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KURZFASSUNG  

Diese Arbeit beschäftigt sich mit der Simulation von Lösungskorrosion und Erosion von feuer-

festen Baustoffen durch Schmelzen und mit der Berechnung von Verschleißparametern. Die 

experimentelle Grundlage bildet das Fingertest-Experiment, wobei ein hochmodernes Gerät 

verwendet wird. Dieses ermöglicht die Vermessung der Probenoberfläche bei Prüftemperaturen 

mittels Laser. Die Lasermessung der verschlissenen Probenoberfläche liefert die Erosions-

/Korrosionsprofile, die für die Modellvalidierung und inverse Berechnung der Verschleißpara-

meter verwendet werden. Strömungssimulation (Computational Fluid Dynamics) wird zur Be-

rechnung des durch die Rotation der Probe in der Schmelze induzierten Strömungsfeldes ein-

gesetzt. Das erstellte Modell für die Lösungskorrosion stellt eine Verbesserung zur Literatur 

dar, da es den Effekt der Stefan-Geschwindigkeit auf die effektive Diffusionsgrenzschichtdicke 

und den konvektiven Anteil des Stoffstroms berücksichtigt. Darüber hinaus wird auf Basis der 

Grenzschichttheorie ein asymptotischer Ansatz für große Schmidt-Zahlen verwendet, um den 

Rechenaufwand im Modell zu reduzieren. Das Modell wurde erfolgreich mittels dokumentier-

ten Stofftransportgleichungen verifiziert und durch Vergleich mit den Fingertest-Experimenten 

validiert. Die Bestimmung der effektiven binären Diffusionskoeffizienten wurde durch zwei 

Methoden durchgeführt: aus der experimentellen durchschnittlichen Stoffstromdichte und 

durch Kurvenanpassung der simulierten Auflösungskurven an die experimentelle. Die Ergeb-

nisse stimmten mit den in der Literatur präsentierten Ergebnissen sowie mit weiteren überein, 

die unabhängig von den hier durchgeführten Experimenten durch in-situ Schmelzversuche mit 

dem konfokalen Laserscanningmikroskop und zugehöriger Hochtemperaturkammer durchge-

führt wurden. Das Modell für Erosion feuerfester Baustoffe berücksichtigt die zeitliche Ände-

rung der Probengeometrie, das Ergebnis ist ein simuliertes Erosionsprofil. Das verwendete Ero-

sionsgesetz ist eine Funktion der Wandschubspannung und beruht auf einer Analogie zur Bo-

denerosion. Ein inverses Berechnungsverfahren zur Bestimmung der Erosionsparameter wurde 

programmiert und zunächst mit künstlich erzeugten Erosionsprofilen getestet. Das Testproblem 

zeigte die Durchführbarkeit einer inversen Berechnung mit einem zweiparametrigen Erosions-

gesetz. Anschließend wurde das inverse Problem erfolgreich zur Berechnung der Erosionspa-

rameter bei der Erosion einer grobkeramischen Feuerfestprobe aus Aluminiumoxid angewen-

det. 
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ABSTRACT 

This work focuses on simulation of dissolution and erosion of refractory materials by melts and 

on calculation of wear parameters. The experimental basis is given by the finger-test experiment 

for which a state-of-the-art device is used. Laser scanning of the worn surface of the sample 

after the experimental steps provides the erosion/corrosion profiles used for model validation 

and inverse calculation of wear parameters. Computational fluid dynamics is employed for res-

olution of the flow-field induced by the rotation of the sample in the melt. The dissolution model 

represents an improvement to the literature because it includes the effect of the Stefan velocity 

in the species boundary layer thickness and the convective part of the dissolution mass flux. 

Moreover, an asymptotic boundary layer approach for large Schmidt numbers is employed for 

reducing the computational needs in the model. The model was successfully verified against 

documented mass transfer equations and validation was obtained by comparison with the fin-

ger-test experiments. The determination of effective binary diffusivity was conducted by two 

methods: from the experimental average mass flux density and by curve fitting of the simulated 

dissolution curves to the experimental one. The results agreed with results presented in the lit-

erature and to those derived independently by confocal laser microscopical investigations. The 

model for refractory erosion accounts for the change of the sample geometry with time and the 

simulation output is a simulated erosion profile. The erosion law was a function of the wall 

shear stress and was based on an analogy between refractories and soils. An inverse calculation 

procedure for determination of the erosion parameters was programmed and tested firstly with 

artificially generated erosion profiles. The test-problem revealed the feasibility of inverse cal-

culation with a two-parameter erosion law. Later, the inverse problem was successfully applied 

for inverse calculation of the erosion parameters in the erosion of an alumina coarse grain re-

fractory sample.   
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1 Problem definition 

Refractories are an essential component in pyroprocessing and are thus exposed to very harsh 

conditions that cause wear. This wear is frequently associated to process costs and safety issues, 

and furthermore, it can have an impact on the quality of the product; therefore, investigations 

of refractory wear are essential.  

Refractory wear can be classified as of continuous type, where a material mass loss vs. time 

representation shows a continuous function, or it can also be of discontinuous type, where the 

former is not observed. This work addresses refractory wear by melts, and two continuous wear 

mechanisms are considered, namely dissolution and erosion.  

For dissolution, many quantitative studies can be found in the literature; in many of them, the 

evaluation methods are lacking. This can be due to an unfitting computation of the species 

boundary layer thickness due to the employment of approximated equations for geometries that 

do not exactly match the experimental set-up investigated. It can also ow to lacking considera-

tion of dissolution-related phenomena such as the effect of the Stefan velocity on the boundary 

layer thickness and accounting for large Schmidt numbers. These can lead to poor estimation 

of diffusivities or other dissolution related parameters.  

On the other hand, erosion has been mostly studied on a qualitative basis from service condi-

tions, but no sound quantitative methods have been presented in the literature. The aim of this 

work is to develop simulation models in continuous refractory wear and evaluation methods for 

calculation of relevant wear parameter for the particular case.  
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2 Introduction 

Both erosion and dissolution of refractory materials are mechanisms of continuous wear by 

melts. The dissolution of refractory materials is very frequently dominated by the species dif-

fusion in the liquid [1]–[3]. On the other hand, the erosion occurs by grain detachment as a 

result of the shear stresses that the flow field exercises on the sample. This process generally 

necessitates a preconditioning corrosion by the infiltrated liquid. Figure 1 presents a schematic 

description of the aforementioned processes.  

 

Figure 1. Schematic representation of wear mechanisms of refractories 

This thesis deals with simulations of both dissolution and erosion processes. Here a cumulative 

dissertation based on five journal papers is presented and therefore, some parts of the text will 

directly quote from publications I to V listed in section 6. Figure 2 presents a flowchart of the 

publications that support this thesis. Publication I introduces a methodology for calculation of 

mass transfer coefficients in dissolution of dense ceramic materials by liquid melts based on 

Computational Fluid Dynamics (CFD) simulations of rotating finger test experiments together 

with an asymptotic boundary layer approach for calculation of species diffusive flux. Publica-

tion II extends the method presented in Publication I for calculation of effective binary diffu-

sivities from real experiments and it considers the actual shape of the corroded samples for the 

simulation domain. In Publication III, the dissolution of an alumina dense ceramic sample is 

studied with rotating finger test experiments and effective binary diffusivities are calculated 

and compared to reported values in literature. Publication IV, makes use of multiple evaluation 

of real experiments and delivers a Sherwood correlation for finger-test experiments useful for 

determination of effective binary diffusivities and other dissolution related parameters. Lastly, 
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Publication V presents a mathematical method for calculation of erosion parameters from ex-

perimental erosion profiles.  

 

Figure 2. Flowchart of publications employed in this thesis 

The next sections include the state of the art, a description of the methodology employed for 

the dissolution and erosion models, and a summary of the results presented in Publications I-V. 

2.1 State of the art 

The dissolution of refractory materials has been the focus of many investigations considering 

the consequences for the steel industry and other industries where pyroprocessing is necessary. 

From the refractory wear investigations found in the literature many target determination of the 

wear mechanisms via microscopical examinations [4]–[11], while other focus on quantification 

by wear parameters [12]–[16].   

One notorious investigation is the work of Cooper and Kingery in 1964 on the dissolution of 

alumina in calcium aluminosilicate slags (CAS) [17]. Their work employs finger test investi-

gations and investigates the dissolution of sapphire in three different situations: the molecular 

diffusion, where a quiescent fluid is assumed, the natural convection induced by density gradi-

ents and the forced convection by rotation of the sample inside the melt. For their system, they 

claimed and verified that the dissolution of the ceramic sample is dominated by the mass trans-

fer in the liquid. Since this study, other authors have conducted similar investigations, and they 

also agree on the mass transfer in the liquid being the rate dominating step [1], [3], [12], [18].  
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In some cases, the rate dominating step might not be given by the diffusion of the species in the 

liquid. Lee and Zhang published a review article on the melt corrosion of oxide and oxide-

carbon refractories [19]. In their work they examine phase formation in different oxide systems 

and discuss congruent and incongruent dissolution. Incongruent or indirect dissolution involves 

the precipitation of a solid phase and thus reduces the overall dissolution rate, owing to the 

necessary species diffusion in the solid.  

Several methods for ceramic or refractory testing are available. Some of this include the cup 

slag test, finger test, test with rotating slag and the induction crucible furnace test. Reynaert et 

al. present a comparison between the different testing method and the advantages and disad-

vantages of each of these [20].  

In this work, the chosen experimental set-up for both erosion and dissolution investigations is 

the rotating finger-test. This experiment has the advantage that a flow-field is generated by the 

rotation of the sample, which imitates the conditions to which the materials are exposed under 

service [19], [20]. Many authors have reported investigations on dissolution with this finger test 

experiments [4]–[10], [12]–[15], [17], [21]. Some of these studies quantify the wear by meas-

urements of the lost weight or change in some dimension, such as the radius of the sample at a 

determined axial position. Moreover, the evaluation methods for dissolution investigations are 

frequently lacking because they fail to account for the effect of the Stefan velocity on the species 

boundary layer thickness as discussed in Section 2.2.2.1, and many also neglect the convective 

component of the dissolution mass flux. Furthermore, the equations employed for determination 

of the species boundary layer thickness are not always fitting, because no equations had been 

presented in literature for these experiments. For example, for finger test investigations some 

authors have employed the equation of Levich for the mass transfer to a rotating disc. While 

this equation may be employed to compute length change of the sample as done in the works 

of Cooper and Kingery [17] and Sandhage and Yurek [22], some authors [13], [16], [23] em-

ployed this equation for calculation of the mass transfer rate on the cylinder mantle, which is 

not justified. For the cylinder mantle, others have recurred to the equations for cylindrical sur-

face such as that of Eisenberg [24], however these equations do not account for a clearance to 

the bottom of the crucible.  

The refractory wear by erosion has received less attention in the literature than the dissolution. 

One of the reasons for this is the lack of an established erosion law as well as the lack of methods 
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for its depiction. From the investigations in this field, the work of Campbell et al. [25] presents 

a model for the erosion based on the analogy with soil erosion and implements the Parmenides’s 

equation [26] into a CFD code. However, the erosion parameters are not correlated to experi-

mental studies. The work of Huang et al. [27] introduces an empirical equation for the erosion 

rate, given by fitted polynomial of the product of wall shear stress and turbulent intensity. Re-

cently, Wang et al. [28] presented a model for the wear in the refining ladle, where the erosion 

is modelled by power law of the wall shear stress relative to a reference value. In their work, 

the erosion parameters are obtained from experimental studies and adjusted to industrial meas-

urements. While many different approaches to refractory erosion are found in the literature, 

most agree on the wall shear stress being the influencing variable for the erosion process  [27]–

[34].  

2.2 Methods 

2.2.1 Continuous Wear Testing Device  

Both erosion and dissolution investigations are conducted with finger test experiments. The 

experimental set-up employed, hereafter the Continuous Wear Testing Device (CWTD) is state 

of the art and can be visualized in Figure 3, where the most significant components of this 

device are displayed. In these experiments the refractory sample is rotated at constant speed 

inside a slag bath. This is done for different steps of a defined length and multiple steps can be 

conducted for one experiment. The experimental schedule is defined a priori, and the schedule 

is introduced to the device software that operates fully automatically.   



6 

 

  

Figure 3. Schematic representation of the interior of the CWTD  

A furnace with MoSi2 heating elements is employed for reaching experimental temperature, 

which is monitored and kept constant by three thermocouples. Two thermocouples measure the 

sample temperature and are located below the crucible and one furnace and safety thermocouple 

is located at the top of the furnace. The crucible that contains the slag/melt is fixed in an alumina 

safety crucible by an interlock. The drilled sample is attached to the rotor shaft and rotor lifting 

system, which can be seen in Figure 4, extracted from the publication of Kircher et al. [35].  

 

Figure 4. Exterior view of the CWTD. Reprinted from [35] (CC BY 4.0) 
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A distinct advantage of this device in comparison to classic finger test investigations is the 

possibility of in-situ measurement at high-temperature. This is achieved with the laser measur-

ing device. The measurement is conducted at the end of each dissolution/erosion steps in addi-

tion to a reference measurement of the pristine sample before dipping in the melt. Firstly, the 

sample is pulled up and the slag is left for 30 minutes to drip from the sample surface, immedi-

ately after this, the laser device is placed in position after opening of the furnace plug. The 

sample is rotated at 2 rpm while the laser scans its surface. The position of all the moving parts 

are controlled by photoelectric sensors [35]. Figure 5 presents a photography of the interior of 

the device with an attached sample in upper position and was extracted from the publication of 

Kircher et al. [35]. Here the furnace window is open, and the laser measurement is taking place. 

The laser can achieve a resolution of 100 µm along the length and 20 µm in circumferential 

direction [36]. 

 

 

Figure 5. Photography of the interior of CWTD. Reprinted from[35] (CC BY 4.0) 

This measurement provides high resolution dimensional information of the worn sample which 

can be used for assessment of the wear. An example of such measurement is shown in Figure 

6. Here, towards the right side of the figure, we observe the worn area in pink and purple colors, 

whereas the flatter orange surface corresponds to the part of the sample that was not in contact 

with the melt. It is noticeable that the measurement is very noisy and shows high scatter espe-

cially at the worn area. This is not only a result of the roughness of the surface but also slag 

accumulation inside the pores can deflect the laser beam. Therefore, this data needs processing 

before it can be used for evaluation.  

https://creativecommons.org/licenses/by/4.0/
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Figure 6. Laser measurement data before processing  

The raw data is processed to provide an axisymmetric profile of the worn sample. The pro-

cessing procedure is discussed in the publication of Kircher et al. [35]. An example of these 

profiles that corresponds to the raw data shown in Figure 6 is displayed in Figure 7. In this 

figure, the start of the immersion part is at 74.5 mm, for 𝑧 larger than this value, the radius of 

the sample decreased from its original average of 15 mm due to the wear caused by the melt.   

 

Figure 7. Processed worn profile 

For the erosion case, these curves are directly used for the inverse calculation of erosion param-

eters by inverse calculation with simulated erosion profiles. For dissolution investigations it can 

be used to determine effective binary diffusivities as discussed in Section 2.2.2.5, where also 

the experimental profile is fitted to a simulated one. Furthermore, the axisymmetric profiles can 

be integrated to calculate both the surface area and volume of the sample. This allows calcula-

tion of the average mass flux density which can also be used for determination of effective 

binary diffusivities as explained in 2.2.2.5.  
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2.2.2 Dissolution model 

2.2.2.1 Fundamentals  

Investigations on dissolution of refractory materials target quantification of the dissolution mass 

flux density. With the dissolution dominated by the mass transfer in the liquid, appropriate 

models for the dissolution process can be constructed from Fick’s first law of diffusion: 

 𝑗 = −𝐷∇𝑐 (1) 

where, 𝐷 represents the diffusivity and ∇𝑐 is the species concentration gradient. Very fre-

quently, for the one-dimensional case, equation (1) is expressed in terms of the Nernst boundary 

layer thickness (𝛿𝑐): 

 𝑗 = −𝐷
∆𝑐

𝛿𝑐
  (2) 

here, ∆𝑐 characterizes a well-defined concentration difference between the concentration at the 

interface and the solution bulk. Thus, calculation of the mass flux density requires information 

of the species diffusivity and the species boundary layer thickness. This can be achieved by 

solving the species transport equation with appropriate boundary conditions: 

 𝜕𝑐

𝜕𝑡
+ ∇ ∙ (𝑐𝑣⃗) − ∇2(𝐷𝑐) = 0 

(3) 

Already, we can notice the complexity of this problem, since the velocity field 𝑣⃗ is generally 

not known.  Therefore, resolution of Equation  (3) also necessitates resolution of the velocity 

flow field as per the Navier-Stokes equations (5) and continuity equation (4) for mass conser-

vation.  

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑣⃗) = 0 

(4) 

 
𝜌

𝐷𝑣⃗

𝐷𝑡
= 𝑓 − ∇𝑝 + ∇ ∙ 𝜏 

(5) 
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Here 𝑓 represents the sum of external body forces acting on the fluid, 𝑝 is the pressure field, 

and  𝐷𝑣⃗⃗

𝐷𝑡
 is the material or substantial derivative: 

 𝐷𝑣⃗

𝐷𝑡
=

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗ ∙ ∇) 𝑣⃗ 

(6) 

𝜏 is the viscous stress tensor of the deviator stresses which for the Newtonian case may be 

expressed by: 

 
𝜏 = 𝜇 (2𝜀̇ −

2

3
𝜹∇ ∙ 𝑣⃗), (7) 

where 𝜹 is the Kronecker unit tensor and the strain rate tensor 𝜀̇ is: 

 
𝜀̇ =

1

2
(∇𝑣⃗ + (∇𝑣⃗)𝑇) (8) 

Equations (3) to (5) are expressed in convenient vector form and are generally valid; for appli-

cation a coordinate system needs to be chosen. For instance, in Cartesian coordinates for the 

case of constant fluid density, the equations reduce to the form given by Equation (9) for the 𝑢 

component of the velocity: 

 
𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑣⃗ ∙ ∇ 𝑢) = −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑥 + 𝜇∇2𝑢 

(9) 

where 𝑔 represents the gravity acceleration as a vector and 𝑔𝑥 is the 𝑥 component of this vector. 

The equations for 𝑣 and 𝑤 are analogous.  

The boundary conditions for this problem must also be defined. At the refractory/melt interface 

(𝑥 = 0), the concentration matches the solubility limit 𝑐𝑠. For the velocity the no-slip condition 

applies, by which the tangential velocity at the wall vanishes. The normal velocity can be ob-

tained by a mass balance at this interface, this balance is known as the Eckert-Schneider condi-

tion [37, p. 315] and is presented in Equation (10) where the variables are all evaluated at the 

interface. By considering a binary system, where the dissolving species is characterized by spe-

cies 1 and all other species are termed residual species 2, the condition that the mass flux of 
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species 2 must be null at the wall, i.e., the wall is impermeable to the residual species, leads to 

the normal compensating velocity 𝑣𝑤. In this work we refer to this velocity as the Stefan veloc-

ity as an acknowledgment of the pioneering work of this author [38].  

 
𝑗2 = −𝐷

𝑑𝑐2

𝑑𝑥
|

𝑥=0
+ 𝑣𝑤𝑐2 = 0 

(10) 

Here 𝐷, represents an effective binary diffusivity. Here the case 𝐷1 = 𝐷2 = 𝐷 is considered, 

that means fluid density is independent from concentration. With this further latter assumption, 

the normal velocity or Stefan velocity, reads: 

 
𝑣𝑤 = −

𝐷

1 − 𝑤𝑠

𝑑𝑤1

𝑑𝑥
|

𝑥=0
 

(11) 

Here 𝑤𝑠 represents the solubility limit in mass content and 𝑤1 the mass content of species 1. 

These derivations might also be found in Publication 1, where the Navier-Stokes equation are 

presented for the particular case in cylindrical coordinates. This work deals with steady state 

mass transfer, and therefore time derivatives in the previous equations vanish for sufficiently 

large times. However, in numerical resolution of the equations, as it will be later described, 

time-advancement until reach of steady-state is conducted and therefore the equations are pre-

sented fully. 

Moreover, if we consider the large character of the Peclet number 𝑃𝑒 =
𝐿𝑢

𝐷
 we could argue that 

the diffusive terms in equation (3) might be neglected when compared to the convective terms.  

Additionally, if we consider a steady state process, for the two-dimensional case this equation 

reduces to: 

 ∇ ∙ (𝑐𝑣⃗) = 0. (12) 

If the density is constant, the solution to this equation is satisfied by a constant concentration 

profile 𝑐 = 𝑐0. Such solution cannot accommodate the boundary conditions described above, 

where the concentration varies from the saturation limit to the bulk value. Therefore, there must 

exist a small region of the domain where the diffusive terms are of importance and the second 

derivative of the concentration takes large values, this region is called the species or diffusion 
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boundary layer [39]. In contrary to Nernst theory this is not a static film where the velocity is 

zero, rather the fundamental characteristic is that the convective and diffusive terms are of com-

parable orders.  

For practical applications it might be desired to express the mass flux density (𝑗) through mass 

transfer coefficients (𝑘𝑐) with the following definition: 

 𝑗 = 𝑘𝑐(𝑐𝑠 − 𝑐0) (13) 

where the Δ𝑐 =  (𝑐𝑠 − 𝑐0) clearly illustrates the effect of chemistry in the matching of refrac-

tory/melt and 𝑘𝑐 is, besides diffusivity, mainly affected by the flow conditions. Evidently, the 

wear rate might be reduced by matching the refractory and slag so as to minimize Δ𝑐, that is 

using saturated melts, or the optimal flow conditions might be affected via clever vessel design 

or adapting the processing conditions. 

In a dimensionless form, the diffusive mass flux density 𝑗𝐷 might be represented by the Sher-

wood number with a characteristic length 𝐿: 

 
𝑆ℎ =

𝑗𝐷𝐿

𝐷 Δ𝑐
 (14) 

To the diffusive mass flux, a convective part  𝑗𝑐 resulting from the Stefan velocity must be 

added and the total dissolution flux results: 

 
𝑗 = 𝑗𝐷 + 𝑗𝑐 = −𝐷

𝑑𝑐1

𝑑𝑥
|

𝑥=0
+ 𝑣𝑤𝑐𝑠 = −𝐷𝜌

1

1 − 𝑤𝑠

𝑑𝑤1

𝑑𝑥
|

𝑥=0
 

(15) 

In modelling of dissolution, the problem comprises dissolution characterization via estimation 

of 𝑗𝐷, the mass transfer coefficients 𝑘𝑐, species boundary layer thickness 𝛿𝑐 or Sherwood num-

ber by known diffusivity, and the inverse calculation of effective binary diffusivity from exper-

iments.  

2.2.2.2 Asymptotic boundary layer method 

An important characteristic of the slag/refractory systems considered in this work is that they 

present distinctly large Schmidt numbers (𝑆𝑐 = 𝜈/𝐷) which can range up to 107. This has an 
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important physical meaning; because the Schmidt number gives an indication of the ratio be-

tween momentum to species boundary layer thicknesses. Therefore, for these systems the mo-

mentum boundary layer, that is, the region immediate to the wall where the velocity gradients 

are largest, is much thicker than the species boundary layer thickness.  

For an adequate numerical resolution of the equations, these regions must be discretized appro-

priately. For large Schmidt numbers, the species equation requires a much finer resolution than 

the momentum equations. This can be easily noticed when considering a benchmark problem 

of fluid dynamics that shares commonalities with our CWTD, this is the flow-field induced in 

an originally static fluid by a rotating disc, where analytical solutions are available. This set-up 

can be visualized in Figure 8. While an accurate discretization requires a grid independence 

test, as a rule of thumb, 10 nodes are required to represent a boundary layer profile in the laminar 

regime. 

 

Figure 8. Flow due to a rotating disc in a fluid at rest. Reprinted by permission from Springer 
Nature: Springer Nature, Exact Solutions of the Navier-Stokes Equations by Herman Schlicht-
ing (Deceased) and Klaus Gersten. Copyright 2017 
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The velocity boundary layer thickness according to Schlichting [40, p. 120] is given by 

Equation (16):  

 𝛿 = 5.5√𝜈/𝜔. (16) 

The species boundary layer thicnkess might be obtained from the notorious equation of Levich 

[39]: 

 𝛿𝑐 = 1.61√𝜈/𝜔𝑆𝑐−1/3. (17) 

Therefore the ratio of momentum to species boundary layer thickness only depends on a power 

of the Schmidt number: 

 𝛿

𝛿𝑐
= 3.4𝑆𝑐1/3 

(18) 

In Table 1, the discretization necessary for resolution of species and momentum equations in 

this set-up is given. The values are presented for a Schmidt number of 107, and a kinematic 

viscosity 𝜈 = 2.5 ∙ 10−4𝑚2/𝑠, which represents a typical value for the slags used in the 

experiments presented in this thesis. A scheme of the discretization is shown in Figure 9.  

Table 1. Calculation of discretization requirements for the flow due to a rotating disc 

𝜔 = 200 𝑟𝑝𝑚 𝜔 = 5000 𝑟𝑝𝑚 
 

𝛿

𝛿𝑐
≈ 730 

𝛿

𝛿𝑐
≈ 730 

    
𝛿 ≈ 19 𝑚𝑚 𝑦𝑝 = 0.475 𝑚𝑚 𝛿 ≈ 3.8 𝑚𝑚 𝑦𝑝 = 0.095 𝑚𝑚 

    
𝛿𝑐 ≈ 0.026 𝑚𝑚 𝑦𝑝 = 6.5 ∙ 10−4𝑚𝑚 𝛿𝑐 ≈ 0.0052 𝑚𝑚 𝑦𝑝 = 1.3 ∙ 10−4𝑚𝑚 

 

From these results, we observe that the first node (𝑦𝑝) must be located at a much closer distance 

to the wall for the resolution of the species boundary layer than for the resolution of the velocity 

boundary layer; moreover this distance decreases with increasing rotational speed, while the 

ratio of both thickness remains constant and only depends on the Schmidt number. For this 
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particular example, we observe that the discretization required is quite fine and is determined 

by the species equation. In many cases, such fine discretization might not be possible, 

depending on model complexity and simulation time required. Inflation layers may be used to 

reduced the amount of elements used in discretization. 

 

Figure 9. Scheme of domain discretization 

To avoid dealing with such fine meshes we make use of an asymptotic boundary layer approach 

for large Schmidt numbers. This method “was first elucidated by Lighthill [41] through a von 

Mises transformation of the energy equation” [42], i.e. the method was derived for the case of 

heat transfer and some modifications to the original method will be done at the end of this 

section. The method makes use of the fact that the temperature or species boundary layer is 

much thinner than the momentum boundary layer and approximates the velocity profile within 

the former by a linear expansion.  

 𝑢 = 𝑦𝛽 (19) 

 
𝛽 =

𝜕𝑢

𝜕𝑦
|

𝑦=0

 
(20) 

This becomes asymptotically exact for 𝑆𝑐 → ∞. The normal component of the velocity can be 

obtained from the continuity equation which for an incompressible boundary layer flow is given 

by Equation (21). 
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 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

(21) 

With Equation (20) the normal velocity results: 

 
𝑢 = −

1

2
𝛽′𝑦2 (22) 

Worth noticing is that both 𝑢 and 𝑣 are expanded from the wall coordinates, where the boundary 

conditions for this problem are zero velocities both in normal as well as tangential direction. 

These results are used for solving the convective-diffusive boundary layer equation: 

 
𝑢

𝜕𝑐

𝜕𝑥
+ 𝑣

𝜕𝑐

𝜕𝑦
= 𝐷

𝜕2𝑐

𝜕𝑦2
 

(23) 

here, 𝜕
2𝑐

𝜕𝑥2 has been neglected since the variations in the normal direction are expected to be much 

higher than in tangential direction (
𝜕2𝑐

𝜕𝑦2 ≫
𝜕2𝑐

𝜕𝑥2). The result is a local, steady-state Sherwood 

profile: 

 
𝑆ℎ0(𝑥) =  

𝐿 𝑆𝑐1/3

91/3 𝜈1/3𝛤(4/3)
√ 𝛽(𝑥) [∫  √ 𝛽(𝜁)

𝑥

0

𝑑𝜁]

−1/3

  
(24) 

where 𝐿 is a characteristic length. The most important feature of this equation is that is only a 

function of fluid properties, geometrical parameters, and the flow related variable 𝛽. This means 

that resolution of the flow-field can be conducted independently, and the mass transfer coeffi-

cients can be calculated later in a post-processing step avoiding the use of so refined meshes.  

Simulations of the CWTD are for an axisymmetric geometry with rotation. Adaptation of the 

previous results to this situation is straightforward because the boundary layer equations are the 

same for an axisymmetric body, only the continuity equation is modified [40, p. 322] as shown 

in Equation (25). Moreover, the azimuthal component of the velocity does not aid mass transfer 

in the laminar regime [43, p. 397].  



17 

 

 𝜕(𝑢ℛ)

𝜕𝑥
+

𝜕(𝑣ℛ)

𝜕𝑦
= 0 

(25) 

Where ℛ is the radius of the revolution body, and 𝑢 and 𝑣 are the tangential and normal veloc-

ities in the plane. The coordinate 𝑥 is measured along the surface and 𝑦 is the direction normal 

to the wall. With these revisions, the similarity variable used in solving the problem is changed 

and the end results provided by Newman [43, p. 396] are adapted and expressed by Equation 

(26): 

 
𝑆ℎ0(𝑥) =

𝐿 𝑆𝑐1/3

91/3 𝜈1/3𝛤(4/3)
√ℛ 𝛽(𝑥) [∫  ℛ √ℛ 𝛽(𝜁)

𝑥

0

𝑑𝜁]

−1/3

 
(26) 

As was mentioned before, the boundary conditions used for this problem are zero velocities at 

the wall. For mass transfer in dissolution, we observed in Section 2.2.2 that tangential velocity 

vanishes but the normal velocity is given by Equation (11). This situation is analogous to bound-

ary layer control by blowing and it increases the species boundary layer thickness, therefore it 

decreases the mass transfer rate. “The use of Eq. (26) under the influence of a Stefan flow is 

justified, as has been demonstrated by Schlichting and Gersten [44] that the similarity of solu-

tions of wedge-flow velocity profiles still holds when the Eckert-Schneider condition (Eq. (10)) 

is fulfilled, and the constant concentration of the dissolving species is fixed at the wall.”[42]. 

Even when the method is applicable, some modification is necessary to account for the effect 

of the Stefan velocity on the boundary layer. Merk is one author that has dealt with this subject 

and his work provides equations to rectify the error in neglecting the Stefan velocity in the 

boundary conditions [45]. With this correction, the heat and mass transfer analogy may still be 

used, when energy dissipation effects are insignificant. In the work of Merk [45], an equation 

for large Schmidt numbers is presented: 

 
𝜒𝐷 =

𝑆ℎ

𝑆ℎ0
=

1

1 + 0.566𝐵
 

(27) 

Where 𝐵 is a dimensionless saturation limit defined by: 
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 𝐵 =
𝑤𝑠 − 𝑤1

1 − 𝑤𝑠
 (28) 

“Moreover, according to Acrivos [46], a relation similar to Eq. (26) can be derived (29), which 

also considers the effect of the Stefan velocity only by replacing 1/(4/3) by a quantity 𝑏, which 

is implicitly defined by the following equation:” [42] 

 1

𝑏
= ∫ 𝑒𝐵𝑏𝑥−𝑥3

𝑑𝑥
∞

0

 
(29) 

“This modification to Equation (26) can also be expressed by multiplication with 𝜒𝐷 defined 

by:” [42] 

 
𝜒𝐷 =

Γ(4/3)

∫ 𝑒𝐵𝑏𝑥−𝑥3
𝑑𝑥

∞

0

 (30) 

An end-formula for calculation of dissolution mass flux based on Equation (15) and the correc-

tions presented above: 

 𝑗 = 𝐷𝜌𝐵𝜒𝐷𝑆ℎ0𝐷∆𝑐/𝐿 (31) 

whereas the mass transfer coefficients are given by: 

 
𝑘𝑐 =

𝜒𝐷

1 − 𝑤𝑠

𝑆ℎ0𝐷

𝐿
  

(32) 

2.2.2.3 Flow-field 

Before proceeding to the numerical solution of the governing equations, appropriate models 

need to be chosen based on hypothesis about the unknown flow-field. The aim of the simula-

tions is to depict the flow-filed generated by the rotation of the refractory sample inside the melt 

for the finger-test experiments, as described in Section 2.2.1. This set-up presents geometrical 

symmetry around the axis of rotation, if the flow-field also exhibits this symmetry, the equa-

tions can be simplified and 2D simulations can be performed. Moreover, considerations about 

the flow-regime are necessary, generally speaking we need to decide between transient and 
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steady-state simulations and laminar or turbulent regimens. These considerations are essential 

to capture the actual behavior of the flow-field; however, this also necessitates verification and 

validation.  

For characterization of the flow-regimen, we can distinguish between two specific sections of 

the flow-domain: these are the annular region in between the refractory sample and crucible, 

and the clearance region from the sample tip to the crucible bottom. These two regions are 

represented in the figure below: 

 

Figure 10. Flow domain regions 

This distinction is done because for each of these regions there are similar set-ups from which 

information about the flow field can be obtained. Starting by the annular region, this is a bench-

mark problem in fluid dynamics: the flow field between two rotating concentric cylinders. If 

we consider infinite length cylinders and axisymmetric flow, both the cases of inviscid flow 

and the case of viscous flow simplify, and the Circular Couette (CC) flow has an analytical 

steady state solution for which the azimuthal velocity 𝑣𝜃 is only a function of the radial coor-

dinate 𝑟: 

 
𝑣𝜃(𝑟) = Ω1

𝜇 − 𝜂2

1 − 𝜂2
𝑟 + Ω1𝑅1

2 (
1 − 𝜇

1 − 𝜂2
)

1

𝑟
, 

(33) 

where 𝜇 = Ω2/Ω1 is the ratio of the rotational speeds of the outer cylinder of radius 𝑅2 to the 

inner cylinder of radius 𝑅1, and 𝜂 = 𝑅1/𝑅2. However, this flow field is not maintained for all 

Reynolds numbers and the system is susceptible to the development of centrifugal instabilities. 
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A first criterion for the stability of the CC regimen was given by Rayleigh [47] for the case of 

inviscid flow in terms of the angular velocity Ω = 𝑣𝜃/𝑟:  

 𝑑(𝑟2Ω)2

𝑑𝑟
> 0, 

(34) 

where |𝑟2Ω| is the angular momentum per unit mass. This states that a velocity distribution 

given by equation (33) may be maintained as long as angular momentum increases monoton-

ically outwards [48, p. 273]. When replacing Ω by the analytical solution presented before, this 

criterion reduces to: 

 𝜇 > 𝜂2, (35) 

A good illustrative explanation on the physical meaning of this criterion is given by Chandra-

sekhar in his book [48]. Euler’s equations for inviscid flow for the angular component of the 

velocity reads: 

 𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑧
+

𝑣𝑟𝑣𝜃

𝑟
= 0, 

(36) 

which for the case in matter is equivalent to: 

 𝑑(𝑟𝑣𝜃)

𝑑𝑡
=

𝑑(𝑟2Ω)

𝑑𝑡
= 0, 

(37) 

from where we see that the angular momentum 𝐿 = 𝑟2Ω remains constant.  If we consider two 

fluid rings of equal mass with radius 𝑟1 < 𝑟2, the mass of each given by:  2𝜋𝑟1𝑑𝑟1 = 2𝜋𝑟2𝑑𝑟2 =

𝑑𝑆. A force 𝑣𝜃
2/𝑟 = 𝐿2/𝑟3 is acting in radial direction on each of these rings. If we exchange 

the fluid rings, considering that the angular momentum remains constant with the motion, we 

can compute the change in kinetic energy[48]: 

 
[(

𝐿2
2

𝑟1
2 +

𝐿2
2

𝑟1
2) − (

𝐿1
2

𝑟1
2 +

𝐿1
2

𝑟1
2)] 𝑑𝑆 = (𝐿2

2 − 𝐿1
2) (

1

𝑟1
2 −

1

𝑟2
2) 𝑑𝑆, 

(38) 
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Here we see that this change is only positive for 𝐿2
2 > 𝐿1

2 . Therefore, if the angular momentum 

increases monotonically with 𝑟, a source of energy is necessary for the interchange of fluids 

rings and the system is stable as expressed by Rayleigh’s criterion. A similar analysis may be 

done to understand the physical origin of these instabilities as proposed by Di Prima and Swin-

ney [49, p. 143]. One characteristic of this flow-field is that the centrifugal force is balanced by 

the radial pressure gradient. If we exchange the outer fluid ring of velocity 𝑉2 with the inner 

one of velocity 𝑉1,  the velocity of the outer ring after the exchange is 𝑣𝜃 = 𝑟1𝑉1/𝑟2, while the 

prevailing pressure gradient is 𝜌𝑉2
2/𝑟2. Therefore, if the centrifugal force 𝜌𝑉1

2𝑟1
2/𝑟2

3 is larger 

than the pressure gradient, the ring will continue to migrate outwards, and the instability will 

settle [49, p. 143]. This happens when: 𝑉1
2𝑟1

2 > 𝑉2
2𝑟2

2  which is equivalent to Rayleigh’s crite-

rion. 

The case of viscous flow is more complex however, it is reasonable to expect that the viscous 

stresses should delay the onset of instability. Taylor was one of the first authors to investigate 

this problem in 1923 both experimentally as well as theoretically by applying linear stability 

theory [50]. With his analysis he found the locus of transition from the CC flow to a regimen 

thus known as Taylor-Couette (TC) or Taylor-Vortex flow, which he experimentally verified 

for the case of small gap width and very long cylinders. In his work, Taylor found that the first 

transition succeeds to the TC flow, where laminar, time independent, axisymmetric centrifugal 

structures appear and form counter-rotating toroidal vortices [51]. This transition and the tran-

sition to other subsequent regimes is commonly defined in terms of the Taylor number. For the 

case of stationary outer cylinder, this number is given by equation (39) and represents a ratio 

of the magnitude of centrifugal to viscous forces. 

 
𝑇𝑎 =

2Ω1
2𝑑4𝜂2

(1 − 𝜂2)𝜈2
. 

(39) 

Since the work published by Taylor, many authors have conducted similar analysis and this 

problem has become a benchmark problem of fluid dynamics [48], [49], [51]–[80]. For exam-

ple, authors have also investigated the effect of thermally induced density gradients on the sta-

bility of the CC and TC flow [53]–[56], [58], [62], [65], [81], were they have considered the 

effect of both Archimedean and centrifugal buoyancy. The effect of axial flow in the stability 

and on the heat/mass transfer rates has also been investigated by some authors [82]–[86]. Be-

sides the TC flow, several other flow regimes have been studied both theoretically as well as 
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experimentally. Some of this include the Wavy Vortex flow, Modulated flow, and turbulent 

flow regimens. Figure 11 was obtained from the publication of Andereck et al. [67] and shows 

some of the multiple regimes found in this configuration and the boundaries among these. The 

abscissa in this figure is given by the outer Reynolds number and the ordinate is given by the 

inner Reynolds number for independently rotating cylinders.  

 

Figure 11. Regimes observed in flow between two rotating concentric cylinders. Reprinted by 
permission from [49, p. 140] 

Figure 12, extracted from [49, p. 140] shows photographs of different flow regimens encoun-

tered in the annular region between rotating cylinders. In Figure a, the TC flow can be observed, 

with the developed laminar rings, while Figure d shows already a turbulent flow, where the 

randomness of the oscillations in the flow is noticeable. 
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Figure 12. Photographs of different flow regimens encountered between rotating cylinders. Re-
printed by permission from Springer Nature: Springer Nature, Instabilities and transition in flow 
between concentric rotating cylinders by R. C. Di Prima and Harry L. Swinney.     Copyright 
1981 

Most of these investigations focus on the case of small gap width, that is 𝑑 = 𝑅2 − 𝑅1  is small 

compared to either 𝑅1 or 𝑅2, however the geometry of the CWTD doesn’t fall under this cate-

gory. For characterization of the critical rotational speeds, DiPrima et al. [66] presented the 

critical Taylor number for different radii ratio 𝜂. From this work, a correlation of the presented 

data was obtained and reported in our Publication 1: 𝑇𝑎𝑐 = 1600/𝜂1.005. Also, Dominguez 

[87] presents similar data, the largest differences between these are for the smallest values of 

𝜂, however for the values of 𝜂 used in this work there is little difference between these values. 

With this information it is possible to calculate the theoretical minimal rotational speed for the 

transition from a CC to a TC flow-field. This is exemplified in Table 2 for a chosen dissolution 

experiment shown in Publication I.  

Table 2. Characteristic experimental values for flow-regimen characterization 

Den-
sity 

kg/m3 

Viscos-
ity 

Pa s 

Sample 
Radius 

mm 

Crucible 
Radius 

mm 

Rotational 
Speed 
rpm 

Taylor 
Number 

Critical Tay-
lor number 

Axial wave 
length 

mm 

2589 0.6423 10 32.5 200 382 5230 44.7 
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From these values, we observe that our system is within the CC regime and the critical rotational 

speed for the transition for a TC flow is not achieved. The axial wavelength was also obtained 

from the data presented by DiPrima [66]. This value corresponds to the length of two consecu-

tive counterrotating vortexes upon development of the TC flow, therefore each vortex would 

have a length of 22.35mm and given that the gap width is 22.5mm the vortices would appear 

square, as it is typically the case in the TC flow. Hence, we conclude that a hypothesis of lam-

inar, steady-state, and axisymmetric is appropriate for the model when considering the annular 

region. 

It is important to notice that the previous results are based on the case of infinite length cylin-

ders, where the end effects may be neglected. However, for our CWTD experiments the annular 

region is relatively short, for e.g., for the experiment presented in Table 2, the submerged length 

of the cylinder is 55mm, which is comparable to the axial wavelength. Many authors have stud-

ied the influence of end-effects on flow field between the rotating cylinders [64], [68], [70]–

[72], [74], [75], [77], [79], [80], [88], [89]. Even for long cylinders end-effects have been re-

ported to have a major influence in the developed flow-field [78]. The analysis of the influence 

of end-effects on the flow-field is based on consideration of three representative boundary con-

ditions: the case of fixed plates, rotating plates, and no shear boundary conditions. Three char-

acteristic problems are used to describe the effect of these boundary conditions. The static plate 

analysis corresponds to the similar configuration of the flow of a revolving fluid over a fixed 

plate and was studied by Bödewadt [89]. The flow from a rotating plate is analogous to the 

rotating disc first investigated by von Karman [90] and the no shear boundary condition is sim-

ilar to the investigations done by Ekman on the effect of Coriolis force on ocean currents [91]. 

These types of flow fields belong to the family of flow fields know as the BEK family 

(Bödewadt, Ekman, von Karman) in fluid dynamics. The geostrophic characteristic of the flow-

field is not maintained in the boundaries where the boundary conditions are imposed; therefore, 

a radial component of the velocity emerges and the resulting vortical structures present some 

similarities to the TC structures, however they are fundamentally different in nature. In the 

literature, the vortical structures appearing due to the end effects are generally referred to as 

Ekman vortices. In the CWTD the no-shear boundary condition represents a good approxima-

tion for the melt/atmosphere interface, whereas the surface where the clearance region meets 

the annular region is not well defined. 
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The clearance regions is similar to the flow-field induced by a rotating disc on a static fluid, 

which was briefly discussed in Section 2.2.2.2. This problem has been investigated by many 

authors [37], [43], [90], [92], [93], where the main difference to our set-up is that in these in-

vestigations the disc is considered to be of infinite radius. The rotating disc acts a centrifugal 

pump by expelling fluid outwards in radial direction, continuity demands an axial flow develops 

which replaces the displaced fluid. Here the flow-field is laminar up to a Reynolds number of  

2 ∙ 105 [43, p. 355] which is much higher than the values considered in the investigations con-

ducted for this thesis. Therefore, for this region, the laminar and axisymmetric hypothesis also 

holds. 

To assess the possible influence of natural convection induced by density gradients in the mass 

transfer rates, as an approximation, we compare the correlation obtained in Publication IV for 

our set-up considering only forced convection with an equation for natural convection for con-

centric vertical cylinders [94]. For this comparison, the fluid properties and geometrical param-

eters are taken from Publication I. The results are presented in Figure 13, where we observe 

that for Reynolds larger than about 1.5, the forced convection is dominant. The Reynolds num-

ber corresponding to the experiment investigated in this publication is 8.4, where the Sherwood 

number by forced convection is almost three times larger than natural convection. Further, we 

consider an equation of the form 𝑆ℎ𝑛 = 𝑆ℎ𝐹
𝑛 + 𝑆ℎ𝑁

𝑛   as suggested in [95, p. 594], where 𝑆ℎ𝐹 

represents the Sherwood number considering only forced convection and 𝑆ℎ𝑁 considering only 

natural convection. For an exponent 𝑛 between 3 and 4, the error incurred by neglecting the 

free convection is between 0.3% and 1.2%. Therefore, only the forced convection by the rota-

tion of the sample is considered in the simulations.  
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Figure 13. Sherwood number values for forced and free convection 

2.2.2.4 CFD model  

The CFD model implemented in Ansys Fluent v19.0 is a 2D axisymmetric model of both the 

melt and atmosphere phases. Details on the numerical schemes, mesh and models can be found 

in Publication 1 for the case of the idealized cylindrical surfaces and in Publication II for the 

simulations with corroded surfaces, where the geometries are obtained from laser measurement 

as described in Section 2.2.1. While the flow-field is considered steady-state, the solution is 

advanced from a static flow field until the velocity gradients at the wall reach their end value 

and remain constant. The simulations are conducted with the aim of resolving the flow-field 

and the mass transfer rates are calculated in the post-processing step with the asymptotic bound-

ary layer method described in Section 2.2.2.2. 

2.2.2.5 Diffusivity determination 

The dissolution model may be employed for diffusivity determination from CWTD experi-

ments. The application of the dissolution model with the asymptotic boundary layer method 

provides a Sherwood profile as a function of the unknown diffusivity. Two possible methods 

are used for obtaining this value. The first one consists of using the experimentally determined 

mass flux density which is calculated from the laser measurements of the corroded surface as 

described in Publication III. For this, the geometry is split in two parts: the mantle surface and 

the bottom disc shaped surface. Then, an area weighted average Sherwood number is computed: 
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 𝑆ℎ̅̅ ̅ =
1

𝐴1+𝐴2
(𝐴1𝑆ℎ̅̅ ̅

1 + 𝐴2𝑆ℎ̅̅ ̅
2) (40) 

Details on calculation of 𝑆ℎ1 and 𝑆ℎ2 are found in Publication I and II. These values are func-

tions of the Schmidt number, and the effective binary diffusivity is obtained by matching the 

simulated results to the experimental mass flux density calculate. Secondly, given that the laser 

measuring device provides the corrosion profiles, the effective binary diffusivity can also be 

obtained from curve fitting of a simulated corrosion curve to the experimentally obtained cor-

rosion profile. Details on the method for calculation of the simulated corrosion curve are found 

in Publication II.   

2.2.3 Erosion model 

2.2.3.1 Fundamentals  

In the erosion of refractory materials, the flow is responsible for the shear stresses that act on 

the material surface. These forces cause the grains of the material to detach from the matrix and 

the eroded particles are washed away by the liquid. The grain/matrix bond must first be weak-

ened e.g. by dissolution in order for these forces to be sufficient for erosion. For this reason, 

measurements of the mechanical properties of the virgin material are not expected to directly 

represent the resistance against erosion and further, the erosion parameters cannot be considered 

pure material parameters but rather depend on the material/melt interaction which may also 

depend on the process conditions. Though the infiltrated slag might appear saturated; the bond 

created by the fines might still dissolve due to the large curvature of the particles considering 

the Gibbs-Thomson equation (here for spherical particles):  

 𝑐𝑟 − 𝑐𝑓

𝑐𝑓
=

2𝛾𝑠𝑙𝑉𝑀

𝑅 𝑇 𝑟
 (41) 

where, 𝑐𝑟 is the solubility of a particle of radius 𝑟, 𝑐𝑓 the solubility for a flat surface, 2𝛾𝑠𝑙 the 

surface energy of the solid liquid interface, 𝑉𝑀 the molar volume of the dissolving species, 𝑅 is 

the universal gas constant, and 𝑇 the temperature.  

In this work, erosion modelling of refractory materials is based on the Partheniade’s equation 

[26] obtained from the field of soil erosion and presented in Equation (42). “The erosion law is 

a function of the wall shear stress (𝜏), and the erosion parameters include the critical shear stress 
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(𝜏𝑐), which characterises the flow condition upon which the shear stress is sufficient to begin 

grain detachment, the rate of detachment 𝑘𝑑 [96], and the exponent 𝑎.  

 𝜀̇ = 𝑘𝑑(𝜏 − 𝜏𝑐)𝑎 (42) 

𝜀̇ has dimensions of length/time and is considered as a velocity. This is in contrast to most 

continuous-wear investigations, where the output of the studies is the mass flux density. The 

units of 𝜏 and 𝜏𝑐 are Pa, and the units of 𝑘𝑑 depend on the dimensionless power 𝑎 as follows: 

[𝑘𝑑] = 𝑚𝑠−1𝑃𝑎−𝑎. Very often, the parameter 𝑎 is set to unity.” [97]The employment of an 

erosion law coming from the field of soil erosion is rooted on the similarities between soils and 

refractory materials, both representable by a grain/matrix structure.   

2.2.3.2 CFD model 

In contrast to the model developed for dissolution, the CFD model is a transient model, where 

the fluid domain increases with time. The refractory represents a wall of the domain, and this 

evolves in time owing to the erosion. The simulations involve only the melt phase and are con-

sidered laminar and axisymmetric. Details on the numerical schemes and other model charac-

teristics can be found in Publication V.  

An important aspect of the model is the implementation of dynamic meshing methods, not only 

for accounting of the erosion on the refractory wall but also to maintain a sufficient mesh quality 

that allows the time advancement and procures accurate results. The dynamic meshing methods  

employed are discussed in detail in Publication V. Additionally, a remeshing method is imple-

mented that, when the mesh quality is insufficient, permits coarsening or refining of the mesh 

elements.  

The erosion is implemented in a User Defined Function written in the C Programming language. 

A characteristic challenge is the fact that the displacement is implemented at node positions, 

where flow variables are not available. To overcome this, distance weighted average of the wall 

shear stress is used. Moreover, the direction of the erosion vector is given by an area weighted 

average of the cell face normal vectors. This is shown schematically in the figure below: 
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Figure 14. Erosion vector implementation at refractory wall boundary. Adapted from [97]      
(CC BY 4.0) 

2.2.3.3 Inverse Problem 

The output of the CFD simulation is the erosion profile. This information is compared with an 

experimentally obtained erosion profile with the aim of calculation of the erosion parameters 

in Equation (41). This is achieved by inverse calculation. A least-squares problem is formulated, 

where the residuals are composed of the difference between the simulated erosion profile and 

the experimentally measured erosion profile at different axial positions. An optimization soft-

ware is used for finding the solution that minimizes the sum of the square of residuals. Figure 

15 presents a schematic description of this procedure, with the chosen optimization software 

Dakota [98].  

https://creativecommons.org/licenses/by/4.0/
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Figure 15. Schematic representation of inverse problem for erosion parameters. Reprinted from 
[97] (CC BY 4.0) 

Publication V presents details on the implementation as well as solvers used. The procedure 

presented in Figure 15 is fully automated through shell scripting and Fluent journaling. The 

minimization solver employed was the NL2SOL solver of Dennis et al. [99]. This gradient-

based solver is an adaptation of the Gauss-Newton method and offers quadratic convergence. 

For all cases, multiple random initial points were employed in the search to exclude conver-

gence to local subminima.  

2.2.3.4 Test Problem 

Firstly, the inverse problem was studied through a test-problem. For this, the experimental ero-

sion profiles were artificially generated with the same model used in the forward problem and 

random noise was added to the simulated profiles. 

The test-problem gives the opportunity to explore the behavior of the implemented method with 

different solvers and moreover, it offers the possibility of calculation of the parameters under 

different experimental configurations. Because the standard deviation of the data corresponds 

to the chosen noise level, a statistical method for assessment of goodness of fit can be employed 

as discussed in Publication V.   

With the test-problem the exact problem was first investigated, that is, the experimental erosion 

profiles were directly obtained from simulations with no additional noise. Later, artificial noise 

from a normal distribution with zero mean was used for producing the artificial erosion profiles. 

https://creativecommons.org/licenses/by/4.0/
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The inverse calculation of the erosion parameter was attempted both based on the three-param-

eter erosion law as shown in equation (42) and the case of the exponent  𝑎 fixed to unity was 

investigated. Additionally, the inverse calculation with multiple experiments was also investi-

gated.   
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3 Summary of results  
3.1 Dissolution 

The dissolution model was developed for the finger-test experiments conducted with the 

CWTD. In Publication 1, the methodology for calculation of Sherwood numbers described in 

Sections 2.2.2.2 was introduced and applied for a cylindrical sample rotating in a slag bath. The 

aim was to establish an appropriate model for dissolution of refractory materials, as described 

in Section 2.2.2.1.  

The flow-field simulations obtained with the Fluent model aimed calculation of parameter 𝛽 of 

Equation (26). Thus, the grid independence test was conducted based on these values, and the 

results are shown in detail in Publication I. The independence of the solutions from the chosen 

time-step was also verified. Validation of the flow-field was based on the discussion presented 

in Section 2.2.2.3, here the transition from a CC flow to a TC flow was discussed for the case 

of infinite length cylinders. Simulations at different Reynolds number were conducted and the 

results are presented in Figure 16, where flow path-lines colored by the velocity magnitude are 

displayed. For the configuration in study, the transition to a TV flow is at a Reynolds number 

of 31.8, when the theoretical case of infinite length cylinders is considered.  
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Figure 16. Flow-field for different Reynolds number. Reprinted from [42] (CC BY 4.0) 

In Figure 16 it can be observed that below the calculated critical Reynolds number only two 

vortical structures are observable and the flow-field follows a CC behavior in the annular re-

gion, decreasing from the prescribed rotational speed at the inner cylinder to the zero at the 

crucible or outer cylinder. Above this critical Reynolds number, Taylor vortices appear, and the 

velocity distribution is no longer given by the CC flow. For all cases, it is noticed that the 

clearance region serves as a region for development of axial flow, induced by the rotation of 

the tip of the sample as was also discussed in Section 2.2.2.3.  

For verification of the asymptotic boundary layer approach, we consider the cylinder mantle 

and disc shaped tip separately. Starting by the disc, Figure 17 presents a comparison of the area 

averaged Sherwood numbers obtained by Simulation with the notorious equations of Levich.  

https://creativecommons.org/licenses/by/4.0/
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Figure 17. Average Sherwood number for rotating disc. Reprinted from [42]. (CC BY 4.0) 

These results provide verification of the asymptotic boundary layer method and flow-field sim-

ulations because a good agreement between simulation results and Levich´s equation is ob-

served, especially for the larger rotational speed. At 200 rpm a deviation is observed which is 

explained by the fact that the velocity boundary layer thickness is comparable to the disc radius, 

where the equation of Levich is expected to be inaccurate. It is important to notice that these 

values do not incorporate the effect of the Stefan flow because here only the 𝑆ℎ0 are shown, 

however the corresponding corrections are shown in Publication I, where also the mass transfer 

coefficients are presented.  

While the tip of the sample resembles the rotating disc problem, the mantle area can be com-

pared to the case of mass or heat transfer in the rotating cylinder set-up for which some equa-

tions are available in literature. These equations are found in Publication 1, and Figure 18 pre-

sents the comparison between the values obtained by simulation and these equations. Here the 

equation presented by Tachibana [100]was modified by exchanging the factor 𝑆𝑐1/4  by 𝑆𝑐1/3, 

which is better suited for larger Schmidt numbers. 

https://creativecommons.org/licenses/by/4.0/
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Figure 18. Average Sherwood number for cylinder mantle compared to documented equations. 
Reprinted from [42] (CC BY 4.0) 

It is important to notice that none of the equations shown in Figure 18 considers a clearance 

region and all are based on cylinders of larger length. We observe that for Reynolds numbers 

below the critical value of 31.8 the simulation data share a slope with the equation of Kosaka 

and the equation of Eisenberg, being closest to the former and with an error that decreases with 

Reynolds number. Above the critical Reynolds number, the slope changes as the flow-field is 

fundamentally different and the mass transfer rate is significantly increased. The slope of the 

data is similar to that of the equation of Tachibana which was developed for this flow-regimen. 

The equation of Srinivasan also shows similar slope in this region.  

After the method was verified with Publication I, the second step was application to real disso-

lution experiments in Publication II. Owing to the high accuracy dimensional information avail-

able from laser measurements of the corroded sample after each corrosion step, it is possible to 

create the geometries for simulation from this data. 

Accounting for the actual corroded shape of the sample is expected to increase the accuracy 

between simulation and experiment due to a more accurate representation of the species bound-

ary layer thickness. The results of this simulations can be employed for calculation of effective 

https://creativecommons.org/licenses/by/4.0/
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binary diffusivities as discussed in Section 2.2.2.5 and more in detail in Publication II, where 

experiments of alumina dissolution in CAS slag are conducted. Figure 19 shows the results of 

curve fitting of the simulated erosion profile to the experiment. 

 
Figure 19. Simulated and experimental corrosion profiles. Reprinted from [101](CC BY 4.0) 

A very good qualitative agreement can be observed in this figure for the profiles after three 

hours of dissolution. The value of diffusivity that was obtained was also compared to values 

found in the work of Cooper and Kingery [17]. Their diffusivity value was modified to account 

for the neglected effect of the Stefan velocity and the difference was 29%. Considering that the 

value of [17] is based on molecular diffusion experiments where the boundary layer is likely 

not to be well accounted for and given that since their publication in 1964 more accurate values 

for fluid properties have become available the error is surprisingly small. Furthermore, diffu-

sivity values obtained by Confocal Laser Scanning Microscopy (CLSM) investigations reported 

by Burhanuddin in his doctoral dissertation [102] are in good agreement with the values ob-

tained by simulation with a differenceof 3%. Furthermore, the value calculate from the average 

mass flux density differs from the curve fitting value only by 15%.  

Publication III studies the case of alumina dissolution in a slag in the CaO-Al2O3-SiO2-MgO 

(CASM) system and here the same procedure of Publication II was also applied to these exper-

iments to obtain the values of effective binary diffusivities at three different temperatures. 

https://creativecommons.org/licenses/by/4.0/
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Moreover, the results were also compared to those obtained by application of published Sher-

wood correlations and the plausibility of the results was verified by Arrhenius plot.  

The methodology was applied for different experiments, including those presented in publica-

tion II and III, and additional simulations by varying the fluid properties, i.e. density and vis-

cosity were conducted. With these results a new correlation for the average Sherwood number 

was formulated that includes the geometrical parameters that characterize a CWTD or finger 

test experiment. The influencing parameters are shown graphically in Figure 20 and the fitting 

of the correlation to the experimental data can be seen in Figure 21, where the data is scaled to 

show as a dependency of the Reynolds number only. Here 𝑅̅ represents the average radius of 

the immersed sample, and the value of 𝑑 is computer with this quantity.  

 
Figure 20. Influencing parameters employed for Sherwood number correlation. Reprinted from 
[103](CC BY 4.0) 

 𝑆ℎ𝑑 = 0.10 𝑅𝑒0.65𝑆𝑐1/3(𝑑/𝑅̅)1.49(𝐵𝐶/𝐿)0.32 (43) 

This equation is the first one derived for to the cylinder mantle in finger-test experiments and 

accounts for the bottom clearance as well as the gap width and length of the sample.  

https://creativecommons.org/licenses/by/4.0/
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Figure 21. Fitting of correlation to values obtained by simulation. Reprinted from [103](CC BY 
4.0) 

3.2 Erosion 

The results of the erosion investigations are detailed in Publication V. Firstly, the developed 

model was investigated with a test-problem. Here the erosion profile was obtained by simula-

tion and random noise was added to mimic a real experiment as it is shown in Figure 22. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 22. Simulated erosion profile and artificial experimental data. Reprinted from [97]   

The results of the test-problem showed that the inverse evaluation was only possible with the 

exponent 𝑎 of Equation (42) fixed to unity. When identification with three parameters is at-

tempted, the solutions found are not unique and do not correspond to the design values. More-

over, during inverse calculation local subminima were encountered which highlights the neces-

sity of using multiple random starting points. The NL2SOL solver was proven to be effective. 

To overcome the ill-conditioning of the three-parameter problem, the solution with multiple 

experiments was attempted, however this did not change the conclusions. 

In Publication V, tables with the solutions for each investigated configuration are presented 

where also the determinant of the approximated Hessian matrix of the problem is given. It was 

observed that in case of inverse calculation with three erosion parameters these determinants 

were close to zero, which is indicative of ill-conditioning [104, p. 230].  

With the conclusions obtained by the investigations of the test-problem, inverse calculation of 

a real erosion experiment was attempted. Here the experiments were also performed with the 

CWTD and the erosion of an alumina coarse grain refractory in a CASM slag was investigated. 

The results are shown in Figure 23, where the experimental erosion profile is shown together 

with the simulated profile with the parameters obtained by the inverse calculation.  
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Figure 23. Solution of inverse calculation of erosion parameter of alumina coarse grain refrac-
tory. Reprinted from [97] 
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4 Conclusions 

• A model for dissolution of refractory materials in liquid melts was established. The model 

is based on CFD simulations and an asymptotic boundary layer approach. The generally 

neglected influence of the Stefan velocity on the species boundary layer thickness and the 

convective part of the dissolution mass flux were considered. 

• The asymptotic boundary layer approach for species transport reduced the computational 

needs necessary for performing simulations at large Schmidt number and the results ob-

tained with this method were verified against documented equations.  

• The dissolution profiles obtained by simulation of the CWTD agree well with those ob-

tained experimentally from laser measurement of the corroded surfaces.  

• Effective binary diffusivities were calculated with the developed method and finger test 

experiments and the obtained values agree with values reported in literature and others ob-

tained independently by CLSM investigations.  

• A CFD model for the erosion was established for the finger test experiment based on an 

erosion law obtained from the field of soil erosion. The model makes use of dynamic mesh-

ing methods to account for the geometrical change of the domain boundaries.  

• A test-problem revealed the feasibility of the inverse calculation of two erosion parameters, 

for which the exponent of the erosion law was fixed to unity. 

• The inverse problem was successfully applied to a real experiment with an alumina coarse 

grained ceramic in a CASM slag at high temperature. 
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a b s t r a c t 

This paper presents a numerical method to determine the mass transfer coefficients in the dissolution of 

dense ceramics in liquid slags. Simulations are based on a typical rotating finger test as the experimental 

set-up, where a cylindrical sample is immersed in a slag bath and rotated with a constant angular speed. 

CFD simulations of the flow field are conducted using the volume of fluid method to incorporate both 

the slag and air phases. Owing to the very large Schmidt number of the arrangement and to avoid using 

extremely fine meshes, an asymptotic boundary layer approach is employed. This approach allows for 

the calculation of local, steady-state mass transfer coefficients along the sample in a postprocessing step 

without resorting to solving the species transport equation within the CFD calculations. The method is 

verified by comparing the results to those obtained via well-established equations. Resultant mass trans- 

fer coefficients are discussed with respect to values obtained from mass transfer equations in literature. 

The presented approach serves as an effective calculation method for the mass transfer coefficient and 

offers the opportunity to obtain the inverse calculation of diffusivities in systems where the Schmidt 

number reaches large values. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

This work presents a method to determine mass transfer coef- 

ficients for the dissolution of dense ceramics in slag systems dur- 

ing the rotating finger test. The dissolution of dense ceramics has 

been studied experimentally by many authors, who aimed to cal- 

culate the binary diffusivities of the ceramic materials in differ- 

ent slag systems [1–3] . To ensure the correct calculation of diffu- 

sivities, accurate computation of the mass transfer coefficients is 

necessary. To this end, authors employ different equations derived 

from theory and experimental observations of arrangements that 

are similar to their experimental set-ups. Among such approaches, 

it is common to turn to equations describing heat transfer based 

on a heat/mass transfer analogy. However, such an analogy is not 

always valid owing to two features that can hinder its applicabil- 

ity. Firstly, the dissolution of the material causes the interface be- 

tween the liquid and solid to move, a phenomenon that does not 

occur during pure heat transfer. Secondly, the movement of this 

interface can have an effect on the thickness of the hydrodynamic 

boundary layer which directly affects the mass transfer coefficients. 

Regardless of whether the investigations are based on heat or mass 

∗ Corresponding author. 

E-mail address: jeronimo.guarco@unileoben.ac.at (J. Guarco). 

transfer, the derived equations are a function of the Prandtl or 

Schmidt number with a power-law dependency. The magnitude of 

the numbers for which this dependency is obtained is frequently 

much lower than the high Schmidt numbers observed in the dis- 

solution of ceramics in slags. 

There are currently no equations that are directly applicable 

to the typical rotating finger test investigated in this work. Ex- 

perimental investigations of such a test have been conducted by 

Kosaka and Minowa; [4] however, the Schmidt numbers they ob- 

served are much lower than those considered here. Moreover, an 

approximation of the rotating finger test by an annular region 

of infinite length could be conceived considering the large num- 

ber of investigations into this configuration owing to the appear- 

ance of the centrifugal instabilities. For example, Tachibana et al. 

[5] present an equation to determine heat transfer coefficients for a 

flow regimen known as the Taylor-Couette regime. Eisenberg et al. 

[6] studied a similar set-up with an annular region. However, the 

finger test is characterized by a clearance to the bottom of the cru- 

cible which means that these equations are not directly applicable 

to our study. 

In this work, we develop a methodology that considers all the 

aforementioned effects and that is also applicable to the high 

Schmidt numbers frequently found in typical ceramic/slag systems. 

Moreover, we utilize the characteristic high Schmidt numbers to 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122494 
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List of symbols 

j D .. diffusive flux (kg ·m 

2 ·s −1 ) 

j t .. gross mass flux (kg ·m 

2 ·s −1 ) 

μ. dynamic viscosity 

ρ .. density 

σ .. surface tension 

λ.. thermal conductivity 

ν .. μ
ρ kinematic viscosity 

c p .. heat capacity 

D.. effective binary diffusivity (m 

2 ·s −1 ) 

c concentration (kg ·m 

−3 ) 

w .. mass fraction 

x.. direction along surface 

y.. direction normal to surface 

u.. velocity tangential to surface 

v.. velocity normal to surface 

r.. radial direction 

z.. axial direction 

v r .. radial velocity 

v z .. axial velocity 

v θ .. swirl velocity 

�.. rotational speed (rad s −1 ) 

�
 v .. velocity vector 

v w 

.. Stefan velocity 

β .. ∂u 
∂y 

δ.. velocity boundary layer thickness 

δc .. species boundary layer thickness 

τ.. wall shear stress (Pa) 

R 1 .. radius of the sample 

R 2 .. radius of the crucible 

d. R 2 − R 1 gap width 

η. R 1 / R 2 radii ratio 

R .. radius of surface of revolution 

L . . characteristic length 


c c s − c ∞ 

B ( w s − w ∞ 

) / ( 1 − w s ) 

k c .. mass transfer coefficient 

h.. heat transfer coefficient 

Re.. 
�R 1 L 

ν Reynolds number 

T a.. 
2 �2 d 4 η2 

( 1 −η2 ) ν2 Taylor number 

Sc.. ν
D Schmidt number 

W e.. 
ρd ( �R 1 ) 

2 

σ Weber number 

Ca.. 
μ�R 1 

σ Capillary number 

Sh.. k c L 
D Sherwood number 

Nu.. hL/λ Nusselt number 

Pr.. νρc p /λ Prandtl number 

�.. gamma function 

α. volume fraction of slag 

V v .. partial volumetric volume of solute 

χD .. correction for influence of Stefan velocity to 

mass flux 

List of subscripts 

s.. interface solute/solvent 

∞ .. at end of the diffusive boundary layer 

1 .. dissolving species 

2.. residual species 

c .. convective 

d .. diffusive 

a .. air phase 

b .. slag phase 

simplify the underlying equations using an asymptotic boundary 

layer method. 

The following sections describe the methodology employed in 

the calculation of mass transfer coefficients and explain the afore- 

mentioned phenomena in detail. Subsequently, the asymptotical 

boundary layer approach is introduced followed by a complete de- 

scription of the model used for the calculation of the flow field. 

Lastly, the results are presented and compared to those obtained 

with the equations discussed above. 

2. Methodology of mass transfer calculation 

In many application cases, dissolution is controlled by the dif- 

fusion of the dissolving species [ 1 , 2 , 4 , 7 ]. Under this hypothesis, 

the dissolution mass flux is given by Fick’s First Law of Diffusion, 

which can be stated as follows for the one-dimensional case: 

j D = −D 

d c 1 
dy 

(1) 

According to Eq. (1) , the diffusive flux depends on the species 

gradient and the effective binary diffusivity; however, this diffu- 

sive flux, when evaluated on the solute/slag interface, does not 

represent the gross dissolving mass flux. The relative motion be- 

tween solute and interface constitutes a classical Stefan problem 

and must also be accounted for, as indicated by Cooper [ 8 , 9 ]. Based 

on this previous research and approximating the partial volume of 

a solute as the ratio of the solute to slag densities, the gross flux 

can be expressed as follows: 

j t = j D 
1 

1 − w 1 

(2) 

Our next step is the calculation of the diffusive flux. The the- 

ory of hydrodynamics of the boundary-layer provides us with a 

method for this calculation by solving the steady-state convection- 

diffusion equation for the source-free case: 

u 

∂ c 1 
∂x 

+ v 
∂ c 1 
∂y 

= D 

∂ 2 c 1 
∂ y 2 

(3) 

This equation is solved using the continuity equation, momen- 

tum conservation equations, and necessary boundary conditions. 

Typically, both the tangential and normal velocities are considered 

to vanish at the wall. Under such circumstances, a perfect analogy 

between mass and heat transfer holds if the effect of dissipation is 

neglected. In doing so, the wall is considered to be impermeable 

to both the diffusing species and all other components (henceforth 

termed as residual species). This is not the case considered here, 

which involves the dissolution of the solute from a surface that is 

impermeable to the other species. This case results in the Eckert- 

Schneider condition ( Eq. (4) ), which follows from the equality of 

the diffusive flux of the dissolving species at the interface ( j 1 ,d,s ) 

(given by Fick’s law) and the convective flow of the residual species 

( j 2 ,c,s ). Consequently, a finite velocity in the direction normal to 

the wall ( v w 

) must exist, i.e., the analogy between mass and heat 

transfer does not hold anymore. 

j 2 ,c,s = ρ( 1 − w 1 ) v w 

= j 1 ,d,s (4) 

v w 

= 

j 1 ,d,s 

ρ( 1 − w 1 ) 
= − D 

( 1 − w 1 ) 

(
d w 1 

dy 

)
s 

(5) 

Here, the concept of effective binary diffusivity is applied to 

distinguish between the dissolving species 1 and the residual 

species 2 using an equal diffusivity D for both. The latter assump- 

tion necessitates a constant fluid density, viz. d ρ/d c = 0 . The ve- 

locity v w 

is sometimes referred to as Stefan velocity, because he 

was the first author to experimentally observe such velocities [10] . 
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While the effect of the Stefan velocity on the gross mass flux ac- 

cording to Eq. (2) can be easily considered, its impact on the fluid 

flow is often neglected; however whether this is justified needs to 

be proven for each particular case [11] . 

For dimensionless concentration c 1 
∗ = c 1 / 
c and coordinate 

y ∗ = y/L , the mass flux at the interface can be represented in terms 

of the Sherwood number: 

Sh = 

j D L 

D 
c 
= −

(
∂ c 1 ∗

∂ y ∗

)
s 

(6) 

The Stefan velocity contributes with a mass flux v w 

c 1 , ac- 

counted for in Eq. (2) , but its effect on the flow field might be bet- 

ter understood in terms of the diffusive boundary layer thickness 

( δc ) , sometimes referred to as Nernst boundary layer thickness, us- 

ing the following definition: 

j D = −D 


c 

δc 
(7) 

It follows from Eq. (1) that this thickness is a function of the 

concentration gradient at the interface according to Eq. (8) : 

δc = 


c ∣∣ d c i 
dy 

∣∣ (8) 

The ratio of the thickness of the velocity to species boundary 

layers is concordantly dependent on the dimensionless Schmidt 

number, and the Stefan velocity increases both thicknesses for the 

case of dissolution (it acts inversely for the crystallization case); 

consequently, the effect of the Stefan velocity results in a reduction 

in the mass transfer coefficients of dissolution, or equivalently, a 

decrease in the absolute value of the derivative at the right-hand- 

side of Eq. (6) . Sherwood relations neglecting the effect of Stefan 

flow or corresponding Nusselt equations are well known for many 

cases, and the respective Sherwood number is denominated by S h 0 
here. 

Calculating Sh amounts to solving Eq. (3) including v w 

as a 

boundary condition, and it is analogous to a boundary layer con- 

trol by blowing; it has been studied by Merk [12] . Merk provides 

formulas for χD , the ratio of Sh to S h 0 as a function of B ; conse- 

quently, we only need to concentrate ourselves on the calculation 

of S h 0 to express the total flux as follows: 

j t = χD 
DS h 0 

L 
Bρ (9) 

which can be reformulated to j t = k c 
c, where the mass transfer 

coefficient ( k c ) is given by 

k c = 

χD 

1 − w s 

DS h 0 

L 
(10) 

It is important to notice that even though v w 

can have an effect 

on the mass transfer rate, it does not influence the velocity field 

outside of the boundary layer [13] but extends it compared to the 

case with v w 

= 0 . In this work, calculations of S h 0 are conducted 

by coupling CFD simulations with an asymptotic boundary layer 

approach, in what it is known as asymptotical computational fluid 

dynamics (ACFD). 

3. Experimental set-up 

In this work simulations of a typical experimental set-up used 

in ceramic and refractory testing, namely the rotating finger test, 

are performed. This set-up is employed purely as a basis for the 

simulations. In this experiment, a cylindrical sample of refractory 

material is rotated while submerged into a slag bath at a constant 

rotational speed of 200 rpm under isothermal conditions. The sam- 

ple of pure dense sapphire fine ceramics has an initial radius of 

10 mm and a total length of 110 mm. Approximately 55 mm are 

Table 1 

Slag/refractory properties. 

CaO Al 2 O 3 SiO 2 D (m 

2 s −1 ) μ (Pa s) ρ (kg/m 

3 ) σ (mNm 

−1 ) 

w 0.3807 0.2100 0.4093 4.2 �10 11 0.6423 2,589 476.9 

Table 2 

Dimensionless numbers. 

Re Ta Sc We Ca 

19 382 5.9 �10 6 5.4 0.28 

dipped in the slag bath contained in a crucible of 32.5 mm of 

radius with a clearance to the bottom of the crucible of 20 mm. 

The CAS slag (viz. a silicate slag in the system CaO-Al 2 O 3 -SiO 2 ) is 

maintained at 1550 °C, and the initial concentration and its proper- 

ties are summarized in Table 1 . Density and surface tension values 

were calculated at service temperature using the correlations pro- 

posed by Xin [ 14 , 15 ] based on the bulk concentration. The alumina 

solubility is 48.79% in weight. 

From these values, the most relevant dimensionless numbers 

for the problem were calculated and are presented in Table 2 . The 

peripheral velocity at the inner cylinder was chosen as the charac- 

teristic velocity, which is the upper bound of the velocities, and it 

is therefore the most conservative choice. For the Schmidt number, 

the diffusivity value is selected from the diffusivities presented in 

the work of Cooper and Kingery [1] . The characteristic length is the 

gap width in all cases. 

4. Hydrodynamics of large Schmidt numbers 

Given the high values of Schmidt number of the system (above 

10 6 , see also Table 2 ), resolution of the species boundary layer 

would require a very fine mesh in the region of the solute/slag in- 

terface. To overcome this issue, an asymptotic boundary layer ap- 

proach is employed; however, the species transport equation is not 

solved within the CFD calculation. 

A connection between the skin friction ( τ ) and heat transfer 

rate was elucidated by Lighthill [16] through a von Mises trans- 

formation of the energy equation: 

Nu ( x ) = 

L P r 1 / 3 

9 

1 / 3 �( 4 / 3 ) 

(
ρ

μ2 

)1 / 3 √ 

τ ( x ) 

(∫ x 

0 

√ 

τ ( ζ ) dζ

)−1 / 3 

(11) 

This approximation considers a linear velocity profile in the 

boundary layer given by u = ( τ/μ) · y , which becomes asymptot- 

ically exact for large Pr ( Sc ) [17] . 

This work was extended by Acrivos in two publications [ 18 , 19 ], 

in which he derived a more general solution for the heat (species) 

transfer rate by considering wedge-flow velocity profiles ( u = a y m ) 

in the boundary layer. He arrived at a theoretical solution for ar- 

bitrary exponent m, which reduces to the to Lighthill’s method for 

m = 1 . The methodology is grounded on the principle that when 

the Pr ( Sc ) number is large the thermal (concentration) boundary 

layer is much thinner than the velocity boundary layer. Acrivos also 

studied the asymptotic case of very small Pr ( Sc ) number as well 

as the effect of variable fluid properties. 

It is noteworthy that the method proposed by Lighthill is not 

well suited near points of flow separation, where τ becomes zero 

and a linear velocity profile no longer approximates this situation. 

A detailed analysis of the effect of this nonlinearity on the heat 

transfer rate is presented by Spalding [17] , who proposed a correc- 

tion to Lighthill’s method. 

The case treated within this work is a case of axisymmetric 

flow, for which Eq. (11) requires some adaptation. This was con- 

ducted already by Newman [20] and employed for the calcula- 

tion of the limiting electrical current of an electrode (for which 
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c 1 ,s = 0 ). The equation is adapted here by converting the transport 

of electrical charge induced by the diffusing species to the pure 

mass transport, which results in Eq. (12) : 

S h 0 ( x ) = 

L S c 1 / 3 

9 1 / 3 ν1 / 3 �( 4 / 3 ) 

√ 

R β( x ) 

[∫ x 

0 

R 

√ 

R β( ζ ) dζ

]−1 / 3 

(12) 

where R is the radius of the surface of revolution and β = 

∂u 
∂y 

. For 

the cylindrical geometry in this work, when applying Eq. (12) to 

the cylinder mantle, R is constant and equal to the cylinder ra- 

dius and x is the z coordinate. In this case, the equation reduces to 

Eq. (11) . On the disk surface, R is variable and equal to the radial 

coordinate x . The azimuthal component of the velocity flow field 

does not contribute to mass transfer in the laminar regime [20] ; 

consequently, the focus is on the determination of axial and—for 

the end face—radial stresses at the sample surface. 

Existing publications have reported the use of this methodology 

for the determination of species mass flux [ 21 , 22 ] and have suc- 

cessfully contrasted their findings to experimental results. Particu- 

larly, Baier et al. [22] used this method for a Taylor-Couette (TC) 

system. In this previous study, no special consideration was given 

to the point of separation; nevertheless, their results agreed with 

experimental results. Therefore, we also neglect the nonlinearity 

close to separation points. 

The use of Eq. (12) under the influence of a Stefan flow is 

justified, as has been demonstrated by Schlichting and Gersten 

[13] that the similarity of solutions of wedge-flow velocity profiles 

still holds when the Eckert-Schneider condition ( Eq. (4) ) is fulfilled, 

and the constant concentration of the dissolving species is fixed at 

the wall. Moreover, according to Acrivos [23] , a relation similar to 

Eq. (12) can be derived (13), which also considers the effect of the 

Stefan velocity only by replacing 1/ �(4/3) by a quantity b , which is 

implicitly defined by the following equation: 

1 

b 
= 

∫ ∞ 

0 

e Bbx −x 3 dx (13) 

This modification to Eq. (12) can also be expressed by multipli- 

cation with χD defined by 

χD = 

�( 4 / 3 ) ∫ ∞ 

0 e Bbx −x 3 dx 
(14) 

which produces very similar results to the correlations proposed 

by Merk [12] with a relative error of 1.5% for the value of B result- 

ing from the experimental set-up as investigated here. 

5. Flow field 

The flow domain can be separated into two distinct regions, 

i.e., the annular region between the cylinder mantle and the cru- 

cible and the area below the tip of the sample. In the latter, the 

disk-shaped surface acts as a centrifugal pump that pulls fluid out- 

wards. Fluid continuity requires that an axial flow develops, which 

replenishes this displaced fluid. 

The flow field induced by a rotating cylindrical surface has been 

extensively studied by many authors, and it is a characteristic topic 

in hydrodynamics [ 13 , 20 , 24–26 ]. Most studies have investigated an 

ideal case of a disk of infinite diameter in a semi-infinite domain 

for which the flow is a characteristic boundary layer flow, where 

the thickness of the boundary layer can be calculated using the 

equation found in [13] : 

δ = 5 . 5 

√ 

ν

�
(15) 

For the system considered here, this thickness is comparable 

to the bottom clearance, and it is even larger than the radius of 

the disk. Consequently, the ideal case approximation is not valid. 

Nonetheless, this benchmark problem is used for comparison and 

analysis of the characteristics of the flow field, which according 

to Newman and Thomas [20] , remains in the laminar regime for 

Reynolds numbers up to 2 ·10 5 . 

The annular region, with the inner cylinder rotating at a con- 

stant rotational speed, is a region where a Circular Couette (CC) 

flow forms. It is a very well-known fact that a pure CC flow can- 

not be maintained for any rotational speed. Upon a critical speed, 

centrifugal instabilities settle in form of vortical structures. Many 

authors have addressed the topic of instabilities in the CC sys- 

tem. Taylor [27] was one of the first authors to investigate this 

by means of a mathematical approach. His-work, based on linear 

perturbation analysis, predicts the rotational speed necessary for 

these instabilities to set-in by considering an idealized case of nar- 

row gap and infinite length cylinders. Numerous publications pro- 

ceeded the work of Taylor and since then, the influence of different 

parameters on the stability of the CC flow has been investigated 

[28–44] . 

A variety of flow regimes can take place within a TC system de- 

pending on geometrical aspects and the rotational speed. A good 

classification and description of each regime can be found in Gol- 

lub [45] . Numerical investigations on the transitions between this 

regimens is conducted for e.g. in the work of Takeda [46] . For the 

system dealt within this work, the flow is in the laminar regime 

and the instabilities do not exceed the Taylor Vortex Flow (TVF) 

regime, where stacked, time-independent, axisymmetric vortices 

form. This validates our hypothesis of 2D, laminar, axisymmetric 

flow used in developing the CFD model. 

Because of the wide gap of the arrangement, the analysis con- 

ducted by Taylor is not applicable here. DiPrima et al. [42] calcu- 

lated the critical rotational speed for different radii ratios. From 

their results, we obtain for the chosen experimental set-up a criti- 

cal rotational speed for our system of 740 rpm with an axial wave- 

length of 44.7 mm. This axial wavelength represents the length of 

two consecutive vortices, and given that our gap width is 22 mm, 

the vortices should appear square, as is typical in TC systems. 

When comparing the wavelength with the dipped length, we ob- 

serve that the infinite length is far from a good approximation; 

moreover, the critical rotational speed for the experimental set- 

up is well above 200 rpm, even though vortical structures are ob- 

served in the simulations of the experimental set-up, which must 

then be attributed to end-effects. For comparison, simulations at 

higher Reynolds number were conducted within the TC regime as 

well, and, here, Taylor vortices were observed. 

It has been observed that end-effects have a significant influ- 

ence on the stability even in cases where the cylinders are very 

large [47] . Various authors have studied the influence of end- 

effects on the TC system [ 39 , 48–57 ]. When the cylinders are of fi- 

nite length, the end-conditions imposed result in a region where 

the flow field is no longer geostrophic, i.e., the centrifugal force is 

not balanced by the pressure gradient, which results in develop- 

ment of radial velocity. 

Generally, three different boundary conditions are considered 

for the end-effects: static end plates, rotating plates, and free sur- 

faces. The characteristics of these flows can be explained by a fam- 

ily of boundary layer flows known as the BEK family (Bödewadt, 

Ekman, von Kármán). Bödewadt [58] studied the flow field of a 

rotating fluid close to static wall, which represents the case of a 

static plate, while von Kármán [24] studied the rotating disk de- 

scribed previously. Finally, Ekman developed a theory on the effect 

of wind on ocean currents considering the effect of the Coriolis 

force [59] . In the literature, the vortices induced by end-effects are 

generally referred to as Ekman vortices and are said to be caused 

by Ekman pumping. 

Given that both the annular and clearance regions, when com- 

pared to close analytical situations, are well within the laminar re- 

gion, no turbulence is considered in the CFD model. 
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6. Model description 

The CFD model is implemented in the software Ansys Fluent, v. 

19.0. The laminar, 2D, axisymmetric model is a multiphase model 

of the slag and air phases. The boundary conditions are summa- 

rized in Fig. 1 and include a pressure outlet at the top of the do- 

main, where the air is located, a no-slip condition on the crucible 

wall, constant angular speed on the refractory wall and an axis 

of symmetry along the axis of the rotating sample. The species 

transport equation is not solved within the CFD model; this is 

treated in a postprocessing step as described in Section 4 . Addi- 

tionally, the model is isothermal; thus, only the continuity equa- 

tion Eq. (16) and Navier-Stokes equations ( Eqs. (17) to (19) ) are 

solved within the CFD model: 

∂ 

∂z 
( ρv z ) + 

∂ 

∂r 
( ρv r ) + 

ρv r 
r 

= 0 (16) 

∂ 

∂t 
( ρv z ) + 

1 

r 

∂ 

∂z 
( rρv z v z ) + 

1 

r 

∂ 

∂r 
( rρv z v r ) 

= −∂ p 

∂z 
+ 

1 

r 

∂ 

∂z 

[
rμ

(
2 
∂ v z 
∂z 

− 2 

3 
∇ · � v 

)]
+ 

1 

r 

∂ 

∂r 

[
rμ

(
∂ v z 
∂r 

+ 

∂ v r 
∂z 

)]

(17) 

∂ 

∂t 
( ρv r ) + 

1 

r 

∂ 

∂z 
( rρv r v z ) + 

1 

r 

∂ 

∂r 
( rρv r v r ) 

= −∂ p 

∂r 
+ 

1 

r 

∂ 

∂z 

[
rμ

(
∂ v r 
∂z 

+ 

∂ v z 
∂r 

)]
+ 

1 

r 

∂ 

∂r 

[
rμ

(
2 
∂ v r 
∂r 

− 2 

3 
∇ · � v 

)]

− 2 μ
v r 
r 2 

+ 

2 

3 

μ

r 
( ∇ · � v ) + ρ

v 2 
θ

r 
(18) 

∂ 

∂t 
( ρv θ ) + 

1 

r 

∂ 

∂z 
( rρv z v θ ) + 

1 

r 

∂ 

∂r 
( rρv r v θ ) 

= 

1 

r 

∂ 

∂z 

[
rμ

(
∂ v θ
∂z 

)]
+ 

1 

r 2 
∂ 

∂r 

[
r 3 μ

∂ 

∂r 

(v θ
r 

)]
− ρ

v r v θ
r 

(19) 

where ∇ · � v is given by Eq. (20) : 

∇ · � v = 

∂ v z 
∂z 

+ 

∂ v r 
∂r 

+ 

v r 
r 

(20) 

The volume of fluid (VOF) method was chosen to incorporate 

both slag and air phases. This is an interface-capturing-method for 

which the transport equation of a scalar function representing the 

Fig. 1. Discretization of the domain. 

volume fraction of a phase ( α), is solved Eq. (23) . A single set of 

equations is solved for the flow field, where the density and vis- 

cosity are dependent on α as shown in Eqs. (21) and (22) . A sharp 

jump in these properties occurs at the interface between phases, 

which is only a few cells wide: 

μ = μa α + ( 1 − α) μa (21) 

ρ = ρb α + ( 1 − α) ρb (22) 

∂α

∂t 
+ ∇ · ( α�

 v ) = 0 (23) 

For the advection of the interface between phases, the 

Geometric-Reconstruct scheme is employed, which is the most ac- 

curate method available [60] . This scheme is explicit in time, and 

the time-step used for solving Eq. (23) is automatically chosen by 

the solver based on a maximum Courant number of 0.25, which 

is independent of the time-step used for solving other transport 

equations. 

Surface tension is considered in the simulations given the low 

values of Capillarity and Weber number of the system as pre- 

sented in Table 2 . Its effect is studied using the continuous sur- 

face force (CSF) model formulated by Brackbill [61] . The surface 

tension force is considered constant along the interface using the 

value presented in Table 1 . Marangoni convection is neglected as 

it has been reported to have no effect when the rotational speed 

is large enough [62] , which has been corroborated by Kircher for a 

similar set-up [63] . Buoyancy effects induced by density gradients 

are also neglected. 

Coupling between pressure and velocity is accomplished with 

the PISO scheme and second order schemes are used for the mo- 

mentum and swirl equations. The pressure is interpolated from 

the cell centroid to cell faces using with the PRESTO! scheme. A 

grid-independence-test was conducted for three different element 

sizes based on the value of the derivative of axial velocity at the 

slag/refractory interface. The results are presented in Section 7 . 

Two different time-steps of 0.001 s and 0.0 0 01 s were employed in 

the simulations, and no differences in the results were observed. 

The VOF was patched to the dipped length and the solution was 

advanced from an initial static state. A steady state is considered to 

be achieved when no more time variations in β(x ) are observed. 

Time discretization is done with an implicit first-order scheme, be- 

cause higher-order schemes are not available with an explicit treat- 

ment of the VOF equation. 

Simulations are conducted for the cylindrical geometry and the 

mesh is composed entirely of quadrilateral elements of equal size, 

as shown in Fig. 1 . 

The total number of discretization elements varies from the 

coarsest to the finest grid between approximately 47,0 0 0 to 

190,0 0 0 elements. 

7. Results and discussion 

The following shows the results of the simulations of the exper- 

imental set-up presented in Section 3 , where the Reynolds num- 

ber are was 19 and 8.4 based on the gap width and inner ra- 

dius, respectively (see also Table 2 ). The flow field is depicted in 

Fig. 2 with path-lines colored by the phase volume fraction; the 

employed boundary conditions are also illustrated. We observe an 

axial flow along the cylinder mantle induced by the rotation of 

the end face, along which a radial flow occurs. This agrees with 

the theoretical discussion presented in Section 5 . Moreover, in this 

region, the flow-field matches qualitatively the results presented 

by Levich [25] for a rotating disk. One main difference is that, in 

the infinite disk case, the flow domain is limited by the disk it- 

self; however, here, the developed axial flow ascends the cylin- 
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Fig. 2. Flow field path-lines. Slag phase in red, air phase in blue. 

Fig. 3. Derivative of axial velocity with respect to radial coordinate over cylinder 

mantle ( L = submerged length). 

der mantle. Within the slag bath and close to the interface atmo- 

sphere/slag, we observe a vortical structure that is attributed to 

Ekman transport. Its quadratic shape is very close to the predicted 

wavelength of a TC instability and the rotation is in the opposite 

direction as in the lower region of the sample, which results in an 

inflection point where the vortical structures meet. This can also 

be perceived from Fig. 3 ; at this position, β becomes zero. In this 

figure, the independence of the axial and radial derivatives of ve- 

locity from grid fineness can also be observed. This independence 

is also proven for the derivative of the radial velocity over the re- 

fractory tip shown in Fig. 4 . 

The profiles of S h 0 relative to the Schmidt number to the power 

of one third, calculated as described in the previous section, are 

shown in a dimensionless form in Fig. 5 for the disk surface and in 

Fig. 6 for the cylinder mantle. The independence of the grid fine- 

ness is also depicted for the aforementioned calculations. A good 

qualitative match is observed in this figure, with an error in the 

Fig. 4. Derivative of radial velocity with respect to axial coordinate over cylinder 

tip. 

Fig. 5. Sherwood profile relative to Sc −1/3 for the disk surface. 

average value of 2%; therefore, the results are considered to be in- 

dependent of the grid fineness. 

The values presented in Figs. 5 and 6 are those necessary for 

calculating the mass transfer coefficients using Eq. (10) , which are 

displayed in Fig. 7 for the cylinder mantle. In these figures, the 

relationship between the flow field and Sherwood profiles is no- 

ticeable. For the cylinder mantle, we observe a marked increase 

in S h 0 towards the end of the cylinder, which is attributed to 

the higher axial stresses present in this region. These stresses 

become smaller further away from this region and consequently 

S h 0 decreases. The profile presents a minimum at the location 

where the two vortical structures meet and another one near the 

slag/atmosphere interface, where β changes sign. 

Simulations for a range of Reynolds numbers based on the in- 

ner radius between 1 and 500 were also conducted to gain better 

insight into this set-up and facilitate verification with documented 

Sherwood equations in Section 7.1 . The rotational speed was main- 

tained in all cases at 200 rpm. To obtain different Reynolds num- 

ber the simulations were conducted by varying the value of dy- 

namic viscosity, resulting in an alteration of the value of the pre- 

dicted theoretical critical rotational speed; however, the critical 

Reynolds number calculated for the geometry remains unchanged 
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Fig. 6. Sherwood profile relative to Sc −1/3 on the cylinder mantle (left) and magnification of the part z/ L < 0.5 (right), where L is submerged length. 

Fig. 7. Mass transfer coefficients profile on the cylinder mantle. 

at R e R 1 = 31 . 8 . This value was calculated by a simple correlation of 

the data presented in the publication of DiPrima et al. [42] , pre- 

sented below: 

R e R 1 ,c = 

√ 

800 . 5 ( 1 + η) 

η1 . 005 ( 1 − η) 

R 1 

d 
(24) 

The flow field for these calculated values is depicted in Fig. 8 

with path-lines colored by contours of velocity magnitude. For 

small Reynolds numbers, below the critical rotational speed, the 

velocity magnitude in the annular region is dominated by the az- 

imuthal component, which is described by the analytical CC solu- 

tion. In this case, the velocity decreases from the imposed rotating 

velocity at the inner cylinder to zero at the static outer cylinder. It 

is also noticeable that this CC variation in the velocity only occurs 

in the annular region and deviates towards the end of the sam- 

ple, as expected. For R e R 1 = 30 , which is very close to the critical 

rotational speed, the magnitudes of the axial and radial velocities 

are already large enough to have an obvious influence on the total 

velocity magnitude. Beyond this value, the appearance of a second 

vortex can be observed, which is then attributed to centrifugal in- 

stabilities. The velocity magnitude for this range of Reynolds num- 

bers is no longer given by a pure CC flow and the axial and ra- 

dial velocity of the vortices is comparable to the azimuthal veloc- 

ity. The critical Reynolds number, although derived for the case of 

infinite length cylinders, provides a reasonable estimate of the bi- 

furcation point; this is because, below this value, we only observe 

Ekman vortices, which increase in size and strength with Reynolds 

number. The proximity of the observed critical point to the the- 

oretical prediction provides validation to our computed flow-field 

and the hypothesis employed in the construction of the model. 

The Sherwood profile relative to the Schmidt number to the 

power of one third for R e R 1 = 200 is shown in Fig. 9 for the man- 

tle. In this Figure we observe two minima due to the appearance 

of a second vortex. Unlike for low Reynold numbers, for which the 

appearing vortex was attributed to end-effects, these Taylor vor- 

tices are a result of centrifugal instabilities and have larger radial 

and axial velocities. Therefore, the observed S h 0 in these regions 

is noticeably larger and comparable to the S h 0 value observed to- 

wards the end of the cylinder. In average, S h 0 follows the expected 

increment with the Reynolds number, and a change in the slope 

of the logarithmic plot of S h 0 versus Re is observed at the transi- 

tion from the CC regime to the TC, which is presented in Fig. 11 of 

Section 7.1 . 

7.1. Comparison to documented mass transfer equations 

By distinguishing between the bottom clearance and the annu- 

lar region, the total average mass flux density could be approxi- 

mated by independently employing correlations for the disk sur- 

face and a cylindrical surface. We now compare the approach used 

in this work with equations that have been reported in the liter- 

ature. For the disk surface, the theoretical Eq. (25) proposed by 

Levich was found to be optimal [25] . 

Sh = 0 . 62 · R e 1 / 2 S c 1 / 3 (25) 

This equation was also used for verification of the mass trans- 

fer calculations. This verification was performed at higher rota- 

tional speeds, because in this case, the boundary layer thickness 

decreases according to Eq. (15) , and we approach the ideal sit- 

uation corresponding to this equation. The results are shown in 

Fig. 10 , where an excellent agreement with Levich’s equation is ob- 

served for rotational speeds higher than 750 rpm, whereas for the 

rotational speed used in this work, an error of 16% is incurred. 

The determination of heat/mass transfer in a CC system has 

been investigated by some authors [ 5 , 22 , 64–69 ]; however not all 

authors present correlations with parameters of interest. From 

these works, the correlations presented by Tachibana et al. [5] and 

Srinivasan et al. [69] were selected, and the values are compared 

in Fig. 11 for the Schmidt number given in Table 2 and Reynolds 
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Fig. 8. Path-lines colored by velocity magnitude at different Reynold numbers. 

Fig. 9. Sherwood profile relative to Sc −1/3 on the cylinder mantle for R e R 1 = 200 . 

number in the range of 1–500. Experimental equations based on a 

rotating cylinder by Kosaka and Minowa [70] and Eisenberg et al. 

[6] are also displayed in this figure. All these equations are pre- 

sented in Table 3 referenced to by the name of the first author and 

Fig. 10. Comparison of asymptotic calculations to Levich’s equation. 

the subscripts indicate the characteristic length used in calculating 

Sherwood and Reynolds number (viz. the gap width was used as 

characteristic dimension of the Sherwood numbers for the cylinder 

mantle); furthermore, the validity ranges displayed in Table 3 are 
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Table 3 

Equations for the calculation of mass transfer coefficients. 

Equation Application/Validity range 

Levich [25] Sh R 1 = 0 . 62 · Re 1 / 2 
R 1 

Sc 1 / 3 disk/ 

Re < 100,000 

100 < Sc ([20]) 

Eisenberg [6] Sh d = 0 . 0642 Re 0 . 7 R 1 
Sc 0 . 356 d 

R 1 
Mantle/ 

500 < Re < 50,000 

835 < Sc < 11,490 

Kosaka [4] Sh d = 0 . 0547 Re 0 . 75 
R 1 

Sc 1 / 3 d 
R 1 

Mantle/ 

50 < Re < 5,000 

106 < Sc < 173 

Tachibana [5] Sh d = 0 . 21 Re 1 / 2 
R 1 

Sc 1 / 4 ( d 
R 1 

) 
3 / 4 

Mantle/ 

Re < 10 4 ( R 1 
d 

) 
0 . 5 

Srinivasan [69] Ta < Ta c 

Sh d = 

3 d 
R 1 log (R 2 /R 1 ) 

+ 0 . 0048 Re R 1 Sc 1 / 3 d 
R 1 

( R 1 
R 2 

) 
−1 . 25 

Mantle/ 

0.5 < Re < 1,000 

1 < Sc < 50,000 

0 . 3 < R 1 /R 2 < 0 . 7 

Ta > Ta c 

Sh d = 

3 d 
R 1 log (R 2 /R 1 ) 

+ 0 . 3253 Re 0 . 5 R 1 
Sc 1 / 3 ( d 

R 1 
) 

0 . 5 
( R 1 

R 2 
) 
−0 . 1 

Fig. 11. Comparison of Sh values for cylinder mantle (for Tachibana the exponent 

of Sc was replaced by 1/3, see text). 

either reported by the authors themselves or based on the exper- 

imental data presented in the respective publications and/or theo- 

retical justifications. 

It can be observed from Fig. 11 that the equation of Kosaka 

and Eisenberg has a similar slope to the simulation results. For 

Reynolds numbers below 30, our results match very well with the 

equation of Kosaka and Minowa, with the largest calculated rel- 

ative error being 18% at Re = 1 and decreasing with this num- 

ber. For the experimental set-up value, Kosaka and Minowa equa- 

tion underpredicts the value of Sherwood number by 9%. Over the 

critical Reynolds number ( R e R 1 = 31 . 8 for our system, see text be- 

low), the deviation of the calculated values from Eisenberg’s equa- 

tion becomes larger. For Reynolds numbers greater than the criti- 

cal Reynolds number, the equation of Srinivasan has a similar slope 

to the trend followed by the simulated value. This is not true for 

smaller Reynolds, presumably due to the differences in cylinder 

length and boundary conditions, which play a marked role in this 

regime. The formula of Tachibana, presented in Table 3 has a de- 

pendency on Schmidt number of Sc 1/4 , however, given that this 

correlation was obtained for fluids of much smaller Prandtl num- 

ber as the equivalent Schmidt values considered in this publication, 

the comparison shown in Fig. 11 was done by replacing this factor 

with Sc 1/3 , which is the expected dependency for large Schmidt 

numbers [11] . In this case, the slope of the equation is also simi- 

lar to the equation of Srinivasan and matches the simulated values 

very well; however, when the original Sc 1/4 dependency is used, 

the values predicted by Tachibana equation are much smaller than 

the simulated values. Both Srinivasan and Tachibana’s equations 

are based on pure TC flow where the length of the cylinder has 

no effect on the mass transfer rate; this is not true for our set- 

up composed of a very short cylinder where a bottom clearance is 

present as well. For these reasons, we expect some deviation be- 

tween the simulated values and the documented equations; how- 

ever, for the modified Tachibana equation with exponent 1/3 of 

Sc number, over the critical rotational speed, the maximum error 

was surprisingly only 16% and decreased with increasing Reynolds 

number. The modified equation only provides a good qualitative fit 

for Reynolds above the critical condition, as expected, because it 

was developed for flow in this regime. A detailed parameter study 

is not in the scope of this publication but the reasonable agree- 

ment between the documented equations and the simulated val- 

ues in the respective ranges validates the use of the approach for 

such set-ups. 

The correction due to the influence of Stefan velocity on the 

flow field calculated with Merk’s method is, for the experimental 

case considered here, χD = 0 . 765 , indicating that a large error is 

committed by neglecting the effect of the Stefan velocity on the 

Sherwood calculations. 

8. Conclusions 

An asymptotic boundary layer approach was employed to cal- 

culate mass transfer coefficients from CFD simulations of a rotat- 

ing finger test. This approach reduces the amount of computa- 

tion resources needed and provides accurate results. Independence 

of both grid fineness and time-step was obtained in all calcula- 

tions. The methodology was verified by comparing Levich’s equa- 

tion at higher rotational speeds. The obtained values were com- 

pared with the results of documented equations for the calculation 

of mass transfer coefficients. While reasonable agreement was ob- 

tained with some of the empirical equations for selected Reynolds 

numbers, most of the empirical equations have not been designed 

for the experimental set-up investigated here and for such high 

Schmidt numbers. This underlines the necessity of the approach 

shown here. The methodology presented provides an accurate tool 
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for predicting mass transfer coefficients in dissolution problems 

when the binary diffusivity is known or alternatively it presents 

an opportunity to inversely determine diffusivities. This methodol- 

ogy is a very important tool for systems where the Schmidt num- 

ber (or alternatively Prandtl number) reaches very large values, 

and computational resources pose a problem. Such systems are 

frequent in slag/refractory systems, such as the one discussed in 

this work, and electrolytic solutions. The expected greater accu- 

racy of the method originates from the fact that a more rigorous 

consideration regarding the phenomena involved in the dissolution 

was considered, and all the appearing effects were incorporated 

to the methodology. Furthermore, because the boundary layer ap- 

proach becomes asymptotically exact for large Schmidt numbers, 

and already some successful studies employing this method are 

found in literature for smaller numbers, we expect that for typ- 

ical ceramic/slag systems this should also be the case. Neverthe- 

less, validation of the model through experiments is in the future 

works of the authors. In addition to the evaluation of tests as de- 

scribed herein, the methodology also offers a mathematical proce- 

dure to optimize reactor design or process parameters with respect 

to mass transfer, e.g. to minimize the wear of a refractory lining. 
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Method for determination of effective binary diffusivities in dissolution of 
dense ceramic materials 
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A R T I C L E  I N F O   
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A B S T R A C T   

A method is proposed to determine the effective binary diffusivities in a dissolution of dense ceramics in liquid 
slags. This is achieved by combining computational fluid dynamics with a boundary layer approach to overcome 
the resolution problem that is associated with high Schmidt numbers. The rotating finger test experiment was 
performed with a dense alumina fine grain ceramic in a calcium aluminosilicate (CAS) slag. During the exper
iment, the sample dissolved, and the sample’s shape deviated substantially from the initial cylindrical shape. The 
simulations were conducted in a middle step whereat the sample was already corroded, and the geometry was 
obtained from the laser measurements of the corroded surface. The diffusivities were evaluated via the average 
mass flux density and by fitting the experimental and simulation curves. Good agreement between the simulated 
and experimental corrosion profiles existed for the diffusivities evaluated by using the two methods.   

1. Introduction 

The wear of ceramic and refractory materials must be investigated 
because of the extreme temperatures and processing conditions that 
these materials are generally exposed to. A deeper understanding and 
quantification of the wear mechanisms will facilitate the development of 
highly wear resistant materials, which can be used for process optimi
zation to minimize production costs. This work targets the quantifica
tion of the continuous wear of ceramic materials, which mainly 
encompasses two mechanisms: corrosion by dissolution and erosion. 
The focus herein is on the dissolution of dense ceramics, precisely that of 
alumina refractories. Here, the eroding effect of the liquid motion is 
minimized due to the dense structure of the material and small grain 
size. 

Finger test experiments are very common for investigations of wear 
resistance of ceramic and refractory materials. Some studies conducted 
with these experiments can be found in Refs. [1–13]. These experiments 
can be conducted statically as well as dynamically by rotating the finger 
sample in the corroding medium, which resembles more closely the 
industrial applications of these materials [14,15]. While some in
vestigations mainly focus on determining the wear mechanisms by 
microstructural investigations [1,2,7,8,10,12,13,16], others intend to 

quantify the wear through parameters [4–6,11,17]. For alumina disso
lution, many authors acknowledged that the dissolution process is 
controlled by species diffusion through boundary layer [3,5,17,18]; thus 
quantification of wear generally involves calculations of mass transfer 
coefficients and effective binary diffusivities. 

Sherwood correlations found in literature are frequently used to 
calculate mass transfer coefficients. One of the popular equations is the 
well-stablished equation of Levich [19] for disc shaped surfaces of 
infinite radius submerged in a semi-infinite medium. This equation 
provides an accurate approximation of mass flux density for real finite 
geometries when the velocity boundary layer thickness is much smaller 
than the disc radius [20]. Furthermore, the mass flux density is uniform 
over the disc surface, i.e. this equation can be applied to estimate the 
change in length of a cylindrical sample, as was conducted in the study 
of Cooper and Kingery [3] and Sandhage and Yurek [21]. However, 
some authors also used this equation to compute the total mass flux 
density from dissolution of a cylindrical sample [5,17,22] what seems 
not to be justified. This equation cannot predict the mass flux density of 
the cylinder mantle. Other authors have remedied this by using equa
tions applicable to cylindrical shapes. For example, Um et al. [11] 
employed Eisenberg’s equation [23] for this estimation. However, most 
equations found in literature did not include a clearance to the bottom of 

Abbreviations: CFD, computational fluid dynamics; CAS, calcium aluminosilicate; VOF, volume of fluid; CSF, continuous surface force; AIC, Akaike information 
criterion; BIC, Bayes information criterion. 
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the crucible as it is the case with most finger test experiments. Although 
all equations are generally found for well-defined geometries such as 
ideal cylinders, the ceramic sample geometry can change substantially 
during the experiments. Therefore, it does not resemble an ideal cylin
drical surface anymore. Furthermore, very frequently, these equations 
were obtained for much smaller Schmidt numbers than those typically 
valid for slags present in these set-ups. 

Very often, a heat/mass transfer analogy is employed, and Nusselt 
correlations are translated into Sherwood equations for estimating mass 
flux density. In doing so, two effects are neglected. Firstly, there is a 
relative motion of the interface between solute and solution in dissolu
tion processes, which is not the case for heat transfer (moving boundary 
problem). This effect adds a mass flux term and can be incorporated as 
introduced by Cooper [24]. Moreover, the boundary conditions of a heat 
transfer problem include zero relative velocity between the surface and 
fluid, not only parallel (no-slip condition) but also perpendicular to the 
surface, while for dissolution, a finite velocity normal to the surface 
known as Stefan’s velocity must be considered in the boundary condi
tions, which also hinders this analogy. This Stefan velocity impacts the 
flow field and therefore also the mass transfer, what is not considered in 
the references quoted above. To give an example, merely applying the 
Levich equation for calculating the mass transfer at a rotating disc sur
face, does not yet include this effect, therefore results in a too small 
effective boundary layer thickness what overestimates the mass transfer. 
Further, neglecting the mass flow directly following from the Stefan 
velocity and equal to the product of Stefan velocity and concentration of 
dissolving species in the solution at the interface, underestimates the 
mass transfer. 

The fundamentals of the methodology employed here was described 
in a previous study by the authors [25] for cylinder surfaces. This 
methodology accounts for the advection that occurs in an orthogonal 
direction to the solute/solvent interface and the effect of the Stefan’s 
velocity on the boundary layer thickness. In addition, the computations 
are valid for large Schmidt numbers in the arrangement. Unlike the 
previous study, herein, the methodology is not applied to an ideal cy
lindrical surface but to real corroded surfaces. Conducting a simulation 
by considering the real shape of the dissolving specimen is expected to 
be a big step toward more accurate estimation of the diffusivity. To the 
best of the authors’ knowledge, such a simulation has not been previ
ously attempted. 

The approach employed here allows the calculation of local, steady- 
state mass transfer coefficients. The obtained mass transfer coefficient 
profile is employed for computing the wear rate, which is used to predict 
the end worn out profile. Validation is provided with experimental re
sults. Furthermore, the model is employed to calculate the diffusivities 
using two different methods. The initial and final surfaces of the sample 
are measured with a laser scanning device, which provides measure
ments over the entire cylindrical sample for several angular coordinates. 
To obtain a unique, axisymmetric curve, the profiles are averaged. A 
detailed description of the measuring method and processing of the 
profiles has been reported by Kircher et al. [26]. 

The objective of this study is to establish a more appropriate pro
cedure for estimating effective binary diffusivities as the ones presented 
so far in literature. We will apply this procedure to a specific case of 
alumina dissolution. The evaluation procedure is improved, and the 
experimental setup is state-of-the-art as well. We also expect our esti
mations for slag properties to be more accurate than previous ones 
thanks to the larger availability of models and software present till date. 

The following sections give a description of the experimental 
methods, the model used for the resolution of the flow field, and the 
methodology employed for computing the mass transfer coefficients. 
The simulation and experimental results are compared and discussed, 
and finally, the diffusivities are determined by applying two different 
methods. 

2. Materials and methods 

2.1. Experiment 

The rotating finger test experiment was conducted for a pure dense 
alumina fine ceramic in a calcium aluminosilicate (CAS) slag; the slag 
properties are listed in Table 1. The slag was contained in a platinum 
crucible that is located in a furnace chamber, in which the temperature 
was controlled by thermocouples and it was constantly maintained at 
1550 ◦C. The sample was immersed in the slag and rotated at a constant 
rotational speed of 200 rpm for 60 min. After this, the sample was lifted 
from the slag bath and was left to drip for 30 min. After this, laser 
measurements were conducted. A total of eight steps were performed. 
More information about the experimental set-up has been described in 
the study by Kircher et al. [26]. 

From the curves that were obtained by the laser measurement re
sults, the corroded volume (ΔV) is computed and used to calculate the 
slag composition, immersed length (L), average sample radius (R) and 
average mass flux density (jexp). Table 1 presents the mean values of 
these quantities for single corrosion periods, which is calculated as the 
arithmetic mean between two consecutive measurements including the 
minimum radius measured (Rtip). Step 0 represents the experiment start, 
and therefore in this case, there is no time averaging of the values pre
sented. Furthermore, the slag composition in terms of mass fraction (w), 
density (ρ), viscosity (μ), and surface tension (σ) was determined at the 
beginning of each step. The density and surface tension were calculated 
with the correlations that were proposed by Xin [27,28], and the vis
cosity was calculated with the thermochemical software program 
FactSage v.7.2. These values were used to calculate the relevant 
dimensionless numbers: Reynolds Re = ωR2

/ν, Weber: We =

ρd(ωR)2
/σ, Capillarity: Ca = μωR/σ, Taylor: Ta =

2ω2d4η2

ν2(1−η2)
, and Schmidt: 

Sc = v/D, which are displayed in Table 2. Here, d is the gap width be
tween the crucible and the average sample radius, ω is the rotational 
speed, and ν is the kinematic viscosity. To compute the Schmidt number, 
we require the effective binary diffusivity, which is the quantity that we 
intend to calculate and is unknown. However, as a first approximation 
and with the intention of assessing the magnitude of these numbers, we 
referred to the report by Cooper and Kingery [3], in which the disso
lution experiments with the same slag composition and temperature 
were conducted for three different configurations. These configurations 
are the molecular diffusion, free convection, and forced convection ex
periments. As a starting point, we have chosen the diffusivity that was 
evaluated from the molecular diffusion experiments, which has a value 
of D = 3.0⋅10−11 m2/s. 

The properties of the slag do not change significantly with each step, 
and the relative changes between the start and end of the experiment are 
only 0.27% and 1.7% for the density and surface tension, respectively. 
Moreover, the calculated Schmidt numbers are very large; therefore, the 
asymptotic boundary layer approach is considered to be appropriate. 

2.2. Simulation 

The flow field was resolved with computational fluid dynamics 
(CFD) simulations using the software Ansys Fluent v.19 [29]. The vol
ume of fluid (VOF) multiphase approach was employed for the resolu
tion of the slag and atmosphere phases. Because the We and Ca numbers 
presented in Table 2 are not large enough to neglect the effects of the 
surface tension, these are incorporated with the continuous surface force 
(CSF) model. The model was laminar, 2D, and axisymmetric. This hy
pothesis was supported by the range of Reynolds numbers presented in 
Table 2. More importantly, the flow regimen was characterized by the 
Taylor number, which gives the ratio of the centrifugal to the viscous 
forces. In annular set-ups with rotating cylinders, centrifugal in
stabilities are known to develop after a critical Taylor number is 
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exceeded. The first appearing regimen is known as the Taylor-Couette 
regime, which was described by Taylor [30], who mathematically 
studied the locus of the transitions. For our experimental set-up, we 
calculated these critical values on the basis of the results reported by 
DiPrima et al. [31]. The lowest critical Taylor number corresponds to the 
first step and it is Tacrit = 5161. Because all values that are presented in 
Table 2 are well below this value, we can conclude that no such in
stabilities should form. 

The boundary conditions are summarized in Fig. 2; they include an 
axis of symmetry along the axis of the ceramic sample, a pressure outlet 
at the top, a no-slip condition on the crucible walls, and a constant 
rotational speed on the refractory surface. The density is considered to 
be constant with the value of the initial slag that is presented in Table 1 
and with all other properties listed in this table. A detailed description of 
the model and the underlying equations can be found in Ref. [25]. 

The simulations were conducted for a worn sample after 3 h of 
corrosion, in which the geometry significantly deviates from a perfect 
cylindrical surface. To generate the geometry that is used in the CFD 
model, we used the processed measured laser profile in the third step, i. 
e., 3 h of corrosion. The scanned surface has a very high resolution; 
however, to produce the sample geometry for the CFD model, we used a 
smooth approximation of this profile with splines by connecting 12 
points. A further step involves using a smoothing tool to avoid unreal
istic topologies. The exact geometry of the sample tip is unknown 
because it is impossible to perform laser measurements on this surface 
due to the retention of a thick slag droplet that scatters the laser beam. 
To construct the complete geometry for the simulations, this part was 
drawn with an arbitrary curvature. There is, therefore, some small un
certainty in the actual immersed length and the shape of this part. The 

approximated shape of the tip only serves the simulation of the flow 
field. The mass flux from this surface part was calculated by applying 
Levich’s [19] equation for a disc surface, in which the disc radius is 
considered as the minimum radius measured by the laser device. This 
value is also presented in Table 1. In Fig. 1, a comparison between the 
geometry that is obtained on the basis of the laser measurement results 
and the approximation that is used for the model is displayed. 

The mesh of the worn sample consists of quadrilateral and triangular 
elements. The immediate vicinity of the solute/solution interface is 
meshed with quadrilateral elements, as well as is the area of the slag/ 
atmosphere interface, for a better resolution of surface tension effects. 

The CFD simulations were employed exclusively for the resolution of 
the flow field. The transport equations for the species were not solved 
within the model. However, it was treated by a post-processing step 
through an approach based on the boundary layer theory, as described 
in our previous study [25]. All relevant effects were incorporated, and 
the mass transfer coefficients (kc) were calculated using the following 

Table 1 
Slag/refractory properties.   

wCaO  wAl2O3  wSiO2  jexp (kg/(m2s))  μ (Pa s)  ρ (kg/m3)  σ (mN/m)  R (mm)  Rtip (mm)  L (mm)  

0 0.3807 0.2100 0.4093 – 0.6423 2589 476.9 10.14 10.14 54.29 
1 0.3774 0.2168 0.4058 7.988E-4 0.6652 2590 477.9 9.86 9.49 53.01 
2 0.3720 0.2281 0.3999 6.049E-4 0.7045 2591 479.6 9.30 8.20 51.21 
3 0.3680 0.2363 0.3957 5.470E-4 0.7354 2592 480.8 8.82 7.10 49.99 
4 0.3646 0.2433 0.3920 5.559E-4 0.7624 2593 481.8 8.37 6.16 49.21 
5 0.3616 0.2496 0.3888 5.193E-4 0.7877 2594 482.8 7.96 5.40 48.28 
6 0.3588 0.2554 0.3858 5.970E-4 0.8118 2595 483.7 7.56 4.74 46.77 
7 0.3563 0.2607 0.3831 5.520E-4 0.8335 2596 484.5 7.24 4.31 45.23 
8 0.3544 0.2647 0.3810 4.069E-4 0.8514 2596 485.1 7.01 4.21 43.50  

Table 2 
Dimensionless numbers.   

Re Sc We Ca Ta 

0 8.7 8.3E6 5.5 0.3 384 
1 7.9 8.6E6 5.2 0.3 354 
2 6.7 9.1E6 4.8 0.3 307 
3 5.7 9.5E6 4.4 0.3 272 
4 5.0 9.8E6 4.0 0.3 244 
5 4.4 1.0E7 3.7 0.3 220 
6 3.8 1.0E7 3.4 0.3 198 
7 3.4 1.1E7 3.1 0.3 181 
8 3.1 1.1E7 2.9 0.3 168  

Fig. 1. Comparison of the corrosion curve obtained through laser measurement 
and the approximation used for the model after 3 h of corrosion. 

Fig. 2. Meshing of the simulation domain.  
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formula: 

kc =
χD

1 − ws

DSh0

L
(1)  

where ws is the alumina saturation mass fraction, Sh0 is the Sherwood 
number without considering the influence of the interface advection on 
the boundary layer thickness, and χD is a correction factor for this effect. 
Unlike our previous study, herein, the integral that is needed to calculate 
Sh0 is unavoidably a line integral because the curve is no longer easily 
represented by Cartesian coordinates, which results in Equation (2). 
Here, x is the local coordinate along the line that represents the worn 
profile, β is a directional derivative of the velocity that is tangential to 
the surface in the direction normal to it, and R the radius of the revo
lution surface at position x. The last two variables vary along the curve, 
unlike the case of the mantle of an ideal cylindrical surface where only β 
is a function of the coordinates. This line integral is evaluated numeri
cally with the trapezoidal rule. Variable β is calculated with Equation (3) 
and the wall shear stresses are defined by Equation (4). According to the 
software documentation [32], the axial wall shear stress (τz) considers 
the derivative of the axial velocity in the direction normal to the surface. 
In addition, the radial wall shear stress (τr) considers that of the radial 
velocity in the normal direction. 

Sh0(x)=
L Sc1/3

91/3 ν1/3Γ(4/3)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R β(x)

√
⎡

⎣
∫

s

R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R β(ζ)

√
ds

⎤

⎦

−1/3

(2)  

β=
∂vt

∂n̂
=

∂( v→⋅̂t)
∂n̂

=
∂ v→

∂n̂
⋅ t̂ =

1
μ (τz êz + τr êr) (3)  

τw,i = μ ∂vi

∂n̂
(4) 

In Equations (2)−(4): L is the characteristic length ; vt is the velocity 
component that is tangential to the surface; n̂ is a unit vector that is 
normal to the surface; ̂t is a unit vector that is in the tangential direction 
; v→ is the velocity vector; and êz and êr are the axial and radial unit 
vectors, respectively. 

For the verification of grid independence, two different mesh sizes 
were employed having Δx = 0.125 mm and Δx = 0.0625 mm. The total 
number of elements considered for the coarse and fine grids is 58,100 
and 232,400, respectively. 

3. Results and discussion 

3.1. Experimental results 

A total of eight steps were conducted; the corresponding corrosion 
curves are displayed in Fig. 3, which includes measuring the pristine 
sample. 

In Fig. 3, by starting from the nearly ideal cylindrical shape, the wear 
of the sample is not uniform, and this becomes more noticeable in the 
later steps. Two features can be easily recognized. The first feature is 
that the bottom region is prone to higher wear rates. The second feature 
is that the region of the slag/atmosphere interface has lower wear rates. 
These results agree with the findings of our previous study [25]; 

however, these were only applicable to ideal cylindrical samples. The 
alteration of the geometry can influence the flow field and, ergo, has a 
direct effect on the mass transfer coefficients profile. From the consec
utive profiles, it is possible to compute an experimental wear rate, which 
is displayed in Fig. 4, for the first three steps for clearer visualization. 

The wear rates for the three steps were qualitatively similar, and as 
expected, they decreased with time. We can observe higher wear rates 
that are close to the end of the sample and smaller rates that are close to 
the slag/atmosphere interface; the wear rate is at a maximum between 
these two regions. 

3.2. Simulation results 

The simulation of the flow field shows that for the corroded sample, 
the flow field is slightly different than that shown in our previous study 
based on ideal cylindrical samples [25]. In Fig. 5, the path lines coloured 
by the phase volume fraction are displayed. In our previous study [25], 
we could observe an Ekman vortex in the vicinity of the slag/atmosphere 
interface which is not present here anymore. 

To determine Sh0, variable β is shown in Fig. 6 for the mantle surface, 
where the independence of the grid size is also noticed. 

The use of Equation (2) with the above β profile and the known 
outline of the mantle surface resulted in the Sh0/Sc1/3 profile that is 
depicted in Fig. 7 for the cylinder mantle. The characteristic length that 
is used for Sh0 is the gap width d. In this figure, the independence of the 
grid fineness is also observed. Although the cylinder tip is not based on 
the real measurements of this surface, the mass transfer coefficient 
profile is shown in Fig. 8 for the approximated geometry with average 
tip radius Rtip being the characteristic length that is employed. 

These results show the same behaviour as the experimental wear 
rates that are shown in Fig. 4. Higher wear rates are observed towards 
the end of the sample, and the maximum wear rate exists between this 
region and the region of the slag/atmosphere interface whereat the 
corrosion rate is low. This provides a qualitative degree of the validation 
to the model, its hypothesis, and approximations. Furthermore, it allows 
us to employ the methodology to determine the diffusivities with more 
confidence. 

Lastly, we review the main differences with our previous in
vestigations for perfect cylindrical surfaces [25] with the results ob
tained here. The application of the asymptotic boundary layer method 
for the perfect cylindrical surface is more straightforward given that the 
geometry is easily described in cartesian coordinates, and for this 
method, only axial stresses are necessary for the cylinder mantle and 

Fig. 3. Measured corrosion profiles.  Fig. 4. Experimental wear rates for the first three dissolution steps.  
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radial stresses for the tip of the sample. However, for the corroded 
surface, the line integral has to account for the continuous change in 
geometry as well as the variations in axial and radial shear stresses for 
both mantle and tip. For cylinder surfaces, we observed an Ekman vortex 
in the vicinity of the slag/atmosphere interface, which resulted in an 
inflection point on β and therefore in a minimum in the Sherwood 
profiles where the vortical structures meet. This structure is no longer 
present in the investigations performed in this work; and the axial flow 
induced by the rotation of the sample tip ascends further into the 
annular region, however, we still observe a minimum and maximum of 
the Sherwood profile over the sample mantle, even when β remains 
negative over the whole region, therefore these features are strongly 
dependent on the geometrical aspect of the corroded sample. Naturally, 
some commonalities are maintained between these configurations; in 

both cases, the largest wear rates are observed towards the tip of the 
sample and the lowest at the slag/atmosphere interface. 

3.3. Diffusivity calculations 

The binary diffusivity was calculated by two different approaches. 

3.3.1. Diffusivity calculation based on mass flux density 
The first approach consists of employing the experimental average 

mass flux density (jexp) to determine the diffusivity value that results in 
the same theoretical/simulation mass flux density (jmodel). In this study, 
the average experimental mass flux density is computed from the 
product of the corroded volume (ΔV) during one step, i.e., 1 h of the 
dissolution time (Δt) with the refractory density (ρr) that is divided by Δt 
and the dissolution area (A), which is measured with the laser device. 

jexp =
ρrΔV
AΔt

(5) 

Moreover, the average mass flux density is computed from the area 
weighted average between the mantle (1) and the tip (2). The former is 

Fig. 5. Flow field path lines that are coloured red for the slag and blue for the 
atmosphere after 3 h of corrosion. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. β over the mantle after 3 h of corrosion (L = submerged length).  

Fig. 7. Local Sh0/Sc1/3 on the specimen mantle of the corroded sample (L =
submerged length). 

Fig. 8. Local Sh0/Sc1/3 on the cylinder tip.  
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calculated as shown above with the average of the data that is displayed 
in Fig. 7 and the latter is calculated by using Levich’s equation. This 
results in the following expression. 

jmodel = kcΔc=
1

A1 + A2
(A1k1 +A2k2)Δc (6) 

kc is calculated from Equation (1), in which the unknown diffusivity 
allows the determination of Sh0Sc−1/3. By correlating Equations (5) and 
(6) and after performing an algebraic manipulation, the following 
expression is obtained. 

D2/3 =
jexp d

χDBρsGν1/3 (7)  

where B is the mass transfer parameter B = (ws −w∞)/ (1 − ws); ρs and 
ν are the slag density and viscosity, respectively; and G = Sh0 Sc−1/3, as 
shown in Figs. 7 and 8. The value of G is obtained by an area weighted 
average of the tip and mantle contributions. From this, Sh0 from the tip 
of the sample is modified by multiplying it with d/R so it has the same 
characteristic length, d, as the mantle and it is used in Equation (7). 

G=
1

A1 + A2
(A1G1 +A2G2) (8) 

With this approach, two diffusivities were calculated. The first 
diffusivity, D = 5.06⋅10−11 (m2 /s), corresponds to the calculation that 
uses the simulation Sh0 Sc−1/3 profile for the mantle and Levich’s 
equation for the unknown tip. The second value, D = 5.52⋅10−11 (m2 /s),
is calculated by using the simulations for the mantle and the approxi
mation to the tip and has a minor deviation from the diffusivity by using 
a simulation for the mantle and Levich’s equation for the tip. Therefore, 
we conclude that the approximation of the unknown tip geometry does 
not significantly influence the end value of the diffusivity. 

Furthermore, with the known diffusivity, we are able to compute a 
prediction for the corroded profile at the end of the 1 h dissolution step 
by interpolating the local mass transfer coefficient profile that is ob
tained with a simulation to the laser measurement at the beginning of 
the step. The prediction is done with a solute mass balance. This is 
achieved by integrating the rate of the solute radius change (Equation 
(9)) under the hypothesis that this flux remains constant during the 
integration. 

dR
dt

=
−1
ρr jmodel (9) 

Subsequently, we compared this prediction for the corrosion profile 
at 3 h of corrosion with the laser measurements, in which we observed 
good agreement between the curves. 

3.3.2. Diffusivity calculation by curve fitting 
The second approach is motivated by the good agreement between 

the measured and simulated profiles for the end of the step shown in 
Fig. 9. A least-squares problem was formulated in which the diffusivity is 
the design variable. The advantage of this method is that no assumptions 
are needed for the mass flux from the tip of the sample. This is because 
we only focused on fitting the predicted simulation profile to the laser 
measurement at the end of the step. The minimization problem was 
solved by using MATLAB’s unconstrained, derivative-free, fminunc 
solver, which is based on the Nelder-Mead simplex algorithm. The so
lution is the global minimum and the value of the optimum is D =

4.80⋅10−11m2/s. The fitting can be observed in Fig. 10. This diffusivity is 
comparable to the values in Table 3, wherein two indicators of the 
goodness of the solution are displayed, namely, the Akaike information 
criterion (AIC) and the Bayes information criterion (BIC). A clear 
explanation of the calculation and interpretation of these parameters 
can be found in a study by Spiess et al. [33]. These indicators are used to 
compare the different models and the models with the lowest values (the 

highest absolute values) are considered to be optimal. Clearly, the 
optimal result was obtained by fitting the model to the experimental 
data with the least-squares problem. In addition, in this table, the error 
that is incurred by using the other approaches were compared to the 
curve fitting, which is given in the last column. From this, we can 
conclude that the methods are consistent, and they provide similar 
results. 

For this solution, we also computed the 95% confidence interval, D =

[4.63 ⋅10−114.97 ⋅10−11]. 

Fig. 9. Experimental corrosion profile and simulated corrosion profile after 3 h 
of dissolution. 

Fig. 10. Experimental corrosion profile and simulated profile after 3 h of 
dissolution with diffusivity out of curve fitting method. 

Table 3 
Diffusivity values and statistical indicators.  

Disc Mantle D (m2/s) AIC BIC Error 

Levich Simulation 5.06E-11 −481.0 −476.9 5.4% 
Simulation Simulation 5.52E-11 −427.6 −423.4 15.0% 
– Curve Fit 4.80E-11 −489.9 −485.7 –  
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3.4. Literature discussion 

The results (Section 3.3.2) were compared with the relevant reported 
mass transfer equations, which can be found in our previous publication 
[25], where we found a good qualitative agreement between the data 
trend and the equations by Eisenberg et al. [23] and Kosaka and Minowa 
[34] for the typical Reynolds range of these experiments. In terms of the 
error, the closest relation was between the Kosaka and Minowa equa
tions with an error of 7–19%. All these calculations and comparisons 
were conducted for the ideal cylindrical samples. The comparison here is 
for the corroded surface; the comparison results are summarized in 
Table 4, in which all the equations with average quantities were 
employed. As expected, a larger deviation from the simulated values as 
with the case of an ideal cylindrical sample is observed. The smallest 
error is obtained with a modified version of the equation by Tachibana 
et al. [35], in which the Sc1/4 factor is exchanged with Sc1/3. However, a 
sound theoretical background for the utilization of this equation is 
lacking because the flow regimen is entirely different. The second-best 
approximation is given by Eisenberg’s equation, which has a relative 
error of 30%. 

In Section 2.1, we introduced a study by Cooper and Kingery [3] and 
employed diffusivity values presented by these authors as a first 
approximation to estimate the Schmidt numbers. This section compares 
their results with the diffusivities that were calculated with our 
methods. In their study, three different configurations were employed 
with a different evaluation method to determine the diffusivity. Starting 
with the molecular diffusion experiments, the evaluation method that 
was employed is the one that was previously proposed by Cooper [36]. 
For these investigations, the experimental times were much shorter than 
those in the investigations based on natural and forced convection. This 
is because the static fluid used for pure molecular diffusion cannot be 
maintained. After a certain time, the appearance of natural convection 
and/or hydrodynamic instabilities is unavoidable. However, for a static 
sample at 1550 ◦C and under 15 min, the experimental data appear to be 
reasonably well explained by pure molecular diffusion; therefore, the 
presented value of diffusivity D = 3⋅10−11 m2/s is noteworthy. For the 
natural convection, a Sherwood correlation for the vertical cylinders 
was employed and the change in the radius of the sample was used to 
compute the average mass flux density. Forced convection experiments 
were also conducted using a rotating cylinder that had a smaller length 
to radius ratio. However, the mass loss from the cylinder mantle was not 
investigated because they measured the length of the cylinder with time, 
which became smaller due to the dissolution from the disc-shaped sur
face. For this surface, the authors employed Levich’s equation to 
calculate the mass transfer rate. Given that their experiments were 
conducted at a much higher rotational speed (1200 rpm) and as 
observed in our previous study with a similar set-up [25], it is expected 
that Levich’s equation can accurately describe this mass flux very. 
Nevertheless, the evaluation method that these authors employed for the 
experiments in natural and forced convection both lack the correction 
for the influence of the Stefan velocity on the species boundary layer 
thickness. For their evaluation method for the forced convection ex
periments, this correction is easily achievable. Introducing this rectifi
cation results in a diffusivity value of D = 6.69⋅10−11m2/s. It is assumed 
that this value is more reliable than the other two reported in Ref. [3] 
because of the clear definition of the Sherwood number. These values 
agree reasonably well with our calculation, with the largest error being 
29%. 

The main differences to the discussed literature and references pro
vided in the introduction section are owed to the incorporation of 
dissolution-related phenomena which are commonly neglected: firstly, 
in our method, we account for the advection of the solute/solution 
interface and also its effect on the boundary layer thickness. Secondly, a 
more accurate estimation of the Sherwood number is given by con
ducting a simulation of the actual sample shape, where no 

approximations are taken by using reported Sherwood equations that do 
not exactly correlate with the finger test set-up. A drawback of this is 
that unlike the correlations used by other authors where the radius or 
length of the sample are used for computing Sherwood numbers no clear 
global parameters are identifiable in this method because the shape of 
the geometry is approximated with higher accuracy. Moreover, the 
appropriateness of the handling of large Schmidt numbers is assured by 
the asymptotic boundary layer method, whereas most reported Sher
wood or Nusselt’s relationships are given for much smaller Schmidt or 
Prandtl numbers. 

4. Conclusions 

The calculations of the mass transfer coefficients for the dissolution 
of a pure dense alumina fine ceramic in a liquid CAS slag were per
formed for a worn ceramic sample. The calculations were conducted for 
an already corroded geometry that was approximated from the laser 
measurements of a real sample. Good qualitative agreement was 
observed between the experimental wear rates and the calculated mass 
transfer coefficient profile. These results strengthened the model, which 
allows for an accurate estimation of the effective binary diffusivity. 

This might be regarded as a main disadvantage of this method 
because it is very case-specific because the geometry is not easily 
described by global parameters. But for this same reason, it is precisely 
relevant because there are currently no equations that are available in 
the literature for these set-ups. In particular, we consider the progressive 
change of the geometry within the experiment and the deviation from a 
cylindrical shape. When comparing some documented equations for the 
cylindrical geometries, we determined that the equation by Eisenberg 
et al. [23] is a good approximation for the mass flux density that comes 
from the dissolution of the cylinder mantle. 

The effective binary diffusivity was determined by applying two 
different methods. The first approach equalized the experimental mass 
flux density with the average mass flux density that was calculated with 
the simulation. The second method applied curve fitting along the end 
worn profile with a simulated profile. We believe that the latter 
approach is the most accurate because it includes fewer approximations 
for the unknown geometry of the tip sample; however, both methods are 
consistent in that they deliver similar results. In addition, the values for 
both methods agree reasonably well with the values that were reported 
by Cooper and Kingery [3]. 

The methodology emerges as trustable and it provides a valuable tool 
to characterize the wear resistance of ceramic materials in different 
systems, which can potentially be used for process and cost 
optimization. 
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A B S T R A C T   

This study entailed a dissolution study of alumina fine ceramics in a CaO–Al2O3–SiO2–MgO silicate slag system 
with a CaO/SiO2 weight ratio of 0.65. Finger-test experiments with several corrosion steps were carried out in a 
contemporary continuous wear testing device at 1450, 1500, and 1550 ◦C with 200 rpm. The corroded sample 
profiles were measured using a high-resolution laser scanner, and the processed measurement data were used to 
extract the dissolution parameters (i.e. corroded volume, surface area, mean radius, tip radius and immersion 
length). The diffusivity determination method using Sherwood relations was developed for the dynamic finger- 
test setup. The diffusivities for all corrosion steps were determined from these dissolution parameters, and those 
obtained from the Sherwood relations were compared with the ones received by a simulation approach that 
includes deviations from the cylindrical shape. The results obtained using Sherwood relations are sufficiently 
accurate in several cases.   

1. Introduction 

The dissolution studies are conducted for lifetime assessment of re
fractories used in industrial vessels for high-temperature operations 
[1–14]. Improved refractory materials with enhanced lifetimes are 
desired for cost and resource efficiency, and their design necessitates an 
in-depth understanding and accurate quantification of the dissolution 
parameters. Several dynamic corrosion studies have been reported in the 
literature [3,15–32], and most of them are based on the post-mortem 
analysis yielding a wear mechanism by microstructure evaluation [21, 
22,32–35] but fail to determine a wear measuring quantity. In some 
studies [15,17,18,23–31,36,37], the dissolution parameters, such as 
change in dimension and sample weight, were used to quantify corro
sion. The measurement techniques used in the documented studies were 
not accurate enough as the measurements were taken manually at few 
locations of the corroded sample. Kircher et al. reported a contemporary 
corrosion testing device with an in-situ measurement technique [38]. 
The superior accuracy of this device is because of a laser scanner used to 
measure the whole surface of the sample. A resolution of 100 µm along 
the length and 20 µm in the circumferential direction of a cylinder 
specimen can be achieved. In this study, this device has been used for the 
dynamic corrosion study of alumina fine ceramics in a 
CaO–Al2O3–SiO2–MgO (CASM) silicate slag system with a CaO/SiO2 

weight ratio of 0.65. Alumina has been chosen here as it is an important 
refractory material for the glass and steel industries [3,20,27,28,39–45]. 
The dissolution of alumina in molten slag is controlled by diffusion 
through a boundary layer, as reported by many researchers [18,37,41, 
46–53]. This study aimed to determine the effective binary diffusion 
coefficient, which is the most important parameter to quantify the 
dissolution process, by applying the mass transfer equations to the 
corrosion experiments. Based on Cochran’s equation [54], Levich 
introduced the famous equation for the mass transfer from a disc-shaped 
surface of infinite radius, submerged in a semi-infinite medium [55]. 
This equation provides an accurate approximation of the mass flux 
density for real finite geometries if the boundary layer thickness is much 
smaller than the disc radius. Furthermore, the mass flux density is uni
form throughout the disc surface. As a result this equation can be applied 
to estimate the change in the length of a cylindrical sample which was 
reported by Cooper and Kingery [18]. While the Levich equation is 
derived for the disc surface, Eisenberg et al. [56] proposed an equation 
for the ionic mass flux from the mantle of a cylindrical sample. Kosaka 
and Minowa [57] introduced the Sherwood relations for the dissolution 
of cylindrical shaped metals into liquid metals. Tachibana and Fukui 
[58] reported equations for the heat transfer through the annular region. 
These equations, after necessary modifications, can be implemented for 
the dissolution of the solid in a melt. Um et al. [24] used Eisenberg’s 
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equation [56] to determine the mass transfer coefficient of MgO in 
ferromanganese slags. 

Guarco et al. [59] reported a simulated method to determine the 
diffusivities from rotating finger experiments of dense ceramic materials 
applicable even for large Schmidt numbers, which exist also for the case 
of interest in this study. This method also considers the advection that 
occurs in an orthogonal direction to the solid/melt interface, charac
teristic of the dissolution process, and furthermore the effect of Stefan’s 
velocity on the boundary layer thickness. All these considerations make 
this method more appropriate for the dissolution investigations than 
other extant methodologies in the literature, where these effects are 
commonly neglected. The device reported by Kircher et al. [38] was 
used for the experiment. The effective binary diffusivity is determined 
via two different approaches: In the first approach the experimental 
mass flux density is equalized with the average mass flux density 
calculated by simulation. For the second method, curve fitting along the 
end worn profile with a simulated profile is applied. The simulated re
sults were compared with those of different equations reported in the 
literature and were found to be in agreement with the results of the 
modified Tachibana equation [58]. This agreement may vary in other 
experiments as the results depend on the shape of the corroded sample. 
Though the method reported by Guarco et al. produces more reliable 
results than other reported equations, its application requires much 
effort. Therefore, the present work aimed to compare this method with a 
simpler one and examined the advantages of the testing device pre
sented by Kircher et al. [38] to quantify the alumina diffusivity. As a 
result, improved effective binary diffusivities are expected owing to 
more accurate measurements and evaluation methods. Further, the 
availability of accurate but yet simpler evaluation methods should be 
clarified. For that purpose, dissolution experiments were carried out at 
1450, 1500, and 1550 ◦C with nine, eight, and six corrosion steps, 
respectively. The diffusivity was determined for all the corrosion steps 
using the modified Tachibana equation, and the diffusivity of one step at 
each temperature was compared with the results obtained by the 
application of the method reported by Guarco et al. [59]. Further, the 
Arrhenius plot of the diffusivities was checked as a test for plausibility. 

2. Materials and methods 

2.1. Materials 

In this study, alumina fine ceramics (Ants Ceramics Private Limited, 
India) with an alumina content of 99.7 wt% and a bulk density of 
3.8706 g/cc have been investigated. The alumina cylinders had a 20 mm 
diameter and 110 mm length. All samples have an axial drill of 5 mm 
diameter and 32 mm depth, and a side drill of 3.5 mm diameter to fix the 
cylinder with the rotor shaft. 

The silicate slag was prepared using decarburized CaCO3, alumina 
powder, quartz powder, and MgO powder (S3 Handel und Dien
stleistungen UG). Table 1 shows the slag properties, where η, ρ, and TL 
are dynamic viscosity, density, and liquidus temperature, respectively. 
The viscosities of the original slag and alumina saturated slag, and the 
saturation limits of alumina in this slag at different temperatures are 
represented in Fig. 1. The viscosities, liquidus temperature, and satu
ration limits were calculated using FactSage 7.2. The density of the slag 
was calculated according to Xin et al. [60]. Fig. 1 shows that viscosity is 
higher for the saturated slag, and the viscosity increase at a lower 
temperature is larger than that at a higher temperature. 

2.2. Experiment 

In the present work, dynamic corrosion experiments were carried out 
using a continuous wear testing device (CWTD) with 200 rotations per 
minute (rpm) at 1450 ◦C, 1500 ◦C, and 1550 ◦C. The detailed descrip
tion of the CWTD and measurement technique can be found in the 
publication reported by Kircher et al. [38]. For each experiment, 580 g 
of slag was filled in a platinum-10% rhodium (Pt-Rh10) crucible of 
65 mm inner diameter and 100 mm height. Initially, the clearance be
tween the crucible bottom and sample tip was set to 20 mm which 
continuously increased with the dissolution of the sample. The heating 
and cooling rate of the furnace incorporating the slag and alumina 
sample were defined to 5 ◦C per minute. The dissolution times per 
corrosion step at 1450 ◦C, 1500 ◦C, and 1550 ◦C were set to 135, 105, 
and 90 min, respectively. After each corrosion step the corroded sample 
rested above the crucible for 30 min to allow the slag to drop down from 
the sample surface, and then the laser device scanned the whole sample 
surface. The corrosion step and sample scan cycle were repeated at an 
isothermal experimental temperature until the last step specified or until 
the test was terminated because of reasonably small sample diameter. 

2.3. Continuous wear curve evaluation 

The laser device scans the sample, rotating at 2 rpm, with a profile 
scan rate of 100 s−1 to produce 3000 profiles for one complete rotation. 
All the profiles were averaged after some preprocessing to get a unique, 
axisymmetric, and representative continuous wear (CW) curve. Kircher 
et al. [38] has reported the detailed description of profile processing. 
The sample length and radius can easily be measured from this CW 
curve. The dissolution parameters (corroded volume, surface area, mean 
radius, tip radius, and immersion length) can be extracted from the CW 
curve to determine the mass flux density and diffusivity. The intersec
tion point of the initial curve of the uncorroded sample and the actual 
CW curve defines the onset for the corroded part. The immersion length 
is defined from the sample tip to the onset of the corroded part. The 
remaining volume and mantle surface area were determined by inte
gration along the immersion length. The area of the disc shape tip was 
added to get the total surface area. The mean radius along the immersion 
length was used as the representative cylinder radius for the diffusivity 

Table 1 
Slag properties.  

Slag CaO [wt%] Al2O3 [wt%] SiO2 [wt%] MgO [wt%] η1450 ◦C [Pa s] η1500 ◦C [Pa s] η1550 ◦C [Pa s] ρ1550 ◦C [kg/m3] TL [◦C] 

CASM slag, C/S = 0.65  32.42  11.16  49.56  6.86  1.02  0.73  0.53  2579  1265  

Fig. 1. Viscosities of slag and saturation limits of Al2O3 over temperature.  
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determination and is larger than the tip radius. The tip radius was used 
to calculate the mass flux from the bottom of the sample by the Levich 
equation. All the corrosion parameters required for the diffusivity cal
culations tend to change with the dissolution time within the corrosion 
step, so it is wise to evaluate the diffusivity at the middle of the corrosion 
step which will be representative for that particular step. The parame
ters are defined in Table 2. The surface is scanned before dipping the 
sample into the slag, thereby yielding the initial profile at t0. The profiles 
are measured at time steps ti, 1 ≤ i ≤ m, where m is the number of laser 
scans performed in addition to the first scan at t0. 

