclass - + - - - + - -

Precision superclass - + - + - + + -

Recall superclass - + - - + + - +

Fscore superclass - + - - - + - -

Table 1.2: Invariance condition for different classification metrics. + describe invariance, - non-

invariance (Source: [22])

[?] describes the possibility of comparing two classifiers, which are trained on the same data

set. The McNemar´s test divides the data set S into a training set R and a test set T. The statistical

null hypothesis H0 says, that both algorithms should have the same error rate. The test is based on

a χ2 for goodness-of-fit. The expected counts under the H0 hypothesis are described in Table 1.3:

n00
n01+n10

2
n01+n10

2
n11

Table 1.3: Expected counts of the H0 hypothesis. (Source: [?])

with the contingency in Table 1.4
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Number of examples misclassi-

fied by both classifiers n00

Number of examples misclassi-

fied by classifier A ( fA) not by

classifier B ( fB) n01

Number of examples misclassi-

fied by fB but not by fA n10

Number of examples misclassi-

fied by neither fA nor fB n11

Table 1.4: McNemar´s test contingency table (Source: [?])

The s value is used to describe the statistic of the χ2 with 1 degree of freedom:

s =
(n10 −n01 −1)2

n10 +n01

(1.45)

If |s|> χ2
1,0.95, describing a probability smaller than 0.05, the H0 hypothesis can be rejected and the

two algorithms have different performance. The McNemar´s test has it weakness at not measuring

the variability in internal randomness or the choice of data set. So the test is useful if the sources

of variability are small.

For getting an idea, how the difference of two proportions is, a statistical test about the difference

of the error rate of two algorithms can be applied. Let pA and pB be the probability of incorrectly

classified test samples of classifier A and B. The binomial random variable n∗ pA with variance pA∗
(1− pA)∗n describes the number of misclassifications on n test samples. Calculating the difference

between two independent normally distributed random variables is again normally distributed. If

pA and pB are independent, the null hypothesis will be described by a mean of zero and a standard

deviation error se Equation 1.46 by and the statistic z Equation 1.47:

se =

√

2p∗ (1− pA+pB

2
)

n
(1.46)

z =
pA − pB

√

2p∗(1−p)
n

(1.47)

where n is the number of test samples and z is standard normal distributed. If |z| > Z0.975 = 1.96,

the null hypothesis is rejected and the two algorithms perform differently. Problems with this

statistic are that the algorithms are tested on the same test set and so are not independent. Also the

problem exists of not taking in account the variation due to the choice of training set or internal

variations.

One of the most popular metrics is the resampled paired t test. At 30 trials, each time the test

randomly divide the sample S into a training set R (normally two thirds of S) and a test set T. If

for every trial the error rate of the algoritms are independent of each and normally distributed, the

Student´s test can be applied by caculating the statistic:

t =
p∗√n

√

∑
n
i=1(p(i)−p)2

n−1

(1.48)

where p = 1
n
∗∑

n
i=1 p(i), (i) the i-th trial and p(i) = p

(i)
A − p

(i)
B . With n-1 degrees of freedom in

a t distribution, the null hypothesis is rejected by |t| > t29,0.975 = 2.045. Here the problems are

that p
(i)
A and p

(i)
B are not independent so p(i) is not normally distributed and the p(i) itself is not

independent, because R and T overlap in the trials.
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The re sampled paired t test is called k-fold cross-validated paired t test if S is divided randomly

into k sets Tk of equal size. Then in k trials, the test set is Ti and the training set is the sum of the

other Tj with j ̸= i.

1.3 Regression Metrics

In regression metrics the performance measures can be grouped in different ways. [5] recommend

the division into four groups:

• primary metrics

• extended metrics

• composite metrics

• hybrid sets of metrics

Primary metrics is the mostly used group with values like Mean Absolute Error (MAE), Mean

Square Error (MSE), symmetric Mean Absolute Percentage Error (sMAPE), etc... Usually they

are structured in three steps: first calculating the point distance, then performing the normalization.

These two steps are done for all used datapoints of the dataset. The third step is the aggregation of

the calculated results of the two steps before. Often primary metrics are used for the recalculation

for other metrics.

Extended metrics add some special normalization methods to the primary metrics. Here the nor-

malization is applied after the aggregation. For example the Normalized Root Mean Square Error

(NRMSE) is the Root Mean Square Error normalized by the standard deviation. The normalization

can also be performed by the mean of the difference of maximum and minimum of the data.

Composite metrics combine two or more single metrics, so a single result is produced. Here a

example is the Relative Root Mean Squared Error (RelRMSE), where the RMSE is divided by a

RMSE from a benchmark method.

Hybrid sets of metrics use also two or more metrics for the same experiment, but they are not

combined in a single mathematical structure. The idea is, that sets of metrics are developed for

different purposes, where single metric complements the others for a better statement. Here [5]

mention bias and accuracy as example.

[5] discuss the most common group, primary metrics, in detail. In general, primary performance

measuring can be explained by:

m = GZ
j=1,n[N

Z(DZ
(A j,Pj)

)] (1.49)

where D is the method of point distance determining, N the method of normalization, G the method

of aggregation the point distance of the dataset, A j the actual value, Pj the predicted value, n the

size of dataset and z the index of the used method. The different ways of calculating the point

distance D are subtraction, with magnitude error A j −Pj, absolute error |A j −Pj| and squared error

(A j −Pj)
2. Point distances by division, with quotient error q j = Pj/A j, absolute quotient error |q j|

and squared quotient error |q2
j |. Quotient error can be also used as a logatihmic quotient. Multipli-

cation point distance is used for vector and binary data. Some examples are inner product distance

(IPD), harmoinc mean distands (HMD), etc. Magnitude of error is a computationally efficient and

easy method of calculation. The issue is the aggregation of the error points, which can lead to

canceling by positive and negative values. The absolute error can prohibit this problem. The prob-

lem is skewness (bias) can not be calculated. The squared quotient error eliminates the problem
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of the magnitude of error. The main problem is that large errors are emphasized and getting more

impact on the performance metric. The logarithmic quotient error ln(Pj/A j) has the advantage of

a symmetric error and is dimensionless.

Normalization brings the benefit of the comparability of different metrics with various dimensions.[5]

The unitary normalization divides the metric by one and does not need further calculatoins. The

normalization by actuals A−c
j means the division by the actual value. Here c=1 and c=2 is possible.

This metric is useless for actuals near zero. The normalization by variability of actuals (A j −A)−c

is calculated by division by the difference of the actual value and the mean value of all actuals.

Here c=1 or c=2 is possible. It minimzes the problem of the division by actuals near zero. Instead

of the mean it is possible to use the sum of actuals and predicted values (A j +Pj)
−c. A modifica-

tion is to use the average of this value by division by 2. Additionally one can use the maximum (or

minimum) value of the actuals or the prediction [max(A j,Pj)]
−c, where c=1. This normalization is

used for compressed domain image retrieval. Other possibilities are the normalization by standard

deviation or the difference of the actual and the predicted values.[5]

For the aggregation of primary metrics [5] recommend four methods. The (arithmetic) mean

aggregation uses the normalized point distances and sums them up by division of the number of

point distances. Median aggregation uses the value in the middle of the listed point distances. If

the data set is even it is the mean of the two middle values. The method is more resistant against

outliers. Geometric mean aggregation is the n-th root of the product of all point distances. It is also

more robust with respect to outliers. One of the simplest calculation is the sum aggregation, where

all D are summed. Some unusual used aggregation are the harmonic mean as the reciprocal of the

arithmetic mean. The truncated mean cuts out some extreme outliers before forming the arithmetic

mean. Using the Windsorized mean the extreme D are replaced by the next smallest/largest value.

M-estimator weighs the D by the distance from the center of the distribution. Table 1.5 shows

the possible combinations of the aggregation G, normalization N and point distance D and the

shortcuts of the resulting metrics. The table with the full name of the shortcuts can be seen in the

appendix.
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Point Distance

D

Normalizaion

N
Aggregation

D

N1 = 1 N2 = A−c
j

N3 =
(A j −A)−c N4 = (A j +Pj)

−c N5 =
[max(A j,Pj)]

−c

Error

(magnituted error)

D1 = A j −Pj

ME (MBE, bias) MNB for c=1

MPE=100*MNB
FB c=1 G1Mean

G2Median

G3Geometric

Mean

MD G4Sum

Absolute error

D2 = |A j −Pj|

MAE (MAD) MARE c=1

NAPE=100*MARE
MRAE c=1 FAE c=1

sMAPE=100*FAE
G1Mean

MdAE MdAPE c=1 MdRAE c=1 sMdAPE c=1 G2Median

GMAE GMRAE c=1 G3Geometric

Mean

SAD RAE c=1 CM c=1 WHD c=1

max
G4Sum

Squared error

D3 = (A j −Pj)
2

MSE

RMSE =
√

MSE

MSPE c=2

RMSPE =
√

MSPE
G1Mean

MdSPE c=2

RMdSPE=
√

MdSPE
G2Median

GRMSE G3Geometric

Mean

SSE

ED =
√

SSE
NCSD c=1 RSE c=2

RRSE=
√

RSE

SquD c=1

DivD c=2

VSD c=1

min
G4 Sum

Log quotient error

D4 = ln(P/A)

G1Mean

MdLAR G2Median

G3Geometric

Mean

KLD c=1 G4Sum

Absolute Log

quotient error

D5 = |ln(P/A)|

MNAFE G1Mean

MdSA G2Median

G3Geometric

Mean

G4Sum

Table 1.5: Regression Metrics for different point distances (D), normalizations (N) and aggrega-

tions (D). The explanation of the shortcuts can be found in the appendix (Source: [5])

1.4 Software Python

Python is the preferred software for implementing the LM. It is a object-oriented, open source,

free available coding language, especially common in science for interpreting large amount of

data, solving mathematical problems and building different kinds of neuronal networks. For these

applications Python has different open source libraries. In this thesis the used library for ML is

scikit-learn, short sklearn. The library include the most important ML algorithms and correspond-

ing metrics. For the preparing of the data pandas is the used library. In pandas dataframe objects

simplify the handling of the data. [4] [3] [20].

The package fitter [2] is a package for fitting the distribution of data by a the probability distri-

butions of the package SciPy [23]. Table 1.6 shows all the used distributions
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alpha gengamma maxwell weibull_max

anglit genhalflogistic mielke wrapcauchy

arcsine genhyperbolic moyal multivariate_normal

argus geninvgauss nakagami matrix_normal

beta gibrat ncx2 dirichlet

betaprime gompertz ncf wishart

bradford gumbel_r nct invwishart

burr gumbel_l norm multinomial

burr12 halfcauchy norminvgauss special_ortho_group

cauchy halflogistic pareto ortho_group

chi halfnorm pearson3 unitary_group

chi2 halfgennorm powerlaw random_correlation

cosine hypsecant powerlognorm multivariate_t

crystalball invgamma powernorm multivariate_hypergeom

dgamma invgauss rdist bernoulli

dweibull invweibull rayleigh betabinom

erlang johnsonsb rice binom

expon johnsonsu recipinvgauss boltzmann

exponnorm kappa4 semicircular dlaplace

exponweib kappa3 skewcauchy geom

exponpow ksone skewnorm hypergeom

f kstwo studentized_range logser

fatiguelife kstwobign t nbinom

fisk laplace trapezoid nchypergeom_fisher

foldcauchy laplace_asymmetric triang nchypergeom_wallenius

foldnorm levy truncexpon nhypergeom

genlogistic levy_l truncnorm planck

gennorm levy_stable truncweibull_min poisson

genpareto logistic tukeylambda randint

genexpon loggamma uniform skellam

genextreme loglaplace vonmises yulesimon

gausshyper lognorm vonmises_line zipf

gamma loguniform wald zipfian

lomax weibull_min

Table 1.6: distributions the package fitter uses from SciPy for fitting the data (source: [23])
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2 Data and Machine Learning Algorithm

The link to the Github server can be found here: https://github.com/rmttugraz/MatthiasHann.

git. All used data sets, codes and the histograms can bed found here. Later in this thesis, there

will be references to the data on this server.

2.1 Data preparation Classifiaction

The data for training the LM are chosen from the homepage of the "TC304 Engineering Practice of

Risk Assessment & Management" of the International Society of Soil Mechanics and Geotechnical

Engineering (ISSMGE). For classification 7 data sets are used. The data set C#1 [17] contains

coarse grained soils, clays from Finnland, from 176 studies. The input and the classes for the LM

are described in the Listing 2.1. All classes with less than 20 samples are removed from the data

set. So 6 classes are given, as described below.

1 X = data[["Void ratio", "Water content (%)", "Unit weight (kN/m3)", "

Effective in -situ stress (kPa)", "Pre -consolidation pressure (kPa)", "

OCR", "Compression index", "Swelling index"]]

2 y = data[’Soil typea ’]. values

3

4 Soil typea

5 Sa 241

6 liSa 158

7 laSa 63

8 Sa/Si 45

9 Sa/Lj 29

10 ljSa 21

Listing 2.1: Finish Clays; data set C#1

Data set C#2 [13] describes the compressive strength, tensile strength and friction properties

for pyroclasts, andesits, basalts and dacite. Listing 2.2 shows the input data X and the classes y.

1 X = data[[’porosity ’,’UCS (MPa)’, ’Youngs modulus (GPa)’]]

2 y = data[’rock_type_cat ’]. values

Listing 2.2: Volcanic Rocks; data set C#2

The C#3 data set [9] contains deformation modulus, elastic modulus, dynamic modulus, rock

quality designation, rock mass rating, Q-system, geological strength index of a rock mass as well

as intact-rock Young’s modulus and intact-rock uniaxial compressive strength for 5876 rock mass

cases. Listing 2.3 shows the input data X and the classes y. The classes are more or less balanced,

beside the mudstone.

1 X = data[[’Sigma ci (MPa) (intact rock)’, ’RQD’]]

2 y = data[’Rock Type’]. values

3

4 Rock Type

5 mudstone 104

6 gneiss 66

7 sandstone 62

8 andesite 35

9 basalt 31

10 siltstone 31
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11 Serpentinite 30

12 limestone 29

13 Syenite 27

14 granite 27

Listing 2.3: Rock Masses of different kind of rocks; data set C#3

Data set C#4 [6] contains of 27.5% igneous rock, 59.4% sedimentary rocks and 13.1% meta-

morphic rock. Unit weight (kN/m3), Dry unit weight (kN/m3), water content (%), Porosity (%),

Effective Porosity (%), Schmidt hammer hardness (RL), Shore scleroscope hardness(Sh), Is50

(MPa), P-wave velocity(km/s), σt Brazilian(MPa), UCS(MPa), Young’s modulus E (GPa). List-

ing 2.5 shows the input data X and the classes y. The classes are more or less balanced, beside the

limestone.

1 X = data[[’Dry unit weight (kN/m^3)’, ’P-wave velocity(km/s)’, ’UCS(MPa)’]]

2 y = data[’Rock Type’]. values

3

4 Rock Type

5 Limestone 75

6 Granite 55

7 Serpentine 52

8 Peridotite 35

Listing 2.4: Mixed Stone; data set C#4

[24] describes data set C#5 and contains shear wave velocity and the blow count (N) from the

SPT. Listing 2.5 shows the input data X and the classes y. The classes are large enough so data

imbalance is not so important, beside Silty soils.

1 X = data[["N", "Vs (m/s)"]]

2 y = data[’Soil type’]. values

3

4 Soiltype

5 Sandy soils 849

6 Clayey soils 441

7 Sandy silt/silty sand 260

8 Silty soils 229

9 Soft to stiff soil 180

10 Silty soils 35

Listing 2.5: N-Vs correlation; data set C#5

The data set C#6 is downloaded from the homepage of the TU Graz, (Source: [1]). It is a data

set from the Geotechnik Premstaller GmbH from hundrets of cone penetration tests. Listing 2.6

shows the input data X and the classes y. The data are highly imbalanced.

1 X = data[[’Depth (m)’,’qc (MPa)’,’fs (kPa)’,’Vs (m/s)’]]

2 y = data["Oberhollenzer_classes"]. values

3

4 Oberhollenzer_classes

5 7.0 616

6 6.0 476

7 1.0 337

8 5.0 304

9 0.0 92

10 4.0 54

11 2.0 47

12 3.0 24

Listing 2.6: CPT Getoechnik Premstaller; data set C#6
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The data set C#7 [12] describe the properties of saturated hydraulic conductivity and Atterberg

Classification for fine grained soils. Listing 2.7 shows the input data X and the classes y. The data

set is highly imbalanced.

1 X = data[["void ratio", "k (m/s)", "wL", "wP", "IP", "Gs"]]

2 y = data[’Atterberg classification ’]. values

3

4 Atterberg classification

5 CH 366

6 CL 230

7 MH 184

8 ML 59

Listing 2.7: Fine grained soils (clay); data set C#7

2.2 ML Algorithm Classifier

After deciding which input data should be classified the ML algorithm are chosen. Listing 2.8

shows the 10 used algorithms. All are loaded from the package scikit-learn and the knowledge of

the description of them in the following part is taken from [20].

1 RANDOM_SEED =42

2

3 rfc = RandomForestClassifier(random_state=RANDOM_SEED)

4 knn = KNeighborsClassifier ()

5 svm = SVC(random_state=RANDOM_SEED , probability=True)

6 dtc = DecisionTreeClassifier ()

7 gnb = GaussianNB ()

8 lda = LinearDiscriminantAnalysis ()

9 abc = AdaBoostClassifier(random_state=RANDOM_SEED)

10 qda = QuadraticDiscriminantAnalysis ()

11 mlp = MLPClassifier(max_iter = 4000, random_state=RANDOM_SEED)

12 lrc = LogisticRegression(solver=’sag’, max_iter =4000 , random_state=

RANDOM_SEED)

Listing 2.8: Classifier algorithm

The Random Forest Classifier work on three main steps. After selecting random samples from

a data set, the algorithm constructs a decision tree for each sample. There it predicts a result for

every tree. Every predicted result gets a vote/weight in comparison with the test set. The best

voted prediction is the final prediction. So the decision tree is trained for regression and classifying

tasks. In general RFC are robust because of the high number of decision trees. Overfitting is only a

small problem because of averaging the predictions. The architecture of the algorithm causes high

computational cost because every decision tree gives a prediction and after the prediction must be

voted. In summary a Random Forest Classifier/Regressor is a set of multiple decision trees.

The K-Neighbors Classifier is based on the nearest neighbors classification. Here the algorithm

does not construct a model for general prediction. The algorithm stores instances of the training

data set and so uses them for the classification by a simple majority vote of the nearest neighbor.

The class will be assigned by a query point. This point is the most representative of the class.

Weights are used to give the neighbors different impacts on the prediction. Figure 2.1 shows a

3-Class KNN Classifier with uniform weights and the number of neighbors per class k=15.
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Figure 2.1: An example of a 3-Class KNN-Calssifier. (Source: [20])

Support Vector Machines (SVM) divide the input data into a high-dimensional feature space

and classify them by this space. Depending on the form of hyperplane (linear, polynomial, radial,

sigmoid,...), which divides the feature space, the complexity of the classification changes. The

decision for the best hyperplane is taken by measuring the maximum margin hyperplane-nearest

data point. SVM are very effective for high dimensional spaces and for small sample numbers.

If the feature space is much higher than the number of samples it is import to choose the correct

kernel function (hyperplane) to avoid over-fitting.

In comparison with the Random Forest Classifier, the Decision Tree Classifier uses only one

decision tree instead of a collection of decision trees. This makes the algorithm computational less

expensive, but also less stable. Figure 2.2 shows an example of a decision tree, trained by the data

set #1 described before. One can see how complex the structure is.
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For the LDA, a variation of the QDA, it is assumed that all classes share the same covariance

matrix. One can describe the above equation by Equation 2.4, where ω t
kx = ∑

−1 µk and ωk0 =
−1

2
µ t

k ∑
−1 µk + logP(y = k) describes.

logP(x|y = k) = ω t
kx+ωk0 +Cst (2.4)

AdaBoostClassifier uses the AdaBoost algorithm. The principle is to train weak learners, like

small decision trees, repeated on modified versions of the data. The final predictor is formed by a

weighted majority vote of all these predictors. Each boosting iteration consists of applying weights

to each training sample. The weights are increased for the incorrectly performing predictors and

vice versa for the correctly performing predictors. So each subsequent weak learner is forced on the

missed samples. The error rate decreases with increasing of number of weak learners. Figure 2.3

shows correlation between the error rate, the number of weak learners and the chosen predictor.

Figure 2.3: Correlation between number of weak learners in the AdaBoost method, error rate and

the chosen predictor (source: [20]

The Multi-Layer Perceptron, MLP, belongs to the group of deep learning algorithm. The neu-

ronal network is built up by an input and an output layer and one or more hidden layers in be-

tween. The layers are built by neurons. A neuron calculates from all inputs a weighted sum, like

x1w1 + x2w2 + ...+ xnwn. This sum is the input for a following non-linear activation function, like

a sigmoidal function. The outputs of the activation function of all neurons of a layer is the input

for every neuron in the next layer. The bias is a constant which is added to the neuron summation

to give the output a minimum value. MLP is able to learn non-linear-models and real-time/online.

The loss function of the hidden layers contains more than one local minimum, so with randomly

initiated weights the MLP can lead to different accuracies. Choosing the architecture parameters

like number of hidden neurons and layers and number of iterations is a trail and error process or

needs experience. The scaling of the features affect the MLP. In the case of classification, the MLP

is trained by backpropagation. First the network is built up and classifies one time the inputs with

the initialized weights. Second the failure by the supervised data set is calculated. Third the failure

value is back calculated from the output layer until the input layer. The weights in the neurons are

changed depending on their input on the failure. The fourth step, the prediction is repeated like in

step two. The iteration follows the minimum of the failure or until a maximum number of iteration

is reached. Figure 2.4 shows the basic architecture of a neuronal network.
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Figure 2.4: A neuronal network with input layer, hidden layer and output layer. a describe the

neurons. (source: [20]

Logistic-Regression LR is a part of linear models, in which the supervisor assumes that the

target can be described by a linear combination of the features y(w,x) = w0 +w1x1 + ...+wpxp.

LR is used for classification rather than in regression and uses a logistic function Equation 2.5 for

modeling the probabilities describing the possible outcomes.

f(c) =
L

1+ e−k(x−x0)
(2.5)

2.3 Data preparation Regression

Again all data for training the LM are chosen from the homepage of the "TC304 Engineering

Practice of Risk Assessment & Management" of the International Society of Soil Mechanics and

Geotechnical Engineering (ISSMGE). For regression 9 data sets are available. Scatter plots are

used to check which input data X correlate with the output y. Figure 2.5 shows such a scatter-

plot. Here the correlation is shown between vertical preconsolidation pressure and undrained shear

strength, from data set R#1 which is described later.
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Figure 2.5: An example for checking if an input feature X shows correlation with predicted output

y

Data set R#1 [11] describes the correlation of undrained finish clays. Field and laboratory

measurements from 24 test sites are given. The input features X are effective vertical stress (s’v),

vertical preconsolidation pressure (s’p), natural water content (w), liquid limit (LL), plastic limit

(PL) and sensitivity (St=su/sre
u ). The predicted value is su from field vane test (sFV

u ). Listing 2.9

shows X and y.

