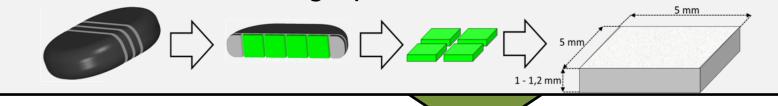


Bewertung des Potenzials nichtmetallischer Einschlüsse zur azikularferritischen Keimung in verschiedenen Stahlgüten

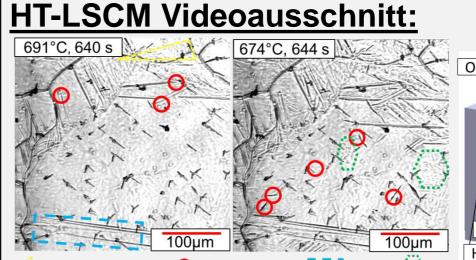
Alexander Mayerhofer

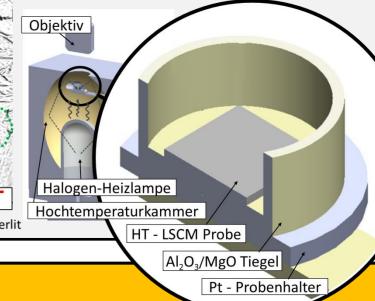

Motivation

Eine besondere Form der Phasenumwandlung ist jene des Azikularferrits (AF), der durch seine nadelige, chaotische, aber feine Struktur Festigkeits- und Bruchzähigkeitswerte bei tiefen Temperaturen erhöht. Da azikularer Ferrit nichtmetallische Einschlüsse (NME) als Keimstellen benötigt, wurde deren Potenzial zur Keimung mittels HT-LSCM, Metallographie und Rasterelektronenmikroskop (REM) untersucht. Die Analysen umfassen einen mittelkohligen Stahl mit Variation von Cr, Ni, Mn und einer Mg-Modifikation, sowie einen hochkohligen Stahl mit stufenweisem Legieren von Titan. Die Ergebnisse der folgenden Fragen werden in diesem Poster im Detail dargestellt.

1) Gibt es Auswirkungen einer Mg-Modifikation auf die Keimungsfähigkeit der NME? 2) Ist die Erzeugung von Azikularferrit bei hochkohligen Stählen mit 0,65% C möglich?

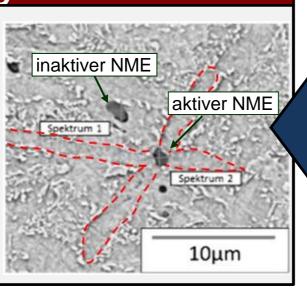
Probenherstellung


Nach der Herstellung des Grundmaterials in einem Tammannofen wurden die erzeugten Gussproben für die weiteren Untersuchungen am HT-LSCM und REM geschnitten und metallographisch aufbereitet.


HT-LSCM

Hochtemperatur – Laserscanning Konfokalmikroskop

Aufgrund der hohen Flexibilität der Temperaturführung und der Möglichkeit der in-situ Beobachtung der Keimung von Azikularferrit wurde das HT-LSCM als Aggregat zur Wärmebehandlung gewählt.



Versuchsaufbau:

REM/EDX - Analyse

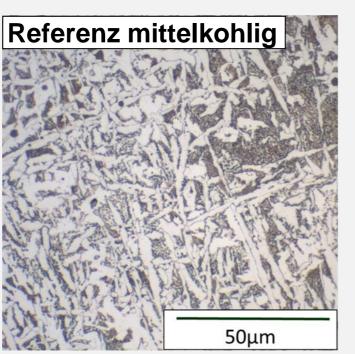
Die Proben wurden sowohl automatischen (Bestimmung der Einschlusslandschaft), als auch manuellen EDX-Messungen (chemische Zusammensetzung in/aktiver NME) unterzogen.

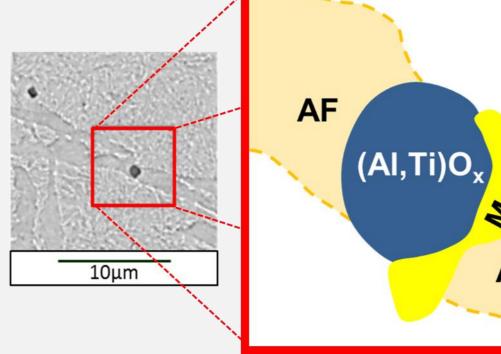
Metallographie

Eine computergestützte Bestimmung der Austenitkorngröße und des Azikularferritanteils im Gefüge geben Aufschluss über die Auswirkungen der Änderungen der Legierungs- und Wärmebehandlungsparameter der einzelnen Versuchsserien.