2.4. Diffusivity determination 

The Sherwood correlations are frequently used to calculate the mass 
transfer coefficient. The knowledge of mass flux aids in determining the 
diffusivity from the mass transfer equations. In addition to the already 
mentioned procedure by Guarco et al. [59], the diffusivity has been 
calculated from the total mass flux density using the modified Sherwood 
relation (translated from Nusselt correlation reported by Tachibana and 
Fukui [58]) for the mantle and the Sherwood relation (reported by 
Levich [55]) for the bottom of the sample. The determination procedure 
has been derived as follows: 

Eq. (1) represents the diffusive mass flux density including the 
convective flow, and considers the influence of the Stefan flow on the 
fluid flow field. 

j = Х
D
L

1
1 − ws

Sh0⋅Δc (1) 

Here, j is the mass flux density, D is the effective binary diffusivity, L 
is the characteristic length, ws is the mass fraction of the dissolving 
species in the saturated slag, Sh is the Sherwood number, and Δc is the 
concentration difference. The quantities used in Eq. (1) have been 
defined in Eqs. (2)–(5). 

Sh(0) =
β(0)L

D
= Sh(0)(Re, Sc,Γ) (2)  

Sh0 = Sh(B = 0); β =
D
δ
; β0 = β(B = 0) (3)  

B =
ws − w0

1 − ws
(4)  

Х = Х(B, Sc) =
Sh
Sh0

(5) 

Here, w0 is the mass fraction of the dissolving species in the slag bulk, 
Re is the Reynolds number, Sc is the Schmidt number, Γ is the ratio of the 
gap width of the annuli to the cylinder radius, δ is the effective boundary 
layer thickness, and β is the mass transfer coefficient. 

The quantity X can be approximated by a linear expansion in B: 

X =
Sh

Sh(B = 0)
= X ≈

1
1 + 0.566B

(6) 

Tachibana et al. reported different empirical equations for heat 
transfer in different setups [58]. The heat transfer in the annuli with a 
rotating inner cylinder is similar to that in the dynamic finger test for the 
dissolution with the exception of the bottom gap. Eq. (7) is the Sherwood 
relation transformed from the Nusselt relation for the aforesaid setup. 

Sh =
β⋅(R2 − R1)

D
= 0.21⋅

(
Ta2⋅Sc

)1
4 = 0.21⋅Re1

2⋅Sc1
4⋅
(

R2 − R1

R1

)1
4

; Ta ≤ 104

(7)  

with Ta =
ω⋅R

1
2
1⋅(R2 − R1)

3
2

ν and Re =
ω⋅R1⋅(R2 − R1)

ν 

Here, R1 is the mean cylinder radius, R2 is the crucible radius, Ta is 
the Taylor number, ω is the angular velocity of the rotating cylinder, and 
ν is the kinematic viscosity of the melt. 

According to Guarco et al.[59], the change in the exponent value of 
the Sc number from ¼ to 1/3 exhibited better results for the corroded 
sample. After this modification, the Sh number in this equation is in good 
agreement with the simulation results for the CWTD dissolution exper
iment. Eq. (8) represents the modified Sherwood relation for the mantle 
of the cylindrical sample. 

Sh0,m =
β0⋅(R2 − R1)

D
= 0.21⋅Re1

2⋅Sc1
3⋅
(

R2 − R1

R1

)1
4

; Re =
ω⋅R1⋅(R2 − R1)

ν
(8) 

Eq. (9) represents the Sherwood relation for the bottom of a rotating 
cylinder in a finger-test setup according to Levich [55]. 

Sh0,b =
β0⋅Rt

D
= 0.62⋅Re

1
2⋅Sc

1
3; Re =

ω⋅R2
t

ν (9) 

Here, Rt is the tip radius. 
According to Eq. (1), the total mass flux can be represented as Eqs. 

(10) and (11) for the submerged mantle and cylinder bottom, 
respectively. 

jtot⋅Atot = jm⋅Am + jb⋅Ab; Am = 2R1πl; Ab = R2
t π; Atot = Am + Ab (10)  

Table 2 
Definition of parameters required to evaluate diffusivity for the interval (ti,ti-1).  

Quantity Measured 
at 

Evaluation at 

ti (ti + ti-1)/2 

Refractory volume Vr
i Vr

i−
1
2

=
Vr

i + Vr
i−1

2 

Volume loss 
relative to initial 
volume 

ΔVr
i =

Vr
0 − Vr

i 

ΔVr

i−
1
2

= Vr
0 − Vr

i−
1
2 

Mass loss relative 
to initial mass 

Δmr
i = ρr⋅ 

ΔVr
i 

Δmr

i−
1
2

= ρr⋅ΔVr

i−
1
2 

Bulk concentration 
of species k in 
slag  cs

0,k,i−
1
2

=

cs
0,k,0Vs

0 + Δmr

i−
1
2

wr
k

Vs

i−
1
2

=

cs
0,k,0Vs

0 + Δmr

i−
1
2

wr
k

ms
0 + Δmr

i−
1
2

ρs; ws

0,k,i−
1
2

=

cs
0,k,0Vs

0 + Δmr

i−
1
2

wr
k

ms
0 + Δmr

i−
1
2 

Dimension less 
concentration 
difference  B

i−
1
2

=

ws
s − ws

0,i−
1
2

1 − ws
s 

Viscosity  
η = η

⎛

⎜
⎝w

0,k,i−
1
2

⎞

⎟
⎠

Immersion 
specimen length 

li l
i−

1
2

=
li + li−1

2 

Specimen effective 
radius 

R1,i 

R
1,i−

1
2

=

̅̅̅̅̅̅̅̅̅̅̅̅
V

i−
1
2

πl
i−

1
2

√
√
√
√
√
√
√

Submerged surface 
area 

Ai A
i−

1
2

=
Ai + Ai−1

2 

Mass flux density  j
i−

1
2

=
Δmr

i − Δmr
i−1

A
i−

1
2

(ti − ti−1)
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j⋅Atot = Х ⋅D⋅
{

Am⋅
Sh0,m

R2 − R1
+ Ab⋅

Sh0,b

Rt

}

ρs⋅B (11) 

Here, jtot, jm, jb and Atot ,Am,Ab are the mass flux densities and surface 
areas of the total surface, mantle, and bottom of the cylinder, respec
tively, l is the immersion length, and ρs is the density of the slag. On 
combining Eqs. (6), (8), (9), and (11), we can get Eq. (12). 

j =
1

1 + 0.566⋅B
⋅

1
2l⋅R1 + R2

t

ω1
2⋅ρs⋅B
ν1

6
⋅D2

3⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.42⋅
l⋅R

5
4
1

(R2 − R1)
1
4
+ 0.62⋅R2

t

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(12) 

After rearranging Eq. (12), the effective binary diffusivity (Di,i+1) can 
be determined for each corrosion step using Eq. (13). In one dissolution 
experiment, there are several data of the in-situ measured profiles. The 
average of the diffusivities of several corrosion steps provides the 
representative diffusivity (D0,i). 

Di,i+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

j⋅(1 + 0.566⋅B)⋅
(
2l⋅R1 + R2

t

)
⋅(R2 − R1)

1
4⋅ν1

6

ω1
2⋅ρs⋅B⋅

⎧
⎪⎨

⎪⎩
0.42⋅l⋅R

5
4
1 + 0.62⋅R2

t ⋅(R2 − R1)
1
4

⎫
⎪⎬

⎪⎭

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3
2

(13)  

3. Results and discussion 

3.1. CW curves 

After each corrosion step, one representative CW curve was gener
ated by the averaging of all the profiles along the circumference. This 
procedure has two major advantages. Firstly, the individual profiles of 
the corroded sample may be slightly inclined with a positive or negative 
angle to the theoretical axis of rotation due to the nonconcentric rotation 

of the sample during the laser measurement, and this inclination can be 
eliminated. Secondly, the corroded sample is not axisymmetric, which 
makes the dimensional analysis equivocal; the CW curve offers an 
equivalent axially-symmetric shape. Fig. 2 shows the CW curves for the 
dissolution experiments at 1450 ◦C, 1500 ◦C, and 1550 ◦C. Kircher et al. 
[38] have reported the CW curves at 1550 ◦C as an example without 
further evaluation of the dissolution parameters. The uncorroded parts 
of all the CW curves coincide with each other and also with the CW curve 
of the virgin sample. The onset of the corroded part shifted towards the 
uncorroded part with time because of an increase in the slag quantity 
with dissolution. The corroded parts of all the CW curves are distin
guished and do not coincide. The corroded sample radius and length 
decreased with the dissolution time, and for a particular dissolution 
time, the decrease was greater with increasing temperature. For the first 
corrosion step, the dissolution at the bottom edge was comparatively 
higher. Fig. 3 shows the virgin and corroded samples. The CW curves for 
the last corrosion steps depict a well-defined corroded sample shape. 
There was no Marangoni groove formation at the three phase boundary 
(slag/refractory/atmosphere), and this indicates that the experimental 
Reynold’s number is sufficiently high to suppress the Marangoni 
convection. 

3.2. Dissolution parameters 

The dissolution parameters, namely corroded volume, surface area, 
mean radius, tip radius, and immersion length were extracted from the 
CW curves. As these parameters were determined from the CW curves, 
they are expected to be more accurate than the manual measurements of 
the post-mortem analysis. The change in the sample length, mean 
corroded radius, volume, and mass over dissolution time are represented 
in Fig. 4 to understand the effect of temperature on the dissolution 
behavior of alumina in the CASM slag being studied. All these param
eters increased in value with the rising experimental temperature. The 
average rate of change in the mean corroded radius, volume, and mass 

Fig. 2. CW curves at different dissolution time steps; a) at 1450 ◦C, b) at 1500 ◦C, and c) at 1550 ◦C. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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increased 1.6–1.7 times with an increase in temperature from 1450 ◦C to 
1500 ◦C and 1500 ◦C to 1550 ◦C. The average rate of change in the 
sample length increased 3.27 times with an increase in temperature 
from 1500 ◦C to 1550 ◦C, contrary to the 1.83 times increase for the 
temperature rise from 1450 ◦C to 1500 ◦C. The higher average rate of 
change in length at 1550 ◦C may have occurred because of the faster 
dissolution of the relatively thinner sample (compared to sample 
thickness at lower temperatures), especially at the ending steps in the 
low viscosity slag. A slightly decreasing slope or almost linear trend of 
the dissolution parameters indicates a quasi-steady dissolution. 

3.3. Diffusivity 

The diffusivities for all the steps were calculated with Eq. (13) using 
the dissolution parameters extracted from the CW curves and the 

parameters tabulated in Table 3. The mean sample radius, tip radius, 
and immersion length continuously decreased with the dissolution time. 
whereas the bulk concentration of alumina and slag viscosity increased 
with the alumina dissolution. Fig. 5 represents the diffusivities (Di,i+1 
and D0,i) for all the corrosion steps at three experimental temperatures. 
The diffusivity increased with increasing temperature. The Arrhenius 
plot was produced with the diffusivities of the corresponding corrosion 
steps where a similar mass loss, relative to the initial mass (m1: 
23.06–26.10 g, m2: 34.14–36.57 g, and m3: 41.55–43.34 g), was 
observed at different temperatures. The diffusivities received are func
tions of temperature and slag composition, which changes during 
dissolution. For the Arrhenius plot, the diffusivities were converted to 
those for the virgin slag composition using the Stokes-Einstein relation 
that defines the product of diffusivity and viscosity to be constant. This 
conversion makes the Arrhenius behavior of diffusivity a function of 
temperature only, else the alumina content of slag would have been 
another parameter. Fig. 6 represents the Arrhenius plot which shows the 
linear tendency, thereby confirming the plausibility of diffusivities. The 
linear fit is better when the mass losses of the corrosion steps are com
parable. The activation energy of diffusion for the m1, m2, and m3 cases 
are 288.1, 262.0, and 258.6 kJ/mol, respectively. 

Table 4 compares the diffusivities determined by Eq. (13) and ob
tained from the simulation according to Guarco et al. [59]. The second, 
thirds and second steps of 1450 ◦C, 1500 ◦C, and 1550 ◦C experiments, 
respectively, were chosen arbitrarily for this comparison. Diffusivities 
obtained from both methods show a good agreement for the chosen 
corrosion steps. 

4. Conclusions 

In conclusion, the alumina diffusivity was successfully quantified 
from the total mass flux density using Sherwood relations. Therefore 
dissolution experiments of alumina fine ceramics in molten CASM slag 
were carried out in CWTD with in-situ measurements. The dissolution 
parameters were extracted from the CW curves which include the 
measurement from the whole corroded surface. This enhances the 

Fig. 3. Virgin and corroded samples with CW curves of last steps inserted.  

Fig. 4. Dissolution parameters over time at different experimental temperatures. The numbers inserted give the mean value over the total dissolution time. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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accuracy and reliability of the results. A defined experimental rotational 
speed was sufficient to suppress the Marangoni convection at the three 
phase boundary allowing the use of the presented Sherwood relation 
and of a method reported by Guarco et al. [59]. A slightly decreasing 
slope or almost linear trend of dissolution parameters indicates a 
quasi-steady dissolution. The rates of change of the mean corroded 
radius, volume, and mass also show a linear trend with temperature in 
the experimental temperature range. Dissolution rates and determined 
diffusivities increased with increasing temperature, as expected. 
Arrhenius plot shows a linear tendency which confirms the plausibility 
of diffusivities. The diffusivities obtained from the mass transfer equa
tion and simulation show a good agreement. Although the diffusivity 
from the simulation is more reliable as it considers the flow field around 
the actual sample geometry of that particular step, the diffusivity can be 
reliably determined using the given equation with less effort. 

Hence, using the quoted equation with the accurate measurement 

Table 3 
Dissolution parameters used for diffusivity calculation.  

Temperature 
(◦C) 

Step Mean sample radius, 
R1,i-1/2 (m) 

Tip radius, Rt,i-1/2 

(m) 
Bulk concentration, w0,i-1/2 

(%/100) 
Viscosity, ηi-1/2 

(Pa s) 
Immersion length, li- 
1/2 (m) 

Mass flux density, ji-1/2 

(kg/m2 s)  

1450 t1/2  0.00997  0.0097874  0.11654  1.0448  0.050903  0.000229709 
t3/2  0.00949  0.0087264  0.12656  1.0949  0.049998  0.000263853 
t5/2  0.00899  0.0077656  0.13573  1.1422  0.049848  0.000232004 
t7/2  0.00854  0.007016  0.14353  1.1863  0.049736  0.000228111 
t9/2  0.00813  0.0063779  0.15038  1.2263  0.049603  0.000208675 
t11/ 

2  

0.00774  0.0057755  0.15625  1.2603  0.049346  0.000195567 

t13/ 

2  

0.00734  0.0052053  0.16164  1.2958  0.049174  0.000206012 

t15/ 

2  

0.00695  0.0047347  0.16689  1.3302  0.049042  0.000215812 

t17/ 

2  

0.00660  0.0044655  0.17142  1.3585  0.048686  0.000175272  

1500 t1/2  0.00984  0.0093310  0.11859  0.7495  0.051863  0.000419619 
t3/2  0.00927  0.0079871  0.13043  0.7885  0.050737  0.000337636 
t5/2  0.00871  0.0070036  0.14048  0.8227  0.050007  0.000393276 
t7/2  0.00810  0.0061416  0.15046  0.8602  0.049265  0.000420668 
t9/2  0.00751  0.0053674  0.15934  0.8949  0.048863  0.000391632 
t11/ 

2  

0.00692  0.0048332  0.16719  0.9275  0.048323  0.000417434 

t13/ 

2  

0.00636  0.0043644  0.17400  0.9565  0.047708  0.000369672 

t15/ 

2  

0.00582  0.0038412  0.17990  0.9827  0.047013  0.000406564  

1550 t1/2  0.00967  0.0088281  0.12317  0.5533  0.054858  0.000791799 
t3/2  0.00875  0.0069313  0.14222  0.5969  0.051981  0.000666008 
t5/2  0.00795  0.0058652  0.15546  0.6297  0.049671  0.000578386 
t7/2  0.00729  0.0050890  0.16602  0.6576  0.047435  0.000613556 
t9/2  0.00669  0.0043837  0.17584  0.6850  0.044512  0.000709582 
t11/ 

2  

0.00615  0.0039540  0.18354  0.7081  0.040365  0.000523108  

Fig. 5. Diffusivities for all corrosion steps at three experimental temperatures.  Fig. 6. Arrhenius plot of diffusivities. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 4 
Comparison of diffusivities obtained from two methods.  

Experimental 
step 

Diffusivity using Eq. 
(13) (Di), m2/s 

Diffusivity from 
simulation, m2/s 

Error (%), 
relative to Eq. 
(13) 

D1450,2 2.80E-11 2.09E-11 25.41 
D1500,3 4.56E-11 4.74E-11 3.99 
D1550,2 7.56E-11 7.31E-11 3.36  
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results obtained from the CWTD yield improved the effective binary 
diffusivities as shown for alumina in the CASM slag in this study. 
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A B S T R A C T   

Finger-test experiments are frequently conducted in continuous-wear investigations of ceramic materials. 
However, mass transfer equations accurately representing these scenarios are not yet available, which can lead to 
erroneous estimation of dissolution-related parameters due to poor approximations. In this study, a Sherwood 
correlation for finger-test experiments was developed. The equation applies to rods or nearly cylindrical speci
mens that are rotated in a liquid contained in a cylindrical receptacle. The equation is derived from numerical 
results simulating the dissolution of ceramic materials in liquid slags, where the dissolution is dominated by mass 
transfer in the liquid. For these simulations, surface profiles from the experimental results were employed. Based 
on the derived equation, a methodology for the calculation of mass transfer coefficients for dissolution processes 
was designed that enables diffusivity determination. This equation is also suitable for heat transfer calculations. 
The equation is in agreement with the results obtained by simulation and other documented heat and mass 
transfer equation, for the latter the fit is poorer due to differences in the experiment configuration.   

1. Introduction 

Finger-test experiments are frequently used in investigations of 
continuous wear in ceramic systems, where the dissolution of the ma
terial in liquid slags or melts is commonly analysed. In these experi
ments, a cylindrical sample of the material is immersed in a liquid and 
rotated at a constant speed. When the dissolution process is dominated 
by the diffusion of the dissolved species in the liquid, as is frequently the 
case [1–4], the dissolving mass flux can be estimated through Sherwood 
equations, which are used to describe the mass flux density in dimen
sionless form. However, a mass transfer equation that is directly appli
cable to finger-test experiments has not yet been introduced. 
Consequently, researchers have employed approximations based on 
Sherwood equations, for which the geometry and conditions are not 
exactly related [5–8]. 

Previous publications by the authors addressed simulations of finger- 
test experiments and provided an appropriate framework for dissolution 
investigation. In the first publication [9], the method was verified in a 
comparison to other documented Sherwood equations. Later, it was 
validated against real experiments and was used to determine effective 
binary diffusivities [10,11]. In this communication, a Sherwood corre
lation that is applicable to the sample mantle in finger-test experiments 
is presented for systems with large Schmidt numbers. The correlation is 
based on the authors’ previous works and experimentally determined 

surface profiles. 

2. Review of mathematical model 

A simulation method was applied in a previous study by the authors 
[9–11]. Herein, computational fluid dynamics (CFD) simulations of the 
finger-test experiments are conducted using a multiphase model devel
oped in ANSYS Fluent. The flow is laminar and both the atmospheric and 
slag flow fields are resolved using the volume of fluid method. Table 1 
present a summary of the numerical schemes used for the CFD 
simulations. 

Given the large Schmidt number present in slag/refractory systems, 
the species equation is not solved with CFD to avoid fine domain dis
cretisation and consistent time steps. Rather, an asymptotic boundary 
layer approach for large Schmidt numbers based on the work introduced 
by Lighthill in 1950 [12] is applied in the post-processing step. The 
equation first introduced for heat transfer problems is adapted here for 
mass transfer problems and axisymmetric bodies. It is presented in 
Equation (1): 

Sh0(x)=
lSc1

3

91
3 ν1

3Γ
(

4
3

)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R β(x)

√
⎡

⎣
∫

ℓ

R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R β(ζ)

√
ds

⎤

⎦

−1
3

. (1) 

Here, Sh0 is the Sherwood number without consideration of the 
Stefan velocity in the boundary conditions, which makes it equivalent to 
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the Nusselt number in heat transfer. Equation (1) can be used for the 
calculation of local, steady-state mass, or heat transfer coefficients, and 
this profile can be integrated to calculate the average Sherwood 
numbers. Variable β is a result of the flow field and can be computed 
from the shear stresses on the rotating sample, as per Equation (2): 

β=
∂vt

∂n̂
=

∂( v→⋅̂t)
∂n̂

=
∂ v→

∂n̂
⋅ t̂ =

1
μ (τztz + τrtr). (2) 

The simulations here involve the geometries of corroded samples 
that are obtained from laser measurements of the sample after the 
corrosion steps, as described by Kircher et al. [13]. The method was 
applied to several samples with slags having different properties (den
sity and viscosity). Fig. 1 gives an overview of the methodology applied. 

3. Sherwood correlation 

The repetitive application of the method yields several results. Curve 
fitting of these results is conducted with the influencing parameters. It 
engenders a formula that is useful for conducting finger tests or similar 
experiments on both heat and mass transfer. The experiments consider 
corroded samples, rather than perfect cylindrical surfaces, where the 
deviation of the sample from the cylindrical shape of the average radius 
R is given by S and computed as the standard error, 

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(R(zi) − R)2

√
√
√
√ .

A schematic description of the setup and influencing parameters is 
displayed in Fig. 2. 

Here L represents the length of the sample that is immersed in the 
fluid, R is the average radius of the sample only considering the 
immersed part, d is the gap width between the vessel and the average 
radius, BC represents the clearance from the sample to the vessel bot
tom, and ω is the rotational speed of the sample. 

The dependency of the mass flux on the Schmidt number was fixed 
by the asymptotic boundary layer approach employed with a factor of 
Sc1/3. For this correlation, 18 simulations were completed, where the 
Taylor number (Ta) was at most 53% of the critical Taylor number (Tac), 
implying centrifugal instabilities in the form of Taylor vortices were not 
considered. The Taylor number is defined as Ta =

2ω2d4η2

(1−η2)ν2, where η is the 
ratio of the sample to containing receptacle radii, and ν is the kinematic 
viscosity of the liquid. To calculate the critical Taylor number, the 

Nomenclature 

Symbols 
B dimensionless saturation weight content 
BC clearance from crucible bottom to sample tip 
d gap width from average radius 
D effective diffusivity 
j mass flux density 
l characteristic length 
L immersion length 
n̂ normal direction to wall 
r radial coordinate 
R average radius of specimen 
R radius of revolution body 
Re Reynolds number 
S deviation from cylindrical shape 
Sc Schmidt number 
Sh Sherwood number 
Sh0 Sherwood number without consideration of Stefan velocity 
t̂ tangential direction to wall 

Ta Taylor number 
Tac critical Taylor number 
v→ velocity 
vt velocity in tangential direction 
ws saturation mass content 
w∞ bulk mass content 
z axial coordinate 
R2 radius of containing cylindrical receptacle 

Greek symbols 
β derivative of velocity in normal direction 
Γ gamma function 
η outer to inner radius ratio 
μ dynamic viscosity 
ν kinematic viscosity 
ρ density of liquid 
τ shear stress 
χ correction for influence of Stefan velocity 
ω rotational speed  

Table 1 
Summary of CFD simulation set-up.  

Multiphase Volume of fluid with geometric reconstruction 
Surface tension Continuous surface force model 
Pressure-velocity 

coupling 
Coupled scheme 

Momentum and swirl 
equations 

Second order upwind schemes 

Pressure cell to face 
interpolation 

PRESTO! scheme 

Mesh type and size 0.125 mm quadrilateral element for sample wall vicinity 
0.25 mm triangular elements for the rest of the domain 

Time advancement/ 
Time-step 

First order implicit/0.0001s  

Fig. 1. Flowchart of method applied for obtention of Sherwood correlation.  
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following correlation of the data presented by DiPrima et al. [14], Tac =

1600/η1.005, can be employed. 
The fitting was obtained by minimization of the sum of squares of 

residuals using Matlab’s fminunc optimization function. The Sherwood 
correlation is given by Equation (3), where Shd =

jd
DΔc is the Sherwood 

number with the gap width (d) as the characteristic length, D is the 
effective binary diffusivity, Δc is the concentration difference between 

saturation and bulk, j is the mass flux density, Re =
vρR

μ is the Reynolds 

number with the average radius (R) as the characteristic length, v is the 
linear velocity of the rotating cylinder circumference (ωR), ρ is the fluid 
density, μ is the dynamic viscosity, and Sc =

μ
Dρ is the Schmidt number. 

The physical significance of the parameters can be seen from this 
equation. 

Shd = 0.10 Re0.65Sc1/3
(

d
R

)1.49(BC
L

)0.32

(3) 

The Sherwood values computable with Equation (3) do not consider 
the effect of the Stefan velocity on the mass transfer rate. This effect can 
be easily incorporated as demonstrated by Merk [15] and with the 
methods proposed in our previous works [9,10]. This means that 
Equation (3) is directly applicable to heat transfer calculations when 
exchanging the Sherwood number for the Nusselt number and the 
Schmidt number for the Prandtl number. 

The fit of Equation (3) to the values obtained by simulation is dis
played in Fig. 3, where the Sherwood numbers are normalised by the 
factor X = Sc1/3(d

R

)1.49(BC
L
)0.32 for representation as a function of Re 

only. The value of R2 of 0.93 indicates the satisfactory fit of the data. 
Because the simulations were performed from the profiles of exper

iments conducted by the authors, the range of the parameter validity 
must be observed and is documented in Table 2. 

3.1. Application to dissolution studies 

To avoid erroneous application of the results, it should be stated that, 
in dissolution, determination of the mass flux density with this Sher
wood relation requires the following calculation: 

j = χ D
d

ShdρB;B =
ws − w∞

1 − ws
. (4) 

Here, B is a dimensionless concentration difference composed of the 
mass contents of the diffusing species in the saturated liquid ws and bulk 
liquid w∞, and χ allows for the aforementioned influence of the Stefan 
flow on the effective diffusive boundary layer thickness. An approxi
mation based on [15] that is valid for a high Sc number is 

χ ≈
1

1 + 0.566B
. (5) 

While χ accounts for the influence of the Stefan flow on fluid dy
namics, the denominator of B considers its direct convective contribu
tion to diffusion. 

3.2. Comparison to documented equations 

The same comparison that was performed between the simulation 
results and documented equations in a previous publication [9] was 
conducted here considering the presented Sherwood correlation. Table 3 
presents the correlation together with the equations for setups similar to 
the finger-test experiments, where the name given to the equations 
corresponds to the first author of the publication where each one is 
presented. 

Notably, the power dependency on the Reynolds number of the 
correlation is close to that of the equation presented by Eisenberg et al. 
[16] and differs only marginally from that of Kosaka and Minowa [17]. 
This matches our observations in Ref. [9], where it was also clearly 
noted that the logarithm of the simulated data shared a similar slope to 
the logarithm of the Reynolds numbers for both equations. From all the 
equations compared in Ref. [9], Kosaka and Minowa demonstrated the 

Fig. 2. Illustration of simulated experiments and influencing parameters.  

Fig. 3. Fitting of correlation to values obtained by simulation.  

J. Guarco et al.                                                                                                                                                                                                                                  
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best fit with the newly established calculation procedure based on 
Equation (1) above. Its maximum error of 18% occurred for Re = 1 and 
decreased for Reynolds numbers up to 30. The discrepancy with 
Tachibana and Fukui [18] can be attributed to the flow regimen, as the 
authors conducted experiments within the Taylor vortex regime. The 
deviation from the Srinivasan findings could have occurred because 
their results, which were obtained via simulation, considered only a 
Couette flow; hence, the end effects on the velocity dropped out. In the 
setup considered herein, the bottom clearance serves as a region for the 
development of axial flow as a consequence of the rotation of the sample 
tip, which acts as a centrifugal pump. The dependency on the Schmidt 
number is fixed by the asymptotic boundary layer method and is the 
theoretical dependency for a large Schmidt number [19]. Only Tachi
bana presented a clearly different dependency on this number, which 
can be attributed to fluids of considerably low Prandtl numbers, from 

which the equation was derived. Clearly, the effects of other geometrical 
simplexes cannot be compared because none of the equations found in 
the literature considers these, and most of them are based only on an 
annular gap with no bottom clearance. 

The equations in Table 3 are plotted in logarithmic form in Fig. 4. For 
correlation, the geometrical parameters employed (BC, L, d, and R) 
were considered as in Ref. [9]. The dependency of the Schmidt number 
on the Tachibana and Fukui equation is changed from Sc1/4 to Sc1/3. The 
above remarks are clearly visible in this figure. For the ideal cylinder 
shape, the best agreement is obtained with the equation of Kosaka and 
Minowa [17]. For the actual specimen shapes of the dissolution exper
iments characterised by the parameter S

R 
as given in Table 2, the corre

lation is closest to Eisenberg’s Equation [16] for all Reynolds numbers. 

4. Conclusions 

A novel Sherwood correlation for finger-test experiments was pre
sented. The equation was obtained by CFD simulations of finger test 
experiments together with an asymptotic boundary layer method for the 
calculation of Sherwood number. The simulations considered the 
corroded shape of the rotating sample, for which the geometry was 
obtained from laser measurements. This equation can be applied to both 
heat and mass transfer calculations in experiments where a cylindrical 
or nearly cylindrical sample is rotated within a liquid in a cylindrical 
receptacle. This can be significant in refractory and ceramic testing, 
where these experiments are largely established. However, to date, no 
equation has been available for a setup with bottom clearance and 
consideration of the actual wear profiles. A main advantage of such an 
equation is the simple application compared to the large effort and 
expertise necessary for conducting the simulations. Moreover, finger test 
investigations can benefit from more accurate estimation of dissolution 
related parameters, such as diffusivities. The accuracy of the proposed 
equation was validated by comparing documented equations in similar 
setups. Here, we found the equation of Eisenberg gave the closest fit, and 
the error between equations decreased with Reynolds number. A 
method for application in dissolution studies considering the Stefan flow 
and its effect on the species boundary layer thickness was also presented. 
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Table 2 
Valid parameter ranges.  

Parameter 

2.3 < Re < 15.1 
2.53 < d /R < 4.34 
0.37 < BC/L < 0.88 
0.03 < S/R < 0.23 
56 < Ta < 3958 
0.01 < Ta/Tac < 0.53  

Sc→ ∞  

Table 3 
Sherwood correlations from literature for similar setups.   

Equation 

Correlation 
Shd = 0.10 Re0.65Sc1/3

(
d
R

)1.49(BC
L

)0.32 

Eisenberg [16] Shd = 0.0642Re0.7Sc0.356 d
R 

Kosaka [17] 
Shd = 0.0547Re0.75Sc

1
3d

R 
Tachibana [18] 

Shd = 0.21Re1/2Sc1/4
(

d
R

)3
4 

Srinivasan [20] Ta < Tac 

Shd =
3d

Rlog
(

R2

R

) + 0.0048ReSc1/3 d
R

(
R
R2

)−1.25  

Fig. 4. Comparison of correlation and documented Sherwood equations.  
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Abstract 

Refractory erosion due to fluid flow is caused by the shear stresses acting on the liquid/solid 

interface. This mechanism of continuous wear has not been extensively investigated based on 

appropriate physical considerations. This study proposes a novel method for the inverse 

calculation of erosion parameters in slag-refractory systems. A computational fluid dynamic 

model is coupled with optimisation software to solve a nonlinear least-squares problem for the 

identification of erosion parameters from experimental erosion profiles. Erosion-rate modelling 

is performed based on a three-parameter law of the acting shear stress. A test problem is studied 

using artificially generated erosion profiles. The feasibility of the approach with two 

parameters is proven; however, using three parameters causes the problem to become ill-posed. 

Moreover, the method is successfully applied to a real experiment with an alumina coarse-grain 

refractory. Statistical analysis of the solutions is performed for both the test problem and real 

experimental profile. Confidence intervals and regions calculated via linearisation are 

examined, but their use is limited and should be evaluated for each case. This method can serve 

as a basis for further investigations concerning the quantification of refractory erosion. 

 
Keywords 

Inverse problem, erosion modelling, test-problem, parameter estimation, refractory wear  
 

List of symbols 

𝜀̇.. erosion rate 

𝑘𝑑.. detachment rate 

𝜏𝑐.. critical shear stress 

𝑎.. exponent 

𝜏.. wall shear stress 

𝑣𝜃.. swirl velocity 

Ω1.. rotational speed of inner cylinder  

Ω2.. rotational speed of outer cylinder  

𝜇Ω.. Ω1

Ω2
  

𝑅1.. radius of the sample 

𝑅2.. radius of the crucible 

𝑑. .  𝑅2 − 𝑅1     gap width 

𝜂. . 𝑅1/𝑅2 radii ratio 

r.. radial coordinate  

𝑇𝑎. .
2Ω1

2𝑑4𝜂2

(1−𝜂2)(
𝜇

𝜌
)
2 Taylor number  

𝜇.. dynamic viscosity  

𝜌.. density  

z.. axial coordinate  
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𝑣𝑧.. axial velocity 

𝑣𝑟.. radial velocity 

Φ..  transport scalar 

𝑉.. element volume 

𝜕𝑉.. boundary of volume element  

𝑢⃗ .. fluid velocity vector 

𝑢⃗ 𝑔.. mesh velocity vector 

𝐴 .. edge area vector in normal direction 

ΓΦ.. scalar diffusivity  

SΦ.. scalar source term  

∆𝑡.. time-step  

𝑛𝑓 .. number of faces of a grid element 

𝛿𝑉.. volume swept by grid displacement  

𝑤𝑖.. weight function  

X.. node coordinates 

𝑋𝑖 .. face centroid coordinates 

𝑛⃗ .. unit normal vector 

𝐹 𝑖.. fictitious force caused by node 

displacement 

𝐾𝑖𝑗.. spring constant  

∆𝑥 .. node displacement vector  

𝜃.. 𝜃 = (𝑘𝑑, 𝜏𝑐, 𝑎)𝑇. 

𝑟 .. residuals vector 

n.. number of residual terms 

H.. Hessian matrix 

J.. Jacobian matrix 

m.. number of parameters  

𝑦𝑖.. model response (radial surface 

coordinate at 𝑧𝑖) 

𝑦𝑖,𝑒𝑥𝑝.. experimental value (radial surface 

coordinate at 𝑧𝑖)  

𝜎.. standard deviation 

𝑓𝜒2.. chi-square probability density 

function 

𝛤.. gamma function 

𝜈.. degrees of freedom 

𝑁𝑒𝑥𝑝.. number of experiments  

𝑠.. estimate of standard deviation  

𝐶𝑜𝑣.. covariance matrix 

𝑡𝜈,0.975.. critical value of t-student 

distribution 

∆2.. 95th percentile of 𝜒2distribution with m 

degrees of freedom 

𝜌𝑘𝑑,𝜏𝑐
.. coefficient of correlation between 

𝑘𝑑 and 𝜏𝑐 

1. Introduction  

Refractory erosion is the mechanism of continuous wear caused by fluid movement 

along a material surface. The flow is responsible for shear forces that cause detachment of the 

material grains, which are then washed away in the liquid. Generally, the forces are not 

sufficiently large to initiate the erosion process; this necessitates preconditioning by corrosion 

through infiltrated liquid, which weakens the grain/matrix bonds [1,2]. The quantification of 

refractory erosion has not been extensively investigated based on appropriate physical 
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considerations. One reason for this is the lack of an established erosion law and experimental 

and computational methods for its depiction.  

This study aims to address this problem by introducing a method for the inverse 

calculation of erosion parameters for refractory materials in liquid slags with experimental 

erosion profiles. Here, the erosion process is modelled on the macroscale based on 

Partheniades’ equation (Equation (1)), which is firmly established in the field of soil erosion 

[3]. The use of this equation is rooted in the similarities between soils and refractories, which 

are both representable by a grain/matrix structure. The erosion law is a function of the wall 

shear stress (𝜏), and the erosion parameters include the critical shear stress (𝜏𝑐), which 

characterises the flow condition upon which the shear stress is sufficient to begin grain 

detachment, the rate of detachment 𝑘𝑑 [4], and the exponent 𝑎.  

 

 
𝜀̇ = 𝑘𝑑(𝜏 − 𝜏𝑐)

𝑎 (1) 

𝜀̇ has dimensions of length/time and is considered as a velocity. This is in contrast to most 

continuous-wear investigations, where the output of the studies is the mass flux density. The 

units of 𝜏 and 𝜏𝑐 are Pa, and the units of 𝑘𝑑 depend on the dimensionless power 𝑎 as follows: 

[𝑘𝑑] = 𝑚𝑠−1𝑃𝑎−𝑎. 

For reference, a study by Hanson and Simon on soil erosion [5] reported 𝜏𝑐 values for 

cohesive stream beds between 0.001 and 1000 Pa, with values of 𝑘𝑑 in the range of 0.001 to 10 

cm3/(Ns). Their study classified erodibility into five groups, which ranged from very erodible 

to very resistant. Low values of 𝑘𝑑 and high values of 𝜏𝑐 correspond to very resistant soil, 

whereas large values of 𝑘𝑑 and low values of 𝜏𝑐 are indicative of very erodible soil. To measure 

these parameters, an in-situ jet testing apparatus is prevalently used in soil-erosion 

investigations [4–7]. The identification of these parameters is typically based on the 

measurement of scour depth and consideration of equilibrium depth, as described by Hanson 

and Cook [7]. Exponent 𝑎 in Equation (1) is frequently fixed at 1.0 [4,5,7]. 

The jet testing apparatus is not the only approach that can be used to characterise the 

erosion process of soils. For example, Karmaker et al. [8] conducted an inverse estimation of 

erodibility parameters using satellite images of eroded river banks at sites with limited 

accessibility. They applied three different optimisation methods and successfully obtained the 

erodibility parameters; their study provides an example of how erodibility parameters can be 

determined from the erosion profile without in situ measurements. Other experimental 
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approaches for soil-erosion investigations include rotating-cylinder experiments and flume tests 

[9,10].  

Although refractory wear via erosion is often quantified in practice by wear 

measurement, to our knowledge, there is no mathematical treatment in the literature that is 

similar to that presented herein for refractories. In this study, the coupling of a computational 

fluid dynamics (CFD) model with an optimisation routine is introduced for the resolution of a 

nonlinear least-squares problem. This study aims to identify the erosion parameters of Equation 

(1) that result in the best fit of the model and the experimental erosion profile. 

This study provides a detailed analysis on the feasibility of the proposed method and its 

applicability to real experimental setups. It is the first presented method for the quantification 

of refractory erosion with erosion profiles. First, a brief description of the experimental setup 

is provided in Section 2, followed by a comprehensive description of the simulation model. 

Subsequently, the implementation of the inverse problem is explained, followed by a 

description of the test problem, where a statistical assessment of the goodness-of-fit is also 

discussed. Section 3 is divided between the results of the test problem and those of the real 

experimental profile. The test problem includes both an exact problem, where the erosion 

profile is obtained from the simulation, and an artificial problem created by random-noise 

generation. The inverse calculation is investigated for a model with the three erosion parameters 

of Equation (1) and also with a fixed exponent 𝑎 of 1.0. Moreover, identification with the 

inverse calculation was attempted through multiple experiments. Finally, the conclusions are 

presented in Section 4.  

 
 

 
 
2. Materials and methods 

The objective of this study is to establish a method for the inverse calculation of erosion 

parameters from experimental erosion profiles. This was achieved by coupling CFD 

simulations with an optimisation solver to solve a nonlinear least-squares problem. The 

procedure is summarised in the flowchart shown in Figure 1. 
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Figure 1. Coupling of model and optimisation routine 

When solving the inverse problem, the model can be considered a black box because no 

explicit formulas for the relationship between the simulation output and erosion parameters are 

available. Instead, the model is a simulation routine which, in short, consists of solving 

nonlinear differential equations in a discretised domain through an iterative process. Therefore, 

this problem must be addressed as a nonlinear one. 

The following sections describe the experimental setup, simulation model, and inverse 

problem. 

2.1 Experimental set-up 

Kircher et al. presented an experimental setup and method to obtain worn profiles [11]. 

This provided an experimental basis for the inverse calculation of erosion parameters using 

erosion profiles. The experimental setup represented a finger test. These experiments involved 

a furnace with a temperature that was monitored using thermocouples and maintained at the 

prescribed value. Inside the furnace, a cylindrical sample of the refractory material was rotated 

within a slag bath at a constant rotational speed. Figure 2 shows a schematic description of the 

experimental set-up, henceforth referred to as a continuous wear-testing device (CWTD). This 

rotation generated the bath movement and shear forces that act on the refractory surface. After 

a defined rotation time, the sample was pulled up and left to drip for 30 min. Subsequently, the 

furnace plug was removed, and a laser device was placed in its position. The laser scanned the 

surface of the corroded sample while it rotated at 2 rpm. The processing of the laser 

measurement data and averaging in the circumferential direction provided the necessary erosion 
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profile used for the inverse calculation of the erosion parameters. A detailed description of this 

setup and the processing of the laser measurements is presented in Ref. [11]. 

 
 

 
Figure 2. Schematic of the CWTD 

2.2 Simulation model 

Simulations of the CWTD experiments were conducted with a CFD model developed 

using ANSYS Fluent v.19.0; the flow field of the slag bath was resolved, and the refractory 

merely represented the boundary of the model. The model was a two-dimensional (2D), 

isothermal, axisymmetric model with swirl. Turbulence was not considered in the model; 

therefore, the exact Navier–Stokes equations were solved. The assumption of laminar flow was 

based on a comparison with a benchmark problem of fluid dynamics, that is, the flow inside an 

annular region with rotating cylinders. The first stable flow in such set-ups is a circular Couette 

(CC) flow, and the azimuthal velocity (𝑣𝜃) is given as follows:   

  
𝑣𝜃 = Ω1 (

𝜇Ω − 𝜂2

1 − 𝜂2
) 𝑟 + Ω1𝑅1

2 (
1 − 𝜇Ω

1 − 𝜂2
)
1

𝑟
. (2) 
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Centrifugal instabilities appear with increasing rotational speed and the flow-field deviates from 

the CC flow. Taylor was the first to apply linear stability theory to determine the locus of the 

first transition [12]. This regime is known as the Taylor vortex flow, where laminar, 

axisymmetric vortical structures appear. Generally, the transition between different flow 

structures is determined by the Taylor number (𝑇𝑎), which represents the ratio between 

centrifugal and viscous forces [13–16]. For finger-test experiments, the values of the Taylor 

number are sufficiently low, such that the CC flow is the preferred mode of stability; therefore, 

a laminar axisymmetric flow is appropriate for the model. Our setup has some fundamental 

differences to this benchmark problem, such as a relatively short cylinder length, a bottom 

clearance to the crucible, and a two-phase interface; therefore, this comparison is only done for 

flow-regimen characterisation. Nevertheless, as will be shown in Section 3, the CC solution 

provided a good prediction of the velocities in our experiments. 

Figure 3 shows a schematic of the model with the discretised domain and boundary 

conditions. These include a no-shear condition at the slag/atmosphere interface, a no-slip 

condition at the crucible wall, a constant rotational speed at the refractory wall, and symmetry 

around the axis of the rotating sample. Furthermore, the refractory wall is a moving boundary 

because it is subject to erosion. The continuity equation (Equation (3)) and governing equations 

for the axial (𝑣𝑧), radial (𝑣𝑟), and azimuthal (𝑣𝜃) velocities are given as follows [17]: 

 𝜕

𝜕𝑧
(𝜌𝑣𝑧) +

𝜕

𝜕𝑟
(𝜌𝑣𝑟) +

𝜌𝑣𝑟

𝑟
= 0, 

 

(3) 

 𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑣𝑧𝑣𝑧) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑧𝑣𝑟)

= −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇 (2

𝜕𝑣𝑧

𝜕𝑧
−

2

3
∇ ∙ 𝑣 )]

+
1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇 (

𝜕𝑣𝑧

𝜕𝑟
+

𝜕𝑣𝑟

𝜕𝑧
)], 

 

(4) 

 𝜕

𝜕𝑡
(𝜌𝑣𝑟) +

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑣𝑟𝑣𝑧) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟𝑣𝑟)

= −
𝜕𝑝

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇 (

𝜕𝑣𝑟

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑟
)]

+
1

𝑟

𝜕

𝜕𝑟
[𝑟𝜇 (2

𝜕𝑣𝑟

𝜕𝑟
−

2

3
∇ ∙ 𝑣 )] − 2𝜇

𝑣𝑟

𝑟2
+

2

3

𝜇

𝑟
(∇ ∙ 𝑣 ) + 𝜌

𝑣𝜃
2

𝑟
, 

 

(5) 
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 𝜕
𝜕𝑡

(𝜌𝑣𝜃) +
1

𝑟

𝜕

𝜕𝑧
(𝑟𝜌𝑣𝑧𝑣𝜃) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟𝑣𝜃)

=
1

𝑟

𝜕

𝜕𝑧
[𝑟𝜇 (

𝜕𝑣𝜃

𝜕𝑧
)] +

1

𝑟2

𝜕

𝜕𝑟
[𝑟3𝜇

𝜕

𝜕𝑟
(
𝑣𝜃

𝑟
)] − 𝜌

𝑣𝑟𝑣𝜃

𝑟
, 

 

(6) 

where ∇ ∙ 𝑣  is 
 
 

∇ ∙ 𝑣 =
𝜕𝑣𝑧

𝜕𝑧
+

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝑟

𝑟
. (7) 

 
 

 
Figure 3. Computational domain 

The movement of the refractory wall creates a moving boundary problem, in which the 

slag domain increases with time. This phenomenon was incorporated into the model using 

dynamic meshing methods. 

The CFD model uses the discretisation of the flow domain with the finite volume 

method (FVM) to solve the integral form of the Navier–Stokes equations. This means that 

Equations (3)–(6) are not directly solved; rather, these equations are first integrated over 

volume. This leads to a balance at each FV element, whereby the conservation of all transport 

variables is ensured, both for the FV element and globally. Other methods for numerical fluid 

dynamics include the finite differences and finite element methods. The general form of an 
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integral conservation equation for an element or cell of the FV method is shown in Equation 

(8), where the transient and convective terms of the transport scalar (Φ) are given on the LHS, 

and the diffusive and source terms are shown on the RHS. This transport scalar Φ may represent 

the magnitude of the x-, y-, or z-velocities, species mass fraction, temperature, or any other 

user-defined scalar, where the so-called diffusion coefficient ΓΦ does not necessarily represent 

mass diffusion and is defined accordingly. Equation (8) is the most general form of the 

conservation equation, where the grid movement is also considered. When the mesh velocity 

(𝑢⃗ 𝑔) vanishes, the frequent form of the conservation equation for the rigid flow domains is 

obtained. Equation (8) and the following equations and formulae are based on Fluent’s 

documentation [17] and should be considered as balances for one element or cell of the FVM, 

as employed in our model.  

 𝑑
𝑑𝑡

∫ 𝜌Φ𝑑𝑉
𝑉

+ ∫ 𝜌Φ(𝑢⃗ − 𝑢⃗ 𝑔) ∙ 𝑑𝐴 =
∂V

∫ ΓΦ∇Φ ∙ 𝑑𝐴 
∂V

+ ∫ 𝑆Φ𝑑𝑉
𝑉

 
(8) 

 
The first term on the LHS of Equation (8) is worth discussing because it involves the change in 

volume of an FVM cell. This term is solved using a first-order backward difference formula for 

the time derivative and the midpoint rule for volume integration, where Φ represents the 

average of this scalar in the element. 

 𝑑

𝑑𝑡
∫ 𝜌Φ𝑑𝑉
𝑉𝑖

≈
𝑑(𝜌ΦV)i

𝑑𝑡
=

(𝜌ΦV)𝑖
𝑛
− (𝜌ΦV)𝑖

𝑛−1

∆𝑡
 

(9) 

The element’s change in volume from time 𝑛 − 1 to 𝑛 must obey the mesh conservation 

law or space conservation law [18]. This is achieved through the following considerations. 

 
𝑉𝑛 = 𝑉𝑛−1 +

𝑑𝑉

𝑑𝑡
∆𝑡, 

(10) 

where 
 

𝑑𝑉

𝑑𝑡
= ∫ 𝑢⃗ 𝑔 ∙ 𝑑𝐴 = ∑𝑢⃗ 𝑔,𝑗