1 X = data[["LL(%)", "PL(%)", "w(%)", "s’v (kPa)", "s’p (kPa)", "St"]]

2 y = data["su(test) (kPa)"]

Listing 2.9: Correlation for undrained finish clays; data set R#1

R#2 [1] is the same data set as C#6 are equal. The difference is that the shear wave velocity is

now the value target instead of an input variable. Listing 2.10 shows the code.

1 X = data[[’Depth (m)’,’qc (MPa)’,’fs (kPa)’]]

2 y = data[’Vs (m/s)’]

Listing 2.10: CPT Getoechnik Premstaller; data set C#6

R#3 [6] is the same data set as C#4. Listing 2.11 shows the input feature X and the predicted

output y for the given data set.

1 X = data[["Porosity (%)","Schmidt hammer hardness (RL)","Is50 (MPa)","P-

wave velocity(km/s)"]]

2 y = data[’UCS(MPa)’]

Listing 2.11: Mixed Stone; data set R#3

R#4 [8] normalized undrained shear strength (su/σ ‘
v, where σ ‘

v is the vertical effective stress),

overconsolidation ratio (OCR = σ ‘
p/σ ‘

v, where σ ‘
p is the preconsolidation stress), normalized cone

tip resistance (qt − σv)/σv (where σv is the vertical total stress), normalized effective cone tip

resistance (qt −u2)/σ ‘
v, normalized excess pore pressure (u2−u0)/σ ‘

v (where u0 is the static pore

pressure), and pore pressure ratio Bq = (u2 −u0)/(qt −σv). Listing 2.12 shows the input feature X

and the predicted output for the given data set.

1 X = data[["su/σ ’v", "OCR", "(qt - σ v)/σ ’v", "(qt -u2)/σ ’v", "(u2 - u0)/σ ’v

", "Bq"]]

2 y = data["σ ’v(kPa)"]

Listing 2.12: Mixed Stone; data set R#4
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R#5 [16] contains data from 124 test sites in the Jiangsu province. The data set is measured

by piezocone testing devices and contains of resilient modulus (Mr) values at the in-situ stress

condition, cone tip resistance (qc), sleeve frictional resistance (fs), moisture (w) and dry density

(γd). Listing 2.13 shows the input feature X and the predicted output y for the given data set.

1 X = data[[’qc (MPa)’, ’fs (MPa)’, ’w (%)’, ’γd (kN/m\xa03)’]]

2 y = data["Mr (MPa)"]

Listing 2.13: Jiangsu province piezocone testing indices; data set R#5

R#6 [26] is a combination for 11 clay parameters covering 50 sites in Shanghai with 4051

data points, covering an area of 145 km2. Eleven parameters are given: LL(%), PI, LI, e, K0, σ
′
v

(kPa), Su(UCST) (kPa), St(UCST), Su(VST) (kPa), St(VST), ps (MPa), σ
′
v (Pa), Su(UCST)/σ

′
v,

Su(VST)/σ
′
v, ps/σ

′
v. Listing 2.14 shows the input feature X and the predicted output y for the

given data set.

1 X = data[[’PI’,"ps/σ ’v","e","ps\n(MPa)"]]

2 y = data[’LL(%)’]

Listing 2.14: Shangha clays; data set R#6

R#7 [13] is the same data set as C#2. Listing 2.14 shows the input feature X and the predicted

output y for the given data set.

1 X = data[[’porosity ’,’Youngs modulus (GPa)’]]

2 y = data[’UCS (MPa)’]

Listing 2.15: Volcanic rocks; data set R#7

R#8 [7] contains data of coarse grained soils from 176 studies. The data set provide the pa-

rameters Fines(%), D50(mm), Cu, Dr(%), OCR σ
′
v(kPa), (N1)60, qt1, φcv() and φp(). Listing 2.16

shows the input feature X and the predicted output y for the given data set.

1 X = data[["σ v ’(kPa)", "(N1)60", "qt1", ’Dr(%)’]]

2 y = data[’φ p(◦)’]
Listing 2.16: Data set of coarse-grained soils; data set R#8

Data set R#9 [18] describes the correlation of soft finish clays. The data are based on the

oedometer test. The input features X are water content,fineness number, undrained shear strength,

pre-consolidation pressure, OCR, compression index and the swelling index. The predictor output

is the void ratio. Listing 2.17 shows X and y.

1 X = data[[’Water content (%)’,’Fineness number ’,’Undrained shear stregth (

fall cone) (kPa)’, ’Pre -consolidation pressure (kPa)’, ’OCR’, ’

Compression index ’, ’Swelling index ’]]

2 y = data[’Void ratio ’]

Listing 2.17: Data set of soft finish clays; data set R#9

2.4 ML Algorithm Regression

For regression, 10 algorithms are chosen. Listing 2.18 shows them. All are loaded from the

package scikit-learn and the knowledge of the description of them in the following part is taken

from [20].

1 lir = LinearRegression ()

2 las = Lasso(random_state=RANDOM_SEED)

3 svr = svm.SVR()
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4 rid = Ridge(random_state=RANDOM_SEED)

5 enc = ElasticNetCV(precompute=’auto’, random_state=RANDOM_SEED)

6 mlp = MLPRegressor(max_iter = 2000, random_state=RANDOM_SEED)

7 dtr = DecisionTreeRegressor(random_state=RANDOM_SEED)

8 rfr = RandomForestRegressor(random_state=RANDOM_SEED)

9 knn = KNeighborsRegressor ()

10 gpr = GaussianProcessRegressor(random_state=RANDOM_SEED)

Listing 2.18: Regression algorithm

Here the Linear Regression LR is based on the ordinary least squares method. The algorithm

fits a linear model with coefficients ω with the aim to minimize the residual sum of squares between

predicted and supervised output. Equation 2.6 describes the mathematical basics behind the least

square method and Figure 2.6 the graphical interpretation of a fitted data set. Xω is the weighted

input which predicts the output and y is the observed output from the data set.

minω ||Xω − y||22 (2.6)

Figure 2.6: The ordinary least square method in the sklearn package (source:[20])

The Lasso method belongs also to the group of linear models. It needs fewer coefficients in

comparison to other linear methods. The method is used in compressed sensing, where the under-

determining of linear systems is common. Mathematically, the Lasso method can be described like

in Equation 2.7. Here the term α is a constant and ||ω||1 is the l1-norm of the coefficient vector.

minω
1

2nsamples

||Xω − y||22 +α||ω||1 (2.7)

Like in the Support Vector Classification SVC, Support Vector Regression SVR depends on

a subset of the training data. Here the cost function does not take in account the points that lie

beyond the margin. In the basics, the SVR and the SVC work in the same way.

Another linear model is the Ridge Regression. Like the Lasso method, the ordinary square

method is extended by the same extra term, but here the squared l2-norm of the coefficient vector

is used, like in Equation 2.8. Figure 2.7 shows the dependence of the constant α and the weights.

By increasing α the coefficients become more robust to collinearity

minω
1

2nsamples

||Xω − y||22 +α||ω||22 (2.8)
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Figure 2.7: Robustness of collinearity of the coefficients in dependence of α (source:[20])

The Elastic-Net depends on the linear models and is based on l1- and l2-norm regularization

of the coefficients. It combines the advantages of Lasso and Ridge. If the feature vector contains

multiple related features, the Elastic-Net is very useful. The function for minimizing is shown in

Equation 2.9. Figure 2.8 shows the difference of the impact of α on the coefficients between Lasso

and Elastic-Net.

minω
1

2nsamples

||Xω − y||22 +αρ||ω||1 +
α(1−ρ

2
||ω||22 (2.9)

Figure 2.8: Combaring influence of α on coefficients for Lasso and Elastic-Net (source:[20])

The difference between the MLP Classifier and MLP Regressor is, that the MLP Regressor

uses no activation function in the output layers. So continuous values are generated as output.

Decision Tree Regression DTR works in the same way as described above for DTC. DTR

predict a continuous output.

Also the Random Forest Regressor works like the Random Forest Classifier, described above.

KNN Regressor works like the KNN Classifier, described above.

The Gaussian Processes GP is a probabilistic (Gaussian) method, so for the decision of refitting

the predictor in some regions, the confidence intervals can be computed. Interpolation happens by

the prediction of the observation. The problem is, when the number of features becomes more than

a few dozens, the algorithm loses efficiency. The Regressor implements the GP for regression.
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2.5 Used Metrics

Listing 2.19 lists the used classification metrics. In sklearn, the accuracy is calculated like de-

scribed above, as the sum of the correct predicted samples averaged by the number of samples.

1 acc = accuracy_score ()

2 f1 = f1_score ()

3 fb = fbeta_score ()

4 hamming = hamming_loss ()

5 jaccard = jaccard_score ()

6 log = log_loss ()

7 prec = precision_score ()

8 rec = recall_score ()

9 zero = zero_one_loss ()

Listing 2.19: Used Classification Metrcis

F1 and Fβ are a harmonic mean, computed from the recall and the precision. Equation 2.10

describes the Fβ score. If β = 1, F1 and Fβ are equal.

Fβ =
(1+β 2)∗T P

(1+β 2)∗T P+β 2 ∗FN +FP
(2.10)

The Hamming loss describes the sum of the wrong labeled values divided by the number of la-

bels. Jaccard similarity coefficient, known as Jaccard index, is the average of the Jaccard similarity

between paired label sets. The Jaccard similartiy is described in Equation 1.3.

J(yi,ŷi) =
|yi ∩ ŷi|
|yi ∪ ŷi|

(2.11)

Log loss is a metric based on probability estimations. It calculates instead of discrete outputs

the probability predictions. With the probability p = Pr(y = 1), the negative log-likelihood of the

TP is the log loss. For a binary classifier Equation 2.12 and for multi class predictor Equation 2.13

is used.

Llog(y, p) =−logPr(y|p) =−(ylog(p)+(1− y)log(1− p)) (2.12)

Llog(Y,P) =−logPr(Y |P) =− 1

N

N−1

∑
i=0

K−1

∑
k=0

yi,klog(pi,k) (2.13)

Precision measures the performance of not labeling a positive sample as negative and Recall

measures the ability to find all positive samples by a predictor.

Zero one loss is the metric for computing the sum or average of L0−1 classification loss by all

samples. Equation 2.14 shows how zero one loss is calculated.

L0−1(yi, ŷi) = 1(ŷi ̸= yi) (2.14)

Listing 2.20 shows the used regression metrics in the project. The max error is the maximum

difference between the predicted and supervised (correct) target values. The mean absolute error

is the sum of all absolute values of the residual error divided by the number of output values. The

mean squared error is calculated by the sum of the square of the residual error divided by the

number of predictions.

1 mer = max_error ()

2 mae = mean_absolute_error ()
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3 mse = mean_squared_error ()

4 msle = mean_squared_log_error ()

5 mee = median_absolute_error ()

6 r2 = r2_score ()

Listing 2.20: Used Regression Metrcis

The mean squared log error is calculated by Equation 2.15.

MSLE(y,ŷ) =
1

nsamples

nsamples−1

∑
i=0

(loge(1+ yi)− loge(1+ ŷi))
2 (2.15)

The median absolute error calculates the absolute errors and takes the median of it. R2 score,

also known as the coefficient of determination, describes the ratio of the variation of the dependent

variable, predictable by the independent variable/s. It is a indicator of how well unseen samples

are predicted by the model, explained by variance. At all, R2 is not comparable across different

data sets. Values from <0 and >1 are possible. In most cases, the range varies between 0 and 1.

Equation Equation 2.16 shows the prediction of the R2 value, where y is the average of all yi.

R2
(y,ŷ) = 1− ∑

n
i=1(yi − ŷi)

2

∑
n
i=1(yi − y)2

(2.16)
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∑
i

(Yi − pd f (Xi))
2 (3.1)

distbribution sumsquare_error aic bic kl_div ks_statistic ks_pvalue

gennorm 676.6848 -80.5612 261.1383 inf 0.031212 0.922978

hypsecant 683.1286 -91.8865 258.2778 inf 0.032623 0.896384

dweibull 690.6456 -87.6537 267.2646 inf 0.035475 0.831369

mielke 700.4297 -81.615 277.1886 inf 0.037058 0.790198

genlogistic 699.8671 -84.0702 271.2437 inf 0.037217 0.785893

burr 702.0244 -80.3394 277.8708 inf 0.037698 0.77277

dgamma 694.5576 -92.4281 268.9591 inf 0.038771 0.742806

fisk 701.2743 -78.4744 271.8463 inf 0.038961 0.737426

logistic 701.2754 -80.4753 266.143 inf 0.038965 0.73729

norminvgauss 703.786 -79.6647 278.6227 inf 0.039241 0.72945

Table 3.1: Output of the fitter package for the fitted probability distributions of Figure 3.1.

The probability distribution is chosen based on the p value. Higher p-value implements a higher

probability that the H0 hypothesis is true and the data can be described better with the investigated

probability distribution than with another probability distribution. For comparability between the

metrics, one distribution is chosen for all metrics of an algorithm. So it is possible to give a

recommendation for one algorithm over-all metrics. sum_rows is the sum of all metrics of one

fitted probability distribution. Table 3.2 is sorted by sum_rows and so the probability distribution,

which fits best the data can be chosen. In this example the mielke probability distribution is ranked

highest. Also all p-value for every metric of the mielke distribution is higher than 0.05. So the

mielke is chosen. In some cases, the best rated probability distribution has not a p-value>0.05 for

every metric. In such cases a compromise between high ranking and all p-values>0.05 is taken.

distribution acc f1 fb hamming jaccard log prec rec zero sum_rows

mielke 0.379065 0.790198 0.960741 0.418083 0.926498 0.724588 0.987807 0.850051 0.418083 6.455115

genlogistic 0.411325 0.785893 0.956997 0.419908 0.917143 0.54195 0.991856 0.866894 0.419908 6.311874

gennorm 0.43286 0.922978 0.871308 0.432919 0.984672 0.581619 0.746924 0.783503 0.432919 6.189702

logistic 0.413052 0.73729 0.838792 0.413052 0.915697 0.648727 0.835029 0.761601 0.413052 5.976292

burr12 0.415499 0.579736 0.830621 0.502064 0.939503 0.354697 0.963183 0.782688 0.502064 5.870055

Table 3.2: Ranked distributions and metrics for the KNN algorithm of data set C#1, based on the

p-value.

With the chosen probability distribution the parameters for every metric distribution are calcu-

lated. The parameters are needed to calculate the normalized standard deviation. In best case, the

standard deviation tends to zero. A small standard deviation indicates a low variation of the data.

For all algorithm this work flow is repeated.
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4 Result of the Loop

4.1 KS p-value

The following tables show the results of the 300 time training and performance measuring loop.

The red cells show p-values < 0.05. The histrograms of the p-value < 0.05 algorithm-metrics

distributions are plotted in the appendex.

Table 4.1 shows the p-values and chosen distributions of data set C#1. The ABC algorithm

includes 4 distributions which are not reaching the p-value > 0.05 criteria. The hamming-loss and

the zero-one-loss show for multi class predictor the same value. The Figure A.1 shows, that the

hamming-loss and the precision are not log-laplace probability distributed. The log-loss plot shows

the form of the chosen probability distribution, so the reason for no p-value output is a problem of

fitting the distribution by the fitter package.

KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.57997 0.708073 0.993205 0.521625 0.791577 0.485802 0.951955 0.864268 0.52163 6.418108 exponnorm

knn 0.206091 0.919687 0.825962 0.206091 0.875304 0.921724 0.95284 0.872892 0.206091 5.986682 beta

svm 0.197008 0.857426 0.441192 0.597949 0.790008 0.753941 0.224489 0.989998 0.597949 5.449961 loggamma

dtc 0.453821 0.964398 0.968934 0.432827 0.94412 0.432597 0.929211 0.975831 0.432827 6.534565 exponnorm

gnb 0.145032 0.981891 0.995995 0.241883 0.759843 0.992467 0.944814 0.903024 0.241883 6.206832 burr12

lda 0.126985 0.829815 0.859142 0.126995 0.644694 0.836764 0.575266 0.61704 0.126995 4.743695 skewnorm

abc 0.071947 0.350253 0.060927 0.01334 0.844859 NaN 0.000557 0.190476 0.01334 1.545699 loglaplace

qda 0.324811 0.954001 0.868535 0.300234 0.954092 0.542471 0.900821 0.981646 0.300234 6.126844 exponnorm

mlp 0.251229 0.989814 0.968402 0.251219 0.995221 0.944352 0.901505 0.999394 0.251219 6.552357 skewnorm

lrc 0.140093 0.851027 0.755936 0.140093 0.863189 0.927086 0.5666 0.532109 0.140093 4.916225 logistic

Table 4.1: The p-values and the chosen distribution of C#1. In red p-values < 0.05.

For binary classifier, accuracy, hamming-loss and zero-one-loss are equal. Table 4.2 shows

the negative p-value criteria for data set C#2. The ABC-accuracy plot in Figure A.2 shows, that

the metric distribution follows no probability distribution. Also the MLP-precision plot shows no

normal probability distribution.

KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.236779 0.730176 0.729439 0.13814 0.698578 0.297998 0.845743 0.824085 0.13814 4.639078 weibull_max

knn 0.422616 0.951897 0.980593 0.422574 0.970246 0.690451 0.940962 0.982751 0.422574 6.784663 skewnorm

svm 0.435601 0.478548 0.882289 0.435603 0.601451 0.605145 0.441808 0.886166 0.435603 5.202213 t

dtc 0.492841 0.999108 0.850058 0.492833 0.982112 0.492833 0.977461 0.976476 0.492833 6.756556 beta

gnb 0.591067 0.612275 0.654787 0.557025 0.975491 0.920906 0.440689 0.982824 0.557039 6.292104 exponnorm

lda 0.458651 0.860686 0.393745 0.458651 0.728546 0.759467 0.154682 0.802207 0.458651 5.075287 norm

abc 3.09E-05 0.977633 0.924368 3.09E-05 0.691061 0.449267 0.917066 0.956739 3.09E-05 4.916227 logistic

qda 0.2583 0.953967 0.913645 0.2583 0.852891 0.350437 0.847234 0.715459 0.2583 5.408533 logistic

mlp 0.178113 0.975074 0.925489 0.178113 0.695265 0.832442 3.6E-08 0.674408 0.178113 4.637016 norm

lrc 0.291439 0.827785 0.541725 0.291439 0.880093 0.502971 0.39004 0.662296 0.291439 4.679228 logistic

Table 4.2: The p-values and the chosen distribution of C#2.

Table 4.3 shows the negative p-value criteria for data set C#3. The ABC-accuracy, ABC-

hamming-loss, LDA-precision, LRC-fb-score and LRC-precision plot in Figure A.3 shows, that the

algorithm-metric distributions follow no probability distribution. ABC-log-loss show similarities

with the rayleigh probability distribution. It is possible that a misfit happened.
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KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.194901 0.916991 0.988797 0.208516 0.916821 0.910623 0.45602 0.987497 0.208516 5.788683 burr12

knn 0.123633 0.993243 0.972432 0.113887 0.973963 0.830492 0.818732 0.970476 0.113887 5.910745 exponnorm

svm 0.125382 0.601701 0.920597 0.211812 0.763477 0.722158 0.792089 0.873719 0.211812 5.222746 f

dtc 0.363236 0.878977 0.966899 0.363397 0.535303 0.383744 0.969555 0.803685 0.363397 5.628191 gennorm

gnb 0.270851 0.998373 0.853447 0.299755 0.858112 0.062921 0.073033 0.97712 0.299755 4.693365 loggamma

lda 0.121954 0.992598 0.873546 0.075957 0.999672 0.957551 0.000622 0.886945 0.075957 4.984802 genlogistic

abc 0.02311 0.891657 0.981791 0.005064 0.667961 5.63E-05 0.978897 0.245007 0.005064 3.798608 rayleigh

qda 0.304305 0.743175 0.986806 0.304305 0.934414 0.224697 0.695563 0.750941 0.304305 5.24851 norm

mlp 0.256924 0.699799 0.997811 0.256924 0.920281 0.141807 0.534722 0.472073 0.256924 4.537263 logistic

lrc 0.369639 0.088822 0.026905 0.369639 0.192909 0.49018 0.000993 0.461636 0.369639 2.370361 logistic

Table 4.3: The p-values and the chosen distribution of C#3.

Table 4.4 shows the negative p-value criteria for data set C#4. Figure A.4 shows, that the ABC

algorithm have all a logistic probability distribution but at the values higher 0.7 the distribution

shows an additional peak. The DTC algorithm show also loggamma probability distribution, but

the sparse data density make it hard to fit the distribution in a correct way. MLP algorithm have

at all no common probability distribution. The results are random. QDA and RFC algorithm are

similar to the DTC algorithm, where the data are to sparse for good fitting. The SVM-precision

has no common probability distribution.

KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.002529 0.648177 0.771426 0.001781 0.891558 0.962075 0.808853 0.991506 0.001781 5.079684 burr12

knn 0.142586 0.931733 0.977299 0.142585 0.936192 0.355545 0.855755 0.723203 0.142588 5.207486 beta

svm 0.135645 0.849677 0.680114 0.135649 0.974484 0.89688 0.031729 0.622203 0.135649 4.462029 beta

dtc 0.004504 0.993715 0.997599 6.62E-06 0.981581 6.62E-06 0.996613 0.958749 6.62E-06 4.932782 loggamma

gnb 0.036248 0.947712 0.945477 0.036247 0.913763 0.589508 0.8839 0.996421 0.036248 5.385524 beta

lda 0.001222 0.762966 0.890237 0.001222 0.825786 0.051845 0.576448 0.474589 0.001222 3.585536 logistic

abc 0.417552 0.000223 0.000269 0.417552 0.01232 0.222116 8.53E-08 0.009035 0.417552 1.496618 logistic

qda 0.000492 0.226978 0.749703 0.000492 0.366216 0.031947 0.808079 0.4829 0.000492 2.667299 logistic

mlp 5.64E-33 NaN 7.66E-30 NaN 3.45E-34 2.98E-06 2.65E-27 1.78E-34 1.12E-07 3.09E-06 wald

lrc 0.052169 0.531656 0.21872 0.052169 0.28168 0.560395 0.156404 0.389363 0.052169 2.294725 logistic

Table 4.4: The p-values and the chosen distribution of C#4.

Table 4.5 shows the negative p-value criteria for data set C#5. The SVM algorithm with nega-

tive p-value criteria are not beta distributed. In Figure A.5 one can see that the results of the loop

show a probability distribution like beta. Only SVM-recall shows no common distribution. The

MLP-algorithm histograms could be described by a logistic probability distribution, so the fitted

p-value is real.

KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.377532 0.954199 0.999984 0.377515 0.965694 0.611735 0.995235 0.853191 0.377515 6.512601 johnsonsb

knn 0.447143 0.997558 0.963923 0.62921 0.98849 0.802221 0.670148 0.981237 0.62921 7.109142 norminvgauss

svm 0.916918 1.42E-10 1.29E-13 0.916916 3.11E-05 0.996092 2.01E-19 1.06E-85 0.916917 3.746874 beta

dtc 0.701162 0.680735 0.89384 0.701162 0.738372 0.701162 0.830248 0.88899 0.701162 6.836835 logistic

gnb 0.831493 0.691683 0.828167 0.831493 0.493957 0.784019 0.730611 0.336022 0.831493 6.358938 logistic

lda 0.662172 0.534186 0.896952 0.814236 0.65121 0.848153 0.099532 0.954187 0.814236 6.274865 exponnorm

abc 0.903965 0.86067 0.83413 0.903965 0.997664 0.950161 0.226359 0.864446 0.903965 7.445325 norm

qda 0.523842 0.970911 0.864815 0.523842 0.950088 0.361544 0.23151 0.620977 0.523842 5.57137 logistic

mlp 0.040994 8.49E-05 0.004062 0.040994 0.000206 0.761444 0.025492 8.51E-12 0.040994 0.914272 logistic

lrc 0.377226 0.605029 0.365018 0.377226 0.932405 0.961125 0.56947 0.419191 0.377226 4.983918 logistic

Table 4.5: The p-values and the chosen distribution of C#5.

Table 4.6 shows the negative p-value criteria for data set C#6. In Figure A.6, the ABC-log-loss

shows a logistic probability distribution, but with a low standard deviation. The low p-value equates

the real distribution. The KNN-precision is an example why the other precision distributions do

not reaching the criteria. The histograms shows no common probability distribution.
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KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 0.932356 0.965836 0.649814 0.932247 0.945016 0.99689 0.691279 0.851339 0.932247 7.897024 skewnorm

knn 0.669011 0.9133 0.824995 0.66901 0.929595 0.987217 0.002719 0.929639 0.66901 6.594497 gennorm

svm 0.562352 0.732459 0.815636 0.6509 0.855912 0.958847 0.001618 0.604047 0.6509 5.832671 gamma

dtc 0.639982 0.799687 0.983697 0.643317 0.915409 0.626159 0.905314 0.7604 0.64514 6.919105 skewnorm

gnb 0.916433 0.799318 0.980996 0.916432 0.723432 0.811044 0.871193 0.600609 0.916432 7.53589 beta

lda 0.887719 0.912305 0.930502 0.887719 0.981743 0.331163 0.99663 0.903868 0.887719 7.719366 norm

abc 0.911338 0.677632 0.965003 0.911338 0.977608 0.005919 0.796877 0.407187 0.911338 6.564241 logistic

qda 0.349784 0.963602 0.818277 0.349784 0.796336 0.688117 0.048 0.195086 0.349784 4.55877 logistic

mlp 0.570319 0.347745 0.170447 0.570319 0.285596 0.689153 0.615077 0.335033 0.570319 4.154009 logistic

lrc 0.616561 0.48336 0.826029 0.616561 0.55116 0.373035 0.909656 0.672655 0.616561 5.665578 norm

Table 4.6: The p-values and the chosen distribution of C#6.

Table 4.7 shows the negative p-value criteria for data set C#7. In Figure A.7 one can see, that all

algorithm-metric results with a negative p-value criteria show no common probability distribution.

KS p-value acc f1 fb hamming jaccard log prec rec zero sum_rows distribution

rfc 1.17E-83 3.07E-86 1.17E-89 9.7E-107 1.15E-78 0.90029 1.43E-86 1.47E-80 1.3E-117 0.90029 invgamma

knn 6.89E-38 1.18E-42 7.05E-63 1.5E-101 NaN 0.994528 5.3E-43 NaN NaN 0.994528 johnsonsb

svm 0.60386 0.615581 0.357817 0.603821 0.564494 0.537646 0.396105 0.973999 0.603821 5.257144 skewnorm

dtc 1.76E-53 3.25E-89 2.66E-52 NaN 5.98E-82 6.75E-07 4.9E-49 3.28E-49 3.71E-86 6.75E-07 t

gnb 0.250965 0.64485 0.805845 0.201457 0.852404 0.927562 0.981968 0.627977 0.201457 5.494484 gamma

lda 0.330626 0.751709 0.597549 0.330623 0.921534 0.975595 0.724707 0.867683 0.330623 5.830647 beta

abc 0.315205 0.968927 0.951374 0.298521 0.926438 0.675836 0.926438 NaN 0.298521 5.361261 genlogistic

qda 0.172221 0.830813 0.714404 0.172221 0.41384 0.960201 0.421158 0.3019 0.172221 4.158979 logistic

mlp 0.152663 0.183429 0.089014 0.152663 0.527191 0.501892 0.007632 0.019754 0.152663 1.786902 logistic

lrc 0.18407 0.689785 0.703798 0.18407 0.795343 0.03502 0.706292 0.575526 0.18407 4.057974 logistic

Table 4.7: The p-values and the chosen distribution of C#7.

Table 4.8 shows the negative p-value criteria for data set R#1. In Figure A.8 one can see, that all

algorithm-metric results with a negative p-value criteria show no common probability distribution.

Only the MLP-r2 and the DTR-r2 could be described by inverse gamma and skewnorm probability

distribution. So the low p-value fitted by the package is trust-able.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 4.76E-05 0.971675 0.880751 0.98036 0.968456 0.925566 4.726856 genlogistic

las 0.000143 0.858197 0.919099 0.918009 0.988635 0.761496 4.445578 burr12

svr 2.65E-11 0.996677 0.537335 0.870867 0.915548 0.791199 4.111627 skewnorm

rid 5E-05 0.971295 0.880437 0.980057 0.967278 0.925277 4.724394 genlogistic

enc 9.56E-05 0.763221 0.753573 0.966068 0.8915 0.962133 4.33659 genlogistic

mlp 0.553692 0.670775 0.533055 0.994147 0.605352 NaN 3.357021 invgamma

dtr 0.000256 0.727302 0.938244 0.947733 5.64E-15 3.65E-05 2.61357 skewnorm

rfr 6.25E-06 0.838852 NaN 0.845236 0.998861 0.376532 3.059487 skewnorm

knn NaN 0.935514 0.290581 0.636907 0.128683 0.970824 2.96251 genlogistic

Table 4.8: The p-values and the chosen distribution of R#1.

Table 4.9 shows the negative p-value criteria for data set R#2. In Figure A.9 one can see, that all

algorithm-metric results with a negative p-value criteria show no common probability distribution.

Only KNN-mer shows approximating a generalized normal distribution. The p-value is trust-able.

DTR-mee is not fit-able because of sparse data set.
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KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 9.76E-08 0.984139 0.939401 0.7998 0.325616 0.987885 4.036841 beta

las 8.92E-08 0.985705 0.94566 0.801113 0.314321 0.988358 4.035157 beta

svr 0 0.822944 0.826051 0.591481 0.771788 0.846788 3.859051 genlogistic

rid 9.76E-08 0.984249 0.939413 0.7998 0.322955 0.987884 4.034301 beta

enc 7.5E-06 0.963628 0.825676 0.713737 0.820744 0.843571 4.167364 burr12

mlp 0.001769 0.887085 0.995981 0.873132 0.947631 0.694528 4.400127 beta

dtr 0.086733 0.602758 0.46451 0.610289 0.002474 0.407751 2.174514 genlogistic

rfr 0.071777 0.993488 0.969736 0.92921 0.91717 0.860164 4.741546 johnsonsb

knn 0.001286 0.918747 0.883666 0.408028 0.302974 0.965482 3.480183 gennorm

Table 4.9: The p-values and the chosen distribution of R#2.

Table 4.10 shows the negative p-value criteria for data set R#3. In Figure A.10 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution. Only the R2 algorithm metrics could be described by right- and left-aligned probability

distributions. The p-values for the negative p-value criteria histograms of R2 are trust-able.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 0.394158 0.956029 0.821213 0.993026 0.726032 7.11E-07 3.890457 burr12

las 0.057147 0.983387 0.853169 0.97837 0.947818 0.033166 3.853057 johnsonsu

svr 4.83E-18 0.753468 0.034745 0.83861 0.656818 0.496831 2.780472 nakagami

rid 0.279148 0.925846 0.775652 0.975561 0.830065 4.37E-09 3.786273 burr12

enc 0.003101 0.690724 0.859179 0.83876 0.984263 9.73E-06 3.376036 mielke

mlp 0.059275 0.577093 0.399032 0.927236 0.345946 0.085416 2.393998 mielke

dtr 0.000155 0.957742 0.730232 0.440507 0.337108 NaN 2.465744 mielke

rfr 3.55E-05 0.653488 0.024797 0.276842 0.907684 0.006935 1.869782 burr

knn NaN 0.871713 0.429561 0.993647 0.536536 0.727869 3.559326 mielke

Table 4.10: The p-values and the chosen distribution of R#3.

Table 4.11 shows the negative p-value criteria for data set R#4. In Figure A.11 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution. All histograms show random distributed values with no probability.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 1.11E-07 0.826488 0.806131 0.986137 0.958952 0.970107 4.547815 skewnorm

las 3.74E-07 0.813352 0.832004 0.8829 0.718076 0.971776 4.218109 genlogistic

svr 2.06E-18 0.899939 0.906075 0.896499 0.945556 0.740812 4.388881 beta

rid 7.63E-08 0.926105 0.797583 0.851331 0.914994 0.980306 4.470319 skewnorm

enc 5.6E-08 0.754745 0.818384 0.968244 0.832933 0.781403 4.15571 genlogistic

mlp 4.45E-07 0.932181 0.917257 0.909 0.868165 0.787663 4.414267 skewnorm

dtr 5.41E-09 0.947645 0.997151 0.86262 0.263178 0.965576 4.036169 genlogistic

rfr 3.67E-06 0.918334 0.662312 0.834865 0.864208 0.98788 4.267602 skewnorm

knn 7.41E-06 0.487407 0.537748 0.715585 0.850577 0.781657 3.372981 exponnorm

Table 4.11: The p-values and the chosen distribution of R#4.

Table 4.12 shows the negative p-value criteria for data set R#5. In Figure A.12 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution. The LIR-msle, RID-msle and ENC-msle histograms show left-aligned distributions, so

the p-value is trust-able.
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KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 3.54E-08 0.965254 0.933981 2.74E-10 0.889558 0.900499 3.689292 johnsonsu

las 0.007924 0.924878 0.856319 0.406695 0.300095 0.992931 3.488842 johnsonsu

svr 0.003516 0.731014 0.864272 0.91282 0.476257 0.977307 3.965186 genlogistic

rid 0.000132 0.784526 0.445139 0.000113 0.990646 0.899074 3.11963 weibull_min

enc 0.78853 0.481528 0.870103 0.00512 0.427768 0.972062 3.545111 genlogistic

mlp 0.012646 0.834455 0.823287 0.997767 0.958667 0.897669 4.52449 burr12

dtr 0.386687 0.585021 0.853321 0.950138 0.360246 0.998126 4.133539 genlogistic

rfr 0.943795 0.795287 0.240578 NaN 0.934502 0.949572 3.863733 genlogistic

knn 0.021385 0.821087 0.942787 0.971591 0.663269 0.900084 4.320203 genlogistic

Table 4.12: The p-values and the chosen distribution of R#5.

Table 4.13 shows the negative p-value criteria for data set R#6. In Figure A.13 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution. The KNN-mee histogram shows a skewnorm distribution, but the data are too sparse.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 4.36E-09 0.876945 0.759472 0.725052 0.985555 0.913907 4.260931 burr12

las 0 0.817949 0.960104 0.705183 0.827122 0.88952 4.199878 powernorm

svr 1.09E-30 0.91857 0.663466 0.945965 0.763329 0.714485 4.005815 beta

rid 6.78E-77 0.808636 0.597068 0.965368 0.832605 0.94769 4.151366 beta

enc 4.51E-89 0.781198 0.697022 0.963537 0.999979 0.989779 4.431515 beta

mlp NaN 0.997201 0.995103 0.987218 0.834535 0.845176 4.659233 beta

dtr NaN 0.993853 0.610842 0.854023 1.49E-12 0.790652 3.249371 beta

rfr 0.00017 0.624637 0.66436 0.976823 0.561325 0.932531 3.759846 skewnorm

knn 0.000314 0.894577 0.846353 0.973941 0.004579 0.99998 3.719744 skewnorm

Table 4.13: The p-values and the chosen distribution of R#6.

Table 4.14 shows the negative p-value criteria for data set R#7. In Figure A.14 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 0.036072 0.876563 0.512755 0.815288 0.957729 0.935203 4.133611 loggamma

las 0.001124 0.944134 0.771946 0.818814 0.999654 0.967558 4.50323 beta

svr 5.98E-05 0.963966 0.882417 0.990818 0.848692 0.989293 4.675245 beta

rid 0.001107 0.849709 0.638703 0.997704 0.591852 0.96357 4.042645 burr12

enc 0.000955 0.897137 0.752135 0.917028 0.9898 0.867698 4.424753 beta

mlp 0.000116 0.934655 0.561697 0.592995 0.856243 0.957965 3.903671 burr12

dtr 1.41E-07 0.94517 0.928546 0.971239 0.723243 0.997192 4.565391 burr12

rfr 0.49824 0.959156 0.9473 0.901441 0.805303 0.556728 4.668168 burr12

knn 0.032457 0.558924 0.586566 0.726943 0.803951 0.461127 3.169968 skewnorm

Table 4.14: The p-values and the chosen distribution of R#7.

Table 4.15 shows the negative p-value criteria for data set R#8. The histograms are not plotted

in the annex, they are stored on the Github server stated before. All algorithm-metric results with

a negative p-value criteria show no common probability distribution.
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KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 0.000129 6.11E-06 0.004506 0.002667 6.11E-06 1.99E-63 0.007314 invweibull

las 2.13E-29 1.94E-05 6.77E-28 5.08E-23 1.94E-05 3.06E-23 3.89E-05 beta

svr 2.05E-07 7.26E-10 1.32E-38 1.11E-06 7.26E-10 1.47E-43 1.32E-06 skewcauchy

rid 3.91E-06 NaN 0.000346 0.000773 NaN NaN 0.001123 geninvgauss

enc 8.3E-11 1.94E-06 2.02E-15 3.52E-13 1.94E-06 3.59E-43 3.88E-06 levy

mlp 1.41E-06 0.026076 0.022742 9.17E-05 0.026076 9.96E-10 0.074986 skewcauchy

dtr 9.71E-24 2.16E-26 5.84E-27 1.31E-29 2.16E-26 NaN 9.76E-24 genlogistic

rfr NaN NaN NaN NaN NaN NaN 0 johnsonsb

knn 8.76E-06 5.89E-07 1.9E-08 1.02E-07 NaN 7.74E-08 9.55E-06 skewcauchy

Table 4.15: The p-values and the chosen distribution of R#8.

Table 4.16 shows the negative p-value criteria for data set R#9. In Figure A.15 one can see,

that all algorithm-metric results with a negative p-value criteria show no common probability dis-

tribution.

KS p-value mer mae mse msle mee r2 sum_rows distribution

lir 4.66E-08 0.780292 0.324148 0.018329 0.736459 0.004303 1.863531 skewnorm

las 2.64E-33 0.771123 7.18E-05 0.003994 0.876193 1.61E-05 1.651398 beta

svr 0.008118 0.898792 0.296604 0.94329 0.959033 0.163533 3.26937 beta

rid 2.07E-08 0.872863 0.160968 0.00315 0.987992 3E-08 2.024974 nakagami

enc 4.72E-14 0.860915 0.002059 3.58E-07 0.873281 9.45E-14 1.736256 beta

mlp 0.003985 0.982034 0.946104 0.976065 0.83765 0.792432 4.538269 skewnorm

dtr 7.72E-12 0.997244 0.241646 0.467813 0.155191 2.41E-06 1.861896 exponnorm

rfr 2.93E-07 0.878832 0.014669 6.71E-05 0.916533 6.21E-05 1.810163 exponnorm

knn 1.1E-05 0.845874 0.320779 0.832242 0.633973 0.694695 3.327572 gamma

Table 4.16: The p-values and the chosen distribution of R#9.

4.2 Normalized standard deviation

With the output parameters of the fitted distributions in the section before, the normalized standard

deviation is calculated. The negative criteria for the normalized standard deviation sn > 0.5 enable

only a small spreading of the distributions. The cells in red show the negative criteria of the data

set. The green cell border implements the algorithm-metric sn with a negative p-value criteria.

Table 4.17 is the normalized standard deviation of the data C#1. The ABC-log, with a NaN

p-value, has also no standard deviation. The p-value = 0.000557 of the ABC-prec and the p-value

= 0.01334 of the ABC-hamming/ABC-zero implies that sn is not trust-able for the interpretation.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.055976 0.10953 0.116305 0.072016 0.123426 0.204599 0.140837 0.105894 0.072016

knn 0.064754 0.104066 0.112711 0.072042 0.118419 0.162536 0.141139 0.099908 0.072042

svm 0.074246 0.124953 0.13978 0.075 0.133199 0.042221 0.16414 0.108536 0.075

dtc 0.080118 0.12204 0.127007 0.074588 0.140176 0.074588 0.138894 0.126498 0.074588

gnb 0.074783 0.109771 0.123191 0.057493 0.13266 0.150845 0.134011 0.090124 0.057493

lda 0.06228 0.103226 0.109536 0.074889 0.11643 0.091086 0.130282 0.100176 0.074889

abc 0.117822 0.179298 0.287938 0.314322 0.164237 NaN 0.735793 0.124503 0.314322

qda 0.065 0.09691 0.100295 0.06837 0.110653 0.195408 0.107321 0.105011 0.06837

mlp 0.06247 0.123747 0.133552 0.070008 0.132448 0.078835 0.162274 0.115811 0.070008

lrc 0.069131 0.121666 0.130496 0.077272 0.133416 0.051804 0.158396 0.109219 0.077272

Table 4.17: The normalized standard deviation of C#1.
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Table 4.18 is the normalized standard deviation of the data C#2. The sn is for all algorithm-

metric distribution < 0.5 and only four of them are not reaching the p-value criteria. The sn for

hamming and zero are for multi class predictor equal. The results are highly use-able for the

interpretation of the stability of the metrics, because most of the p-values are > 0.05.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.037372 0.061087 0.061865 0.101192 0.077494 0.220847 0.067984 0.064237 0.101192

knn 0.05208 0.08086 0.084388 0.069246 0.093537 0.16917 0.09519 0.07977 0.069246

svm 0.056945 0.096607 0.11343 0.079815 0.110239 0.040385 0.161883 0.078224 0.079815

dtc 0.047081 0.063417 0.063693 0.094231 0.082644 0.094231 0.065117 0.06753 0.094231

gnb 0.05533 0.066101 0.073665 0.070761 0.081158 0.094991 0.103471 0.061735 0.070761

lda 0.045803 0.068315 0.081285 0.089981 0.08331 0.072523 0.065786 0.049152 0.089981

abc 0.188307 0.12342 0.125284 0.210155 0.1569 0.035576 0.134485 0.111331 0.210155

qda 0.051578 0.066948 0.067065 0.077089 0.082949 0.1176 0.068063 0.064318 0.077089

mlp 0.088235 0.109948 0.152169 0.118051 0.126348 0.063452 0.349067 0.082804 0.118051

lrc 0.056276 0.064876 0.080905 0.074829 0.086602 0.039288 0.112713 0.055016 0.074829

Table 4.18: The normalized standard deviation of C#2.

Table 4.19 is the normalized standard deviation of the data C#3. Like for data set C#2, also

these results are highly use-able for the selection of the stability of the metrics. Here the criteria of

the p-value will be the basic for the recommendation of the reliability of the data.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.080839 0.100849 0.10362 0.065771 0.111902 0.178516 0.113225 0.099041 0.065771

knn 0.087272 0.109503 0.118345 0.073107 0.127539 0.117241 0.138577 0.103337 0.073107

svm 0.085332 0.107167 0.134436 0.060934 0.123381 0.036048 0.19736 0.083679 0.060934

dtc 0.090684 0.109857 0.112777 0.063002 0.123935 0.062954 0.118657 0.110038 0.063002

gnb 0.093449 0.130789 0.154639 0.064259 0.158246 0.091249 0.203245 0.100326 0.064259

lda 0.103159 0.178051 0.240048 0.06063 0.197042 0.048342 0.333728 0.109462 0.06063

abc 0.363928 0.333977 0.350282 0.09202 0.36453 0.08663 0.377786 0.329436 0.09202

qda 0.089825 0.122286 0.148601 0.062156 0.141869 0.096097 0.206538 0.09404 0.062156

mlp 0.096237 0.115598 0.144683 0.06203 0.127894 0.089875 0.213207 0.095207 0.06203

lrc 0.135557 0.328622 0.383782 0.066846 0.369399 0.039886 0.429883 0.190425 0.066846

Table 4.19: The normalized standard deviation of C#3.

Table 4.20 is the normalized standard deviation of the data C#4. The sn over-all MLP-metrics

and the QDA-log reach the negative criteria. For the MLP the negative p-value criteria describes

the sn value. The QDA-log distribution is strongly scattered. 1/3 of the p-values do not reach the

>0.05 criteria, so the data set is less valuable for the recommendation of metric stability.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.036651 0.032115 0.032209 0.417349 0.054205 0.229512 0.031785 0.030369 0.417349

knn 0.096997 0.102952 0.088314 0.138879 0.14823 0.414182 0.071958 0.106092 0.138879

svm 0.15317 0.227565 0.223949 0.117307 0.256029 0.050777 0.19998 0.149981 0.117307

dtc 0.041884 0.036811 0.035813 0.381243 0.060272 0.381243 0.035009 0.037388 0.381243

gnb 0.042364 0.037761 0.03793 0.256433 0.060245 0.282413 0.037583 0.036091 0.256433

lda 0.051842 0.042922 0.042385 0.209865 0.059589 0.273401 0.043013 0.044988 0.209865

abc 0.106415 0.111152 0.134729 0.21467 0.117123 0.175279 0.183421 0.091928 0.21467

qda 0.03726 0.03237 0.032745 0.38121 0.054808 0.514061 0.032016 0.029008 0.38121

mlp 0.806459 0.901193 0.930722 0.965673 0.991827 0.857828 0.951307 0.762152 0.965673

lrc 0.11267 0.129708 0.13157 0.17369 0.146542 0.077147 0.12596 0.109143 0.17369

Table 4.20: The normalized standard deviation of C#4.

