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Introduction and Motivation Meso-macro model features and algorithms
Experimentally observed. backflow [1] motivated the introduction Structure of Jacobian [J] in meso-macro model [2] for Newton-Raphson scheme.
of a backstress in constitutive models, to depict non—proportional R...Re5|dauRa|, A...Austenite, M...Mz;ten5|te, O...onentz:onalasart <)a1;transformat|on strain
: : : : OR_ | ore | or | ore | 2R 0 —_ —_ | 9R®
loading paths [2]. This backstress is related to the selection of A | onp | oap | Dap | ORET | E | E | ORQTORQT|OAQC gpc
. . . . . . aRﬁa p? ORP’ ORP’
interacting crystallographic variants, changing as a function of wE | gy 0 0 000 taagr 0 aage 0 AE(AEe ¢ s AE: Svol £°)
. . . ™ e ™ 0Rpm pm 6Rpm ~ ~ Y, )~ Y U 1 )~
the applied load direction and the interaction between variants o8& | 0 | gas= 0 0 0 0 10 feagr 0 0
. . ORP’ 0 ORP OR"° 0
and dislocations. weE | 0 0 R0 0 | 0 g 0 g & . . .
" i - | o pA’M viscoplastic formulation
. 0.02 {J?Eée 0 0 IR _! 0 0 aﬁARa 0 a%ao R
We present coupling strate- - S —— I e v A j | one
. f h h 120-0 MPa OR” IR 0 0 0 3Rﬁaa 0 IR’ 0 OR” 0 ] ] ]
gies for the phase trans- | c00NPa = oag G 00 2 s 2 e 2o |l Orientation strain (transform.)
formation and plasticity at 0P Re 0 mT o Q 0 gige B ML R
: -120 MPa - PT PRl T ) ~ - - - _
different scales. A meso- oo} Q oo - w0 o 0 0 0 1 0 FS Stress scaling rules 3% [4]
0.006 | = O0Ap? ~ ~ ~ = ~ e ~ ~ ~
macro model for struc- — A "
. o005 |- % _ e oo om0 0 00 0 00 | o
tural calculations has been . )¢ o R w0 o o ® o o . Interacting backstresses """
h . h h / : 0008 560 760 900 1100 8A§e Q ~ 8A—p° s ™ ™ 3AQ¢ = 3AQ¢° 3—Af
set up, whic owever o T | R O T L B N
ﬂ ODES | HAp 0 0 OAE X X IAQY X IAQY° | GAz ) i i
needs to become more flex- Transformation kinetics
ible. Therefore, a micro- [ — ) . e . . 1
del is developed » Strain-driven process in finite element program - computation of state variables at t
MESO MO’ 15 GEVEIOPEd, oo b by means of the internal variables at time t” and the current strain tensor
h . d d | t t 300 320 340 360 380 400 420 440 460 480 500 520 y .
wnere indailvidua Mmartensite temperature [K] . . . . . .
) e f ! | | | | » Return mapping/projection scheme to solve linearized system of equations.
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sraphic calculations Experimentally observed backflow upon » Coupling between plastic deformation and orientation mechanism via a backstress.
(see [3]) are resolved unloading. » Hardening law based on phase fraction must reproduce experimentally accessible

kinetics. Proposition: Inverse of fitted kinetics function with tanh or combination of In’s.
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Overview of the length- and time scales to capture the TRIP phenomenon. The red points mark the scales where the micro-meso
or meso-macro models are formulated respectively. An upscaling to the rescpective higher scale is done via a stress scaling or
» An ample meso-macro model has been implicitly implemented for scale-transition rule (B-rule [4]).

the use in structural FEM calculations. _ _ _ _ _
The anisotropic macro yield-function based on the Lode-angle can be fitted to a theo-

retical yield function obtained from crystallographic transformation strains as in [5]. The
strains are calculated in accordance with the hierarchical, microstructural arrangement into
Packets (that are divided into Blocks of two Variants respectively) in low-carbon steels
[3]. There are some good/similar solutions in the sense that they all fulfill the subsequent
criteria:

» A physically based micro-meso model has been set up as an
additional layer in the multi-scale modeling chain. It provides
additional information that is not experimentally accessible (e.g.
relative amounts of plastic- and transformation strain). This
opens new possibilities to formulate and calibrate hardening laws

and improve parameter identification for macro models. i) Deviation of habit-plane h' from {111}, ~ 0 as ex-
erimentally supported by almost all examples of low-
O oferences 1.070 0.071 —0.071) 1 " Lt Y 2T e
cubic 0.071 1.072 —0.071 carbon steels. ||) Ip density IS reasonably large.
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as well as ii) generate more data to make the meso- Hierarchical RVE of Blocks forming Packets
macro model more flexible. typical for low carbon steel.
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