

Summer School 2017

Computational Continuum Mechanics in Petroleum Engineering

29.06.2017 • Petr Vita

VII. Discussion

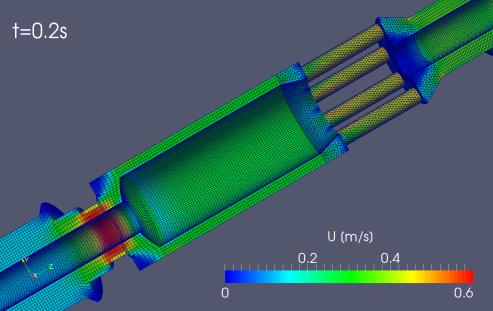
- V. Commercial Software vs OpenFOAM
- VI. Example: Choke
- **III.** Simulation Workflow **IV. OpenFOAM**
- **Motivation** II.
- **Computational Continuum Mechanics** I.

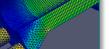
I. Computational Continuum Mechanics What is Continuum Mechanics?

Continuum Mechanics is a study of the physics of continuous materials

Continuum Mechanics			
Fluid Mechanics Liquids, gases and plasmas		Solid Mechanics Materials with defined rest state	
Newtonian	Non-Newtonian	Plasticity	Elasticity
	Rheology		

I. Computational Continuum Mechanics (2) What about Computational?


Computational suggests use of numerical methods and algorithms to solve problems in the focus

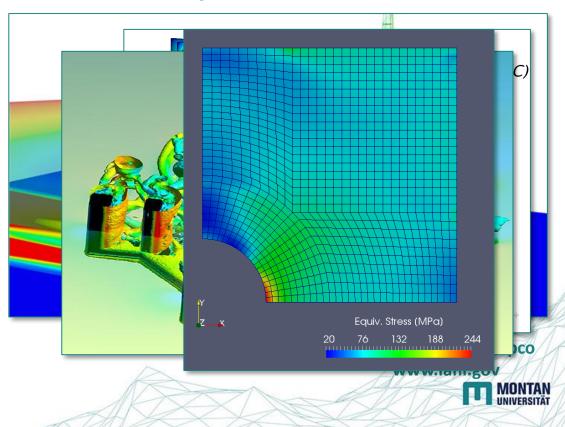

- Numerical analysis is usually not looking for exact solutions, but rather for approximate solutions with well defined error
 - Finite Difference Method
 - Finite Volume Method
 - Finite Element Method

II. Motivation SRABS Design Optimization

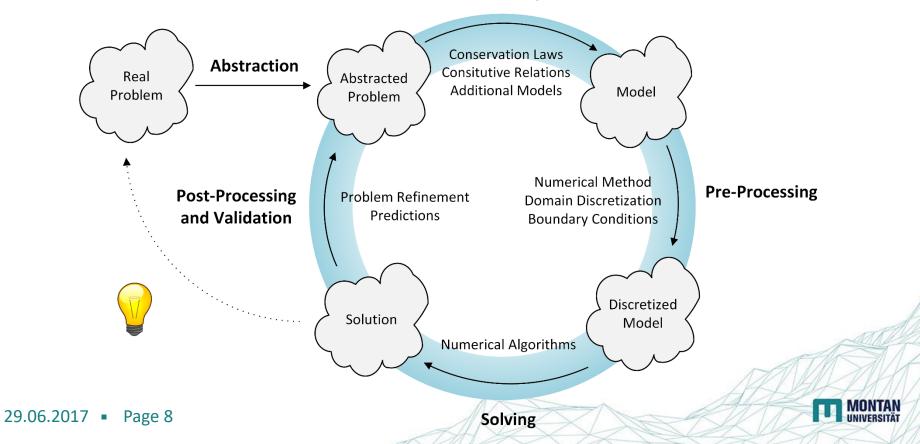
- Sucker Rod **Anti-Buckling System**
 - Optimization of pump design w/OpenFOAM
 - Possible abrasion of the internal components
 - Pre-processor Gambit
 - Dr. mont. Langbauer DPE, Montanuniversität Leoben

II. Motivation (2) Pipelines and Pumps Design

- Pipeline internal erosion, and corrosion
 - Cavitation at increased pipe elevations, bends
- Internal damage of the centrifugal pumps
 - Cavitation at blade edges, and discharge areas



II. Motivation (3) Wind Loading, FSI, CHT, and Stress Analysis


- Wind Loading
- Conjugate Heat Transfer
- Fluid-Structure Interaction
- Stress Analysis
- ...and many others

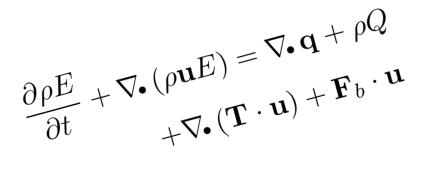
III. Simulation Workflow

Modeling

III. Simulation Workflow (2) Abstraction

- Problem dimensionality
- Transient vs Steady-state
- Fluid vs Solid
- Single-phase vs Multi-phase
 - Phase changes
- Compressible vs Incompressible
- Laminar vs Turbulent

- Inviscid vs Viscous
 - Non-Newtonian
- Plastic vs Elastic
- Heat Transfer
- Fluid-Solid Interaction
- Chemical reactions
- Additional forces
- Motion present



29.06.2017 • Page 10

III. Simulation Workflow (3) Modeling

- Conservation, or balance, laws
 - Mass
 - Momentum (linear, and angular)
 - Energy
- Constitutive relations
 - Functional dependencies between quantities, usually specific to material or substance
 - Mathematical closure to governing conservation laws

 $\mathbf{q} = -\kappa \nabla T$

III. Simulation Workflow (4) Finding the Model Solution

- Pick a suitable discretization method
 - Problem domain discretization
 - Discretize the equation system
- Select suitable solution algorithms/techniques
 - SIMPLE, PISO, PRESTO etc.
 - Cholesky, LU-decomposition, (Bi-)Conjugate Gradient, Geometric-Algebraic Multi-Grid
- Analyze and validate results

29.06.2017 • Page 11

Simulation Software

Open∇FOAM

HABAQUS

OpenFOAM® is a modern open source object-oriented library for the computational continuum mechanics in C++

• Licensed under GNU GPL

- It is free to run, study, share, and modify
- Vibrant community around OpenFOAM Extend project
- It comes without any warranty
- You have to provide source code to customer
- Many basic solvers, and applications included

IV. OpenFOAM (2) Main Features

- Collocated polyhedral unstructured meshes
- Finite Volume Method as a native discretization
 - Second order in space and time
- Many discretization schemes including higher order ones
- Algorithms for pressure-velocity coupling
- Mesh generation and manipulation tools
- Mesh import for all major mesh generators and CAD systems
- Physics implemented through an equation mimicking

IV. OpenFOAM (3) Equation Mimicking

Continuum Mechanics

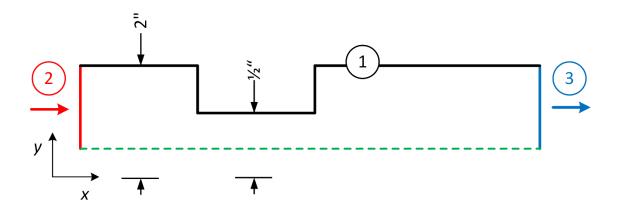
$$\begin{aligned} \frac{\partial k}{\partial t} + \nabla \mathbf{\cdot} \, \mathbf{u} k &= \\ \nabla \mathbf{\cdot} \, \left[(\nu + \nu_t) \nabla k \right] \\ + \nu_t \left[\frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right]^2 \\ - \frac{\epsilon_0}{k_0} k \end{aligned}$$

- OpenFOAM
 - fvm::ddt(k)
 - + fvm::div(phi, k) ==
 - fvm::laplacian(
 nu()+nut, k)
 - + nut*magSqr(symm(
 fvc::grad(U)))
 - fvm::Sp(
 epsilon/k, k)

IV. OpenFOAM (4) Pre- and Post-Processing

- OpenFOAM has limited pre-processing, but can import
 - **blockMesh** utility for structured multi-block hexahedral meshes
 - snappyHexMesh mesh generator for hex-dominant meshes on arbitrary geometry
- OpenFOAM has no post-processor on its own, but can export
 - Open source multi-platform data analysis and visualization tool ParaView reads OpenFOAM simulation cases natively
 - Supports distributed computation for large data processing
 - Uses VTK, and Qt libraries; OpenGL 2

Lecturer's View Commercial **OpenFOAM** Category Software Wallet Costs What's Comfort of Use the price? Stability User Documentation **Power User** Solution Control 0 Extensibility 0 ····· Research **Disclosure of Numerics** Constant and a state **Education** INIVERSIT 29.06.2017 Page 16


V. Commercial Software vs OpenFOAM Lecturer's View

VI. Example: Choke

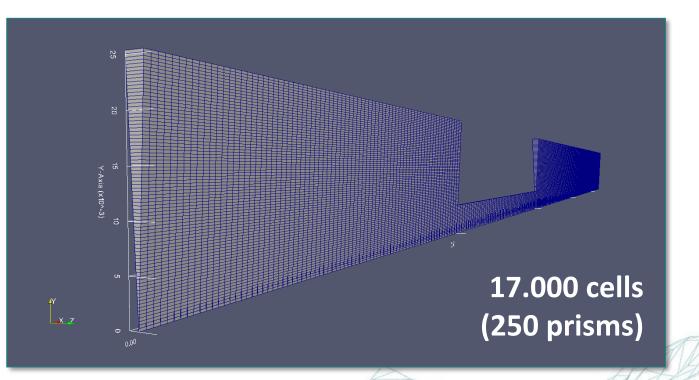
 Compressible air flow through ½" choke

 (1): $\nabla p = 0$ $\mathbf{u} = 0$ $\nabla T = 0$

 (2): p = 1000psi
 $\nabla \mathbf{u} = 0$ T = 293K

 (3): p = 900psi
 $\nabla \mathbf{u} = 0$ $\nabla T = 0$

VI. Example: Choke (2) Compressible Navier-Stokes Equations



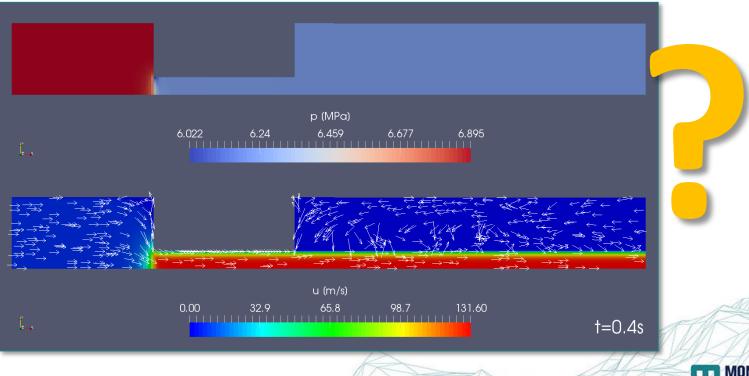
$$1: \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$2: \frac{D}{Dt}(\rho \mathbf{u}) = -\nabla \left(p + \frac{2}{3}\mu \nabla \cdot \mathbf{u} \right) + \nabla \cdot \left(\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right] \right)$$

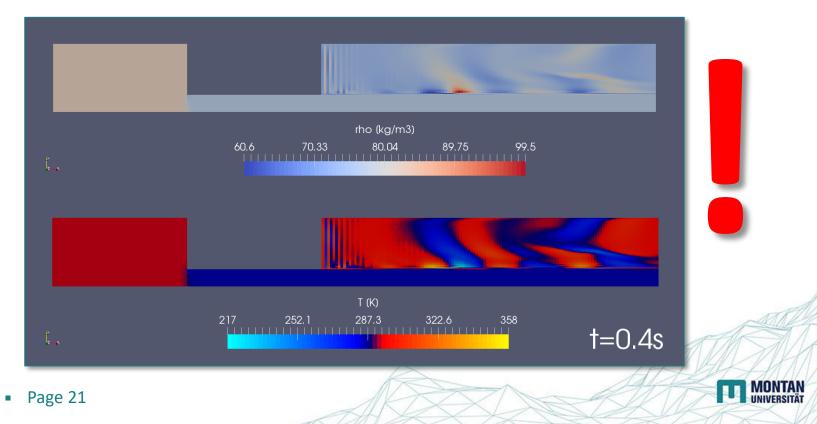
$$3: \frac{\partial}{\partial t}(\rho h) + \nabla \cdot (\rho \mathbf{u} h) = \underbrace{\frac{\partial p}{\partial t} + \nabla \cdot (\mathbf{u} p)}_{\frac{D}{Dt}p} - p \nabla \cdot \mathbf{u} + \nabla \cdot (\alpha \nabla h)$$

$$4: \rho = \rho(p, T) \quad 5: \mu = \mu(p, T), \ \alpha = \alpha(p, T), \dots$$

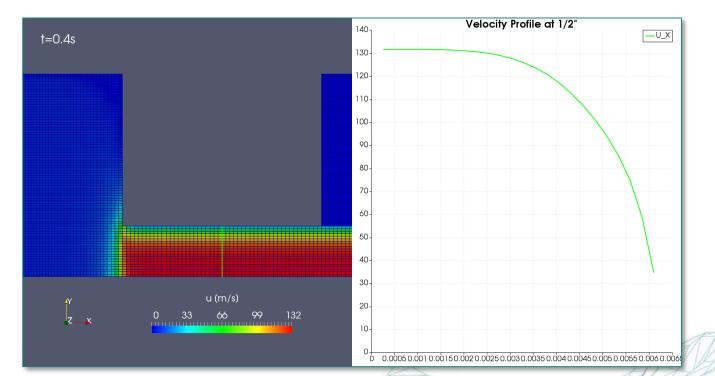
VI. Example: Choke (3) 2D Axial-Symmetric Mesh

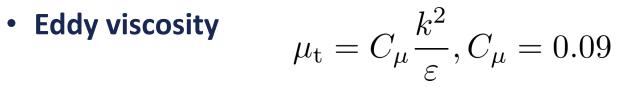


VI. Example: Choke (4) Transient Compressible Laminar Air Flow



VI. Example: Choke (5) Problems with Energy


29.06.2017

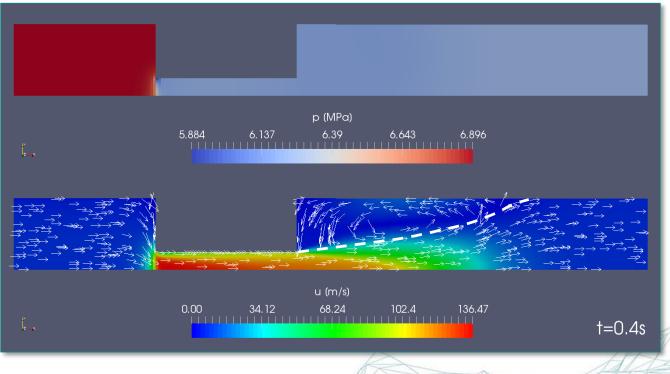

VI. Example: Choke (6) Realizing the Turbulence

VI. Example: Choke (7) Standard *k*-ε Turbulence Model

• *k*- and *ε*-equation

$$1: \frac{\partial}{\partial t}(\overline{\rho}k) + \nabla \cdot (\overline{\rho \mathbf{u}}k) = \nabla \cdot \left(\frac{\mu_{t}}{\sigma_{k}}\nabla k\right) + P_{k} - \overline{\rho}\varepsilon + S_{k}$$

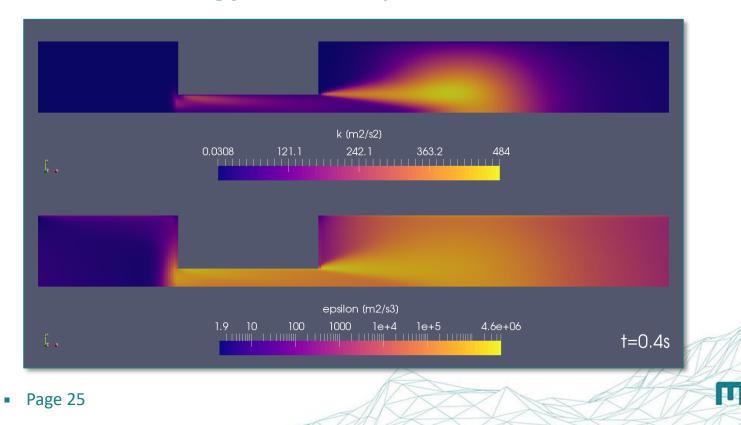
$$2: \frac{\partial}{\partial t}(\overline{\rho}\varepsilon) + \nabla \cdot (\overline{\rho \mathbf{u}}\varepsilon) = \nabla \cdot \left(\frac{\mu_{t}}{\sigma_{\varepsilon}}\nabla\varepsilon\right) + C_{1\varepsilon}\frac{\varepsilon}{k}P_{k} - C_{2\varepsilon}\overline{\rho}\frac{\varepsilon^{2}}{k} + S_{\varepsilon}$$


$$3: P_{k} = 2\mu_{t}\epsilon_{ij}\epsilon_{ij}, C_{1\varepsilon} = 1.44, C_{2\varepsilon} = 1.92, \sigma_{k} = 1.0, \sigma_{\varepsilon} = 1.3$$
29.06.2017 - Page 23

dpe pepartment petroleum engineering

HNIVERSITÄ

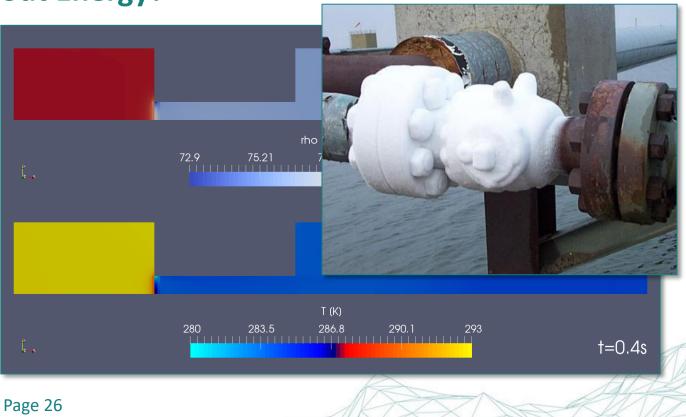
VI. Example: Choke (8) Transient Compressible Turbulent Air Flow



VI. Example: Choke (9) Turbulent Kinetic Energy, and Dissipation

29.06.2017

MONTAN UNIVERSITÄT



VI. Example: Choke (10) What about Energy?

29.06.2017

MONTAN UNIVERSITÄT

VII. Discussion