Table 4.21 is the normalized standard deviation of the data C#5. The sn ABC metrics tend to
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higher values. 13 out of 90 p-values reach the negative criteria. So the data set is good for the

recommendation of the algorithm-metric context based on the normalized standard deviation.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.039155 0.069289 0.074956 0.032515 0.073722 0.110448 0.087536 0.066629 0.032515

knn 0.040432 0.071447 0.096113 0.027398 0.072097 0.066442 0.154163 0.055547 0.027398

svm 0.037385 0.054081 0.080356 0.027761 0.059807 0.019613 0.10554 0.010806 0.027761

dtc 0.04816 0.076575 0.078858 0.032111 0.083383 0.032111 0.083213 0.080644 0.032111

gnb 0.042479 0.102002 0.10559 0.033341 0.106115 0.02341 0.128028 0.064956 0.033341

lda 0.039644 0.057403 0.07254 0.030289 0.065161 0.019049 0.145449 0.042601 0.030289

abc 0.149714 0.112499 0.11931 0.072981 0.117764 0.006801 0.159092 0.106583 0.072981

qda 0.039119 0.065274 0.086779 0.032643 0.067825 0.027893 0.129705 0.048384 0.032643

mlp 0.072721 0.263725 0.333267 0.051931 0.223118 0.027682 0.435756 0.13146 0.051931

lrc 0.040005 0.087923 0.147124 0.028926 0.076862 0.017 0.229965 0.025449 0.028926

Table 4.21: The normalized standard deviation of C#5.

Table 4.22 is the normalized standard deviation of the data C#6. ABC-log, RFC-, KNN- and

QDA-prec are based on the negative p-value criteria. At all the data set is highly use-able for the

recommendation of the algorithm-metric relation.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.021165 0.057287 0.065791 0.032797 0.058493 0.083851 0.095477 0.052003 0.032797

knn 0.024718 0.058527 0.078721 0.022746 0.056611 0.051349 0.147339 0.048991 0.022746

svm 0.023702 0.076988 0.108432 0.023664 0.070955 0.018763 0.31113 0.041884 0.023664

dtc 0.028666 0.069416 0.069631 0.029806 0.07008 0.029818 0.073675 0.077511 0.029797

gnb 0.057941 0.083102 0.100038 0.031419 0.084085 0.044569 0.160604 0.094522 0.031419

lda 0.023582 0.048631 0.052623 0.024271 0.055089 0.031046 0.060183 0.046806 0.024271

abc 0.252613 0.243364 0.22885 0.086344 0.255923 0.034944 0.202352 0.207907 0.086344

qda 0.045088 0.08158 0.090782 0.026257 0.083374 0.049428 0.149743 0.080341 0.026257

mlp 0.029832 0.217903 0.178538 0.030906 0.220549 0.040102 0.174125 0.213969 0.030906

lrc 0.023166 0.053614 0.06028 0.024705 0.054531 0.017292 0.080019 0.046307 0.033255

Table 4.22: The normalized standard deviation of C#6.

Table 4.23 is the normalized standard deviation of the data C#7. Around 1/3 of the p-values

reach negative criteria. All negative sn criteria are based on negative p-value criteria.The results

show that the recommendation based on this data set is driven by p-value and sn.

standard deviation acc f1 fb hamming jaccard log prec rec zero

rfc 0.00233 0.001959 0.001601 -inf 0.00408 -0.37274 0.001415 0.002488 -inf

knn 0.037847 0.05977 0.025488 1.406257 0.064553 0.525843 0.04242 0.055448 1.406253

svm 0.033379 0.033038 0.035133 0.233927 0.058878 0.140794 0.035754 0.026769 0.233927

dtc 3.13E-06 NaN 0.005866 6.548546 0.007184 0.004462 NaN NaN 6.548546

gnb 0.053121 0.051256 0.05248 0.174142 0.078663 0.250068 0.049966 0.039539 0.174142

lda 0.03968 0.038069 0.037086 0.115281 0.061026 0.064251 0.037447 0.041968 0.115281

abc 0.034751 0.018582 0.02704 0.086288 0.031973 0.00037 0.031973 3.34E-22 0.086288

qda 0.049047 0.061311 0.069611 0.137523 0.08666 0.122038 0.044091 0.045492 0.137523

mlp 0.027605 0.054845 0.047704 0.438445 0.088872 0.233852 0.042826 0.062314 0.438445

lrc 0.023828 0.034635 0.033786 0.20788 0.053621 0.093584 0.034294 0.037548 0.20788

Table 4.23: The normalized standard deviation of C#7.

Table 4.24 is the normalized standard deviation of the data R#1. Beside the mer, the results are

based on positive p-value criteria. The only negative sn criteria is not trust-able because of negative

p-value criteria. The data set is dominated by the sn and so the recommendation is mainly influeced

by this value.
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standard deviation mer mae mse msle mee r2

lir 0.29052 0.101738 0.278022 0.190694 0.147567 0.153469

las 0.273824 0.10394 0.28964 0.185631 0.141102 0.152112

svr 0.343976 0.123824 0.361241 0.183287 0.138341 0.135582

rid 0.290826 0.101739 0.27803 0.190691 0.147563 0.153468

enc 0.268392 0.103862 0.269121 0.187971 0.158204 0.144488

mlp 0.407687 0.124194 0.380329 0.368882 0.145088 0.275252

dtr 0.394177 0.125707 0.370739 0.189699 0.15982 0.866403

rfr 0.387491 0.114617 0.345816 0.205218 0.128553 0.161104

knn 0.36286 0.106496 0.335057 0.192267 0.136249 0.111909

Table 4.24: The normalized standard deviation of R#1.

Table 4.25 is the normalized standard deviation of the data R#2. Beside the mer, the results are

based on positive p-value criteria. The negative sn of DTR-r2 is based on a negative mean of the r2

metric. The data set is highly use-able for recommendation based on the sn

standard deviation mer mae mse msle mee r2

lir 0.06681 0.031379 0.105046 0.15281 0.039834 0.135019

las 0.066707 0.031372 0.105013 0.152802 0.03968 0.134705

svr 0.039065 0.033757 0.098095 0.149579 0.031857 0.114041

rid 0.06681 0.031381 0.105046 0.15281 0.039832 0.135018

enc 0.056775 0.032004 0.107294 0.152215 0.040809 0.127766

mlp 0.043565 0.032737 0.11122 0.161076 0.040789 0.096724

dtr 0.054812 0.039497 0.101692 0.145068 0.047179 -1.10726

rfr 0.068765 0.025467 0.106708 0.167146 0.037726 0.10432

knn 0.077931 0.027089 0.093472 0.155913 0.034369 0.128748

Table 4.25: The normalized standard deviation of R#2.

Table 4.26 is the normalized standard deviation of the data R#3. Only a few p-value reach

the negative criteria. MSE shows over-all sn > 0.5. Most of the negative sn criteria are based on

positive p-value criteria. So the data set is use-able for the recommendation based on the sn.

standard deviation mer mae mse msle mee r2

lir 0.379323 0.193289 0.503186 0.468667 0.264604 0.303063

las 0.489541 0.189946 0.585456 0.453853 0.211148 0.601712

svr 0.439699 0.279329 0.662278 0.320819 NaN NaN

rid 0.486793 0.192416 0.56822 0.495794 0.248886 0.288088

enc 0.913264 0.209755 0.900346 0.566349 0.200841 NaN

mlp 0.364799 0.244276 0.547318 0.49509 0.504332 NaN

dtr 0.409411 0.313967 0.543758 0.411549 0.437757 -6.5E-06

rfr 0.509899 0.39456 2.255789 0.430837 0.458518 0.186703

knn NaN 0.407128 inf 0.471667 0.367832 NaN

Table 4.26: The normalized standard deviation of R#3.

Table 4.27 is the normalized standard deviation of the data R#4. The three negative sn criteria
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are based on positive p-value criteria. The data set is highly use-able for the recommendation based

on the sn criteria.

standard deviation mer mae mse msle mee r2

lir 0.284155 0.051738 0.158375 0.116341 0.067704 0.504653

las 0.308531 0.052658 0.158441 0.114607 0.069782 0.381729

svr 0.233201 0.068421 0.175989 0.088732 0.056944 4.949006

rid 0.283405 0.051688 0.157803 0.113012 0.068566 0.489343

enc 0.297339 0.052196 0.157796 0.112242 0.06554 0.342169

mlp 0.342421 0.055582 0.187452 0.116372 0.075386 0.272173

dtr 0.204458 0.094672 0.205237 0.143752 0.137693 -2.21527

rfr 0.363943 0.069231 0.233348 0.113409 0.090208 0.231218

knn 0.301405 0.065437 0.217859 0.104638 0.098044 0.27225

Table 4.27: The normalized standard deviation of R#4.

Table 4.28 is the normalized standard deviation of the data R#5. Two out of three negative sn

of the msle are related to the negative p-value criteria. Again the data set has a high quality for

recommendation based on the sn.

standard deviation mer mae mse msle mee r2

lir 0.299759 0.115752 0.265862 6.657807 0.182362 0.022769

las 0.134913 0.108226 0.201083 0.56616 0.177986 0.030131

svr 0.189635 0.116513 0.235764 0.234297 0.133522 0.248865

rid 0.188035 0.104398 0.197419 0.604153 0.166201 0.033696

enc 0.122522 0.109793 0.204411 0.391854 0.163686 0.035568

mlp 0.200685 0.117814 0.230451 0.404617 0.168879 0.024971

dtr 0.212072 0.154151 0.297668 0.314812 0.213266 0.105603

rfr 0.195863 0.155856 0.321283 0.372076 0.196292 0.033489

knn 0.181704 0.116404 0.21911 0.260575 0.170074 0.176561

Table 4.28: The normalized standard deviation of R#5.

Table 4.29 is the normalized standard deviation of the data R#6. The data set shows similar

results to the R#5 with similar quality for the recommendation. The two negative sn criteria are

based on a negative p-value criteria.
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standard deviation mer mae mse msle mee r2

lir 0.243829 0.039106 0.078317 0.099524 0.059475 0.009361

las NaN 0.040968 0.078839 0.105813 0.067847 0.009602

svr 0.507276 0.050212 0.157697 0.148317 0.069007 0.014013

rid 0.345519 0.039034 0.076918 0.097805 0.059698 0.00916

enc 0.328004 0.038635 0.075043 0.095186 0.064133 0.009284

mlp 0.25797 0.040748 0.081946 0.096825 0.059505 0.010251

dtr 0.317557 0.051994 0.106357 0.106254 0.088166 0.017821

rfr 0.3177 0.048663 0.119607 0.110355 0.073971 0.009589

knn 0.317719 0.051276 0.125743 0.13146 0.075795 0.012203

Table 4.29: The normalized standard deviation of R#6.

Table 4.30 is the normalized standard deviation of the data R#7. The data set has no negative

sn criteria and only the mer metric shows negative p-value criteria.

standard deviation mer mae mse msle mee r2

lir 0.127923 0.071409 0.167865 0.145593 0.067032 0.05841

las 0.126978 0.075076 0.163111 0.213576 0.101042 0.064513

svr 0.195733 0.089718 0.24207 0.12051 0.065761 0.12374

rid 0.109444 0.073754 0.169767 0.146172 0.068878 0.059543

enc 0.123906 0.075094 0.163163 0.215719 0.102915 0.065574

mlp 0.116186 0.076593 0.165684 0.278061 0.124747 0.061869

dtr 0.172367 0.095917 0.218865 0.187778 0.142596 0.145278

rfr 0.196712 0.088452 0.209498 0.169524 0.110678 0.070551

knn 0.185083 0.077459 0.172351 0.150669 0.105946 0.091748

Table 4.30: The normalized standard deviation of R#7.

Table 4.31 is the normalized standard deviation of the data R. All p-values and most of the sn

values show negative criteria. For this reason the data set will not be used for the recommendation

of the algorithm-metrics relation.

standard deviation mer mae mse msle mee r2

lir 0.213799 0.240207 0.119523 0.032134 0.240207 NaN

las 0.562711 0.775496 0.966436 1.227257 0.775496 -2.42839

svr 45.40154 0.575481 4.871285 2.118756 0.575481 NaN

rid NaN 1.84E-12 NaN NaN 1.84E-12 -1.4E-13

enc -0.63922 NaN NaN -4.02772 NaN NaN

mlp NaN NaN 8.19E-05 0.33252 NaN NaN

dtr 0.671902 0.691067 0.766903 0.828223 0.691067 -1.1698

rfr 0.646356 0.628681 0.982015 1.033859 0.628681 -6.8982

knn 3.55E+90 295.9816 330.5595 1081.443 295.9816 NaN

Table 4.31: The normalized standard deviation of R#8.

Table 4.32 is the normalized standard deviation of the data R. Around 40% of the results reach
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negative p-value criteria. All mer are negative. Half of the negative sn criteria are based on negative

p-values. So the data set has limited useability for recommendation.

standard deviation mer mae mse msle mee r2

lir 0.470544 0.157709 0.541559 0.442717 0.175139 0.012582

las 0.713861 0.175848 0.525232 0.394249 0.176843 0.012666

svr 0.464136 0.213729 0.654192 0.453029 0.176498 0.028767

rid 0.46918 0.154781 0.542401 0.439443 0.166927 NaN

enc 0.62822 0.172495 0.553256 0.471707 0.162386 0.0149

mlp 0.29196 0.179433 0.415003 0.15156 0.190417 -0.35

dtr 0.366827 0.205429 0.618641 0.408734 0.171335 0.039553

rfr 0.497487 0.192672 0.767002 0.588627 0.177871 0.021984

knn 0.336442 0.138613 0.380925 0.267929 0.191598 0.02702

Table 4.32: The normalized standard deviation of R#9.
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5 Interpretation and Recommendation

The results discussed in chapter 4 are the basics for the recommendation, which algorithm-metric

relation is useful in geotechnic. First an over-all recommendation is given, where the sum of all

negative p-value criteria and negative sn criteria gives the hint for the decision. In a second step

every type of data set is discussed separately.

Table 5.1 is the recommendation for regessors. The criteria for green (+; use-able for all data

sets), orange (∼; depends on data set), red (- not use-able for all data sets) is based on the p-value

and sn. For regression, results of nine data sets are available. First the negative p-value criteria is

summed up. The negative sn criteria counts double if it is not based on a negative p-value criteria,

else it will not be summed into the recommendation. The sum is refered to the number of data sets.

Equation 5.1 shows the summation criteria for the regressor. If the value reaches >30% the over-all

recommendation is ∼. For values > 50% it is −.

Regressorcrit =
∑ pvalueneg +2∗ sn(pvaluepos)

ndatasets

∗100 (5.1)

The results show for mer a negative over-all recommendation. This is based on the negative

p-value criteria, for mer between 7-9 times of the cycle. mse is mostly acceptable, but for LIR,

RID and DTR not use-able. Here the 1-2 negative sn criteria have an impact. The same is for r2,

but here the p-value has more impact. MEE and mae are over-all metrics use-able. The SVR-mee

and MLP-mee shows a ∼ criteria because of one time negative p-value and sn criteria. LIR-msle

and RID-msle is based on three p-value criteria, LAS-msle one sn and two p-value, ENC-msle one

sn and three p-value criteria.

recommendation mer mae mse msle mee r2

lir - + - ~ + -

las - + ~ ~ + ~

svr - + ~ + ~ -

rid - + - ~ + ~

enc - + ~ - + ~

mlp - + ~ + ~ ~

dtr - + - + + -

rfr - + ~ + + ~

knn - + ~ + + ~

Table 5.1: Recommendation for the relationship algorithm-metric of the regressor. + (use-able for

all data sets), ∼ (depends on data set), - (not use-able for all data sets).

Table 5.2 is the recommendation for the classification task. Here the results of seven data sets

are summed up. The same criteria for +, ∼ and − are given. The Equation 5.1 is also the summation
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criteria for the classification. Only six out of ninety algorithm-metric relations are not rated with

+. ABC-hamming, -log, and -zero, SVM-prec and MLP-rec are all based on three negative p-value

criteria. MLP-prec is grouped by four negative p-value criteria.

recommendation acc f1 fb hamming jaccard log prec rec zero

rfc + + + + + + + + +

knn + + + + + + + + +

svm + + + + + + ~ + +

dtc + + + + + + + + +

gnb + + + + + + + + +

lda + + + + + + + + +

abc + + + ~ + ~ + + ~

qda + + + + + + + + +

mlp + + + + + + - ~ +

lrc + + + + + + + + +

Table 5.2: Recommendation for the relation algorithm-metric of the classifier. + (use-able for all

data sets), ∼ (depends on data set), - (not use-able for all data sets).

Data set C#1, coarse grained soils, trained as multi-class predictor shows for most of the

algorithm-metrics good p-values and normalized standard deviation. The input features, different

geological and geotechnical parameters, let the predictor perform well. Here all metrics can be

recommended. The ABC algorithm shows for four metrics weak performance.

Data set C#2, volcanic rocks, with three geotechnical input parameters, show also good p-

values and normalized standard deviation. Although fewer input parameters than in C#1, the per-

formance is good. Also here the ABC-algorithm has no good performance for three metrics.

Data set C#3, different rock types, shows as C#2 with three geotechnical input parameters a

stable data set. Beside the ABC-, also LRC-algorithm show for some metrics poorer performance.

For the rest, all metrics perform well and are recommendable.

Data set C#4, metamrophic and igneauos rocks, with three geophysical-geotechnical inputs,

a weaker performance for the rock type classification. For most algorithms, acc is not recommend-

able. Same for hamming and zero. MLP is for metrics not recommendable. Also ABC shows

weak performance for most metrics. In general, all KNN-metrics and LRC-metrics can be recom-

mended. Also the f1-metric, fb-metric, jaccard-metric and rec-metric are highly recommendable

for this kind of data set.

Data set C#5, different soils, with two blow count inputs, a very good performance for most

of the algorithm. MLP shows over-all metrics, beside log, a weak performance and is not recom-

mendable. Also SVM is for most of the metrics not recommendable.

Data set C#6, different soils, with the input of the SPT parameters, shows high performance

over most of the metrics. Only prec is moderate recommendable. The rest of the metrics perform

well.

Data set C#7, fine grained soils, with six geotechnical inputs and the Atterberg classification

as classifier output, shows for RFC, KNN and DTC for all metrics no recommendation. For the

MLP, prec and rec is not useful. The rest of the algorithm-metric relation is highly recommendable.

Data set R#1, undrained finish clays, with six geotechnical inputs and the undrained shear

strength as output of the regressor. The mer metric is, beside MLP-mer, not at all recommendable

based on the p-value. DTR-mee and -r2, RFR-mse and MLP-r2 are also based on the negative
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p-value criteria. All other algorithm-metrics are recommendable.

Data set R#2, different soils, is the same data set as C#6. Here the regressor predicts the shear

wave velocity by the SPT parameters. All of the mer, beside the DTR RFR, and the DTR-mee do

not reach the p-value criteria. The DTR-r2 does not reach the sn value. All other algorithm-metric

relations are recommendable.

Data set R#3, mixed stone, is the same as the data set C#4. Geotechnical and geophysical

input parameters are the basics for the prediction of the UCS. All mse show negative sn criteria,

SVR and RFR based on negative p-value criteria. Also all r2 metrics are based on negative p-value

criteria or show no calculated values. The mer metric is for SVR, ENC, DTR, RFR and KNN not

recommendable. The ENC-msle and MLP-mee show also negative sn criteria, SVR-mee show no

results. All other algorithm-metrics are recommendable.

Data set R#4, mixed stone, with input parameters of different geotechnical parameters, the

predictor calculates the vertical strain. Here all mer show negeative p-value criteria and LIR-r2,

SVR-r2 and DTR-r2 are negative by sn criteria. So the data set has a high quality for recommen-

dation.

Data set R#5, different soil, with input parameters of the piezocene testing indices, the predic-

tor calculates the resilient modulus, which describes the elasticity modulus for quick/short applied

loads. Beside ENC, DTR and RFR, all mer are negative p-values. Also LIR-, RID- and ENC-msle

are based on negative p-value. The LAS-msle shows negative sn criteria. All other algorithm-

metrics are recommendable.

Data set R#6, clays, with four geotechnical input parameters and the liquid limit as the pre-

dictor output. Again mer shows for all algorithms negative p-value. The DTR-mer and KNN-mer

are also with negative p-value.

Data set R#7, volcanic rocks, with two geotechnical input parameters and the UCS as the

predictor output. Here only the mer algorithms, beside the RFR, show negative p-values.

Data set R#8, coarse grained soils, with four input parameters of the SPT test and the porosity

for the predictor output. Here all algorithm-metrics show negative p-values, so the data set is not

use-able.

Data set R#9, soft finish clays, with seven input parameters of the oedometer test and the void

ratio as the predictor output. Here mer shows negative p-value criteria. The msle and r2 of LIR,

LAS, RID, ENC and RFR have negative p-value. Also the LAS-, ENC-, RFR-mse and DTR-r2

show the same behaviour. The LIR, SVR, RID and DTR-mse have negative sn criteria. These

algorithm-metrics are not recommendable at all. The mar and mee metrics are for this data set

over-all algorithms recommendable.
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6 Conclusion

In summary most of the algorithm-metric relations are recommendable. For different data sets,

this recommendation varies strongly. Repeated training and testing of the algorithms with a finite

number of data sets gives a first idea, how future recommendations of the algorithm-metric recom-

mendation can look like. In the sklearn package, a lot of other metrics and algorithm are available.

Here more investigation must be done. Also with more different data sets, one can give a better and

more detailed recommendation. The question is, if the scientific community is interested in such

recommendations. Most supervisors use standard metrics and algorithm. If there is a need, the first

step should be to check, which algorithm-metrics are mostly used by the geotechnical/geological

community. One problem is, that in this field the ML is a young science and not widely known or

applied. So investigation for recommendation of algorithm-metric relations will grow step by step

with the growing knowledge and application of this scientific domain. Another future investigation

could be the impact of the size of the data sets, especially for classification. Imbalanced classes

can be a problem for training the algorithm and so the recommendation of the algorithm-metric

could be not precise enough. In the end, all statements in chapter 5 are recommendations with a

subjective influence, although trying to minimize these impacts. So by furthermore investigation,

it could be that there will be never a clear decision criteria for choosing the right algorithm-metric

pair for ones special data set case.
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