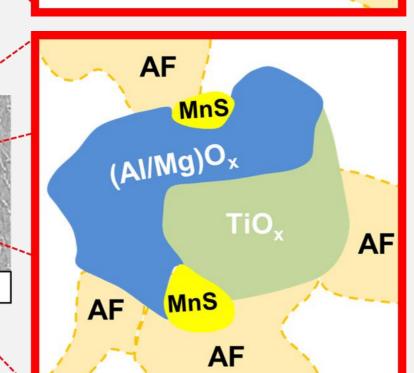
Keimungsverhalten von NME in mittelkohligen Stählen

Fünf mittelkohlige Proben (Referenzlegierung: 0,2% C - 1,5% Mn - 0,05% Ti) wurden durch Änderung der Legierung bzw. einer Magnesiummodifikation im Azikularferritanteil beeinflusst. Die Verwendung der unterschiedlichen Analysemethoden ermöglichte einen Vergleich der Ergebnisse untereinander und brachte Aufschluss über die Beeinflussung des Azikularferritanteils.


Referenz mittelkohlig	200	≥ 70%
+ Cr, + Ni	20, 200	0
Mg- modifiziert	200	≥ 70%
- Mn	100, 200	9
- Mn, + Ni	150, 200, 250	1


KR⁸⁰⁰°C

[°C/min]

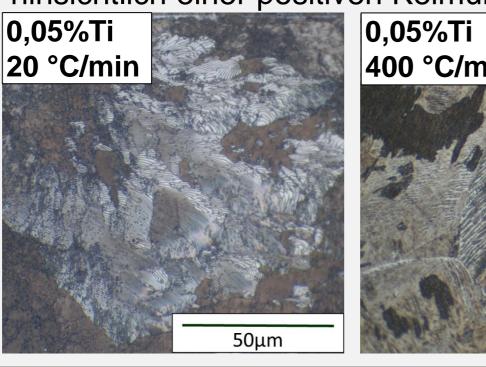

[%]

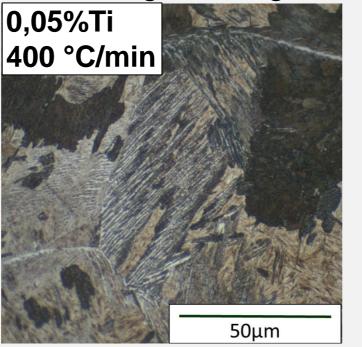
Probe

10µm

Referenz_mittelkohlig: Die Einschlüsse der untersuchten Referenzprobe haben ein hohes azikularferritisches Potenzial. Manuelle EDX-Analysen zeigen, dass Partikel mit den Modifikationen (Ti,AI,Mn)O_xS_y - 38%, (Ti,AI,Mn)O_x - 14%, (Ti,AI)O_x - 10% und (Ti,Mn)O_x - 10% die keimungsaktivsten Partikel bei 100% vermessenen wirksamen Einschlüssen sind.

Mg-modifiziert: Auch mit der Einschlussmodifikation durch Herstellung im MgO-Tiegel zeigte die Referenzzlegierung einen hohen AF-Gehalt. Die Partikel der Zusammensetzung (Ti,AI,Mn)O_x - 41%, (Ti,AI,Mn,Mg)O_xS_y - 16%, MnS - 8% und (Ti,AI,Mg)O_x - 8% haben den höchsten Anteil an den keimungsaktiven NME. Die manuelle EDX-Analyse zeigt, dass Mg zu einer MA-Spinellbildung im Einschluss führt.




Mg-modifiziert

Probe	KR ^{800°C} [°C/min]	AF [%]	
Referenz hochkohlig	200, 400	0	
+ 0,02% Ti	200, 400	0	
+ 0,05% Ti	20, 200, 400	0	

Bei den Versuchserien der hochkohligen Stähle (Referenzlegierung: 0,65% C - 1% Mn - 0,5% Si) wurde mit schrittweiser Erhöhung des Titangehalts versucht, die Zusammensetzunng der nichtmetallischen Einschlüsse hinsichtlich einer positiven Keimungswirkung für Azikularferrit zu modifizieren.

AF

+0,05% Ti: Trotz einer Einschlusslandschaft mit **(Ti,Mn)O**_x**S**_y**-**, **MnS**-und **(Ti,Al)O**_x-Partikeln, welche laut Theorie und bei den mittelkohligen Proben bereits als keimungsaktiv gewertet wurden, konnte kein Azikularferrit erzeugt werden. Die nebenstehenden Abbildungen zeigen, dass das geringe Ferritpotenzial bei 0,65% C keine AF-Umwandlung zulässt. Bei unterschiedlichen Abkühlbedingungen wandelten die Proben perlitisch (20 °C/min) bzw. perlitisch-bainitisch (400 °C/min) um.

Alexander Mayerhofer
Kontakt: alexander.mayerhofer@stud.unileoben.ac.at

Betreuer: Ass.Prof. Dipl.-Ing. Dr.mont. Susanne Michelic Dipl.-Ing. Denise Loder

Forschungspartner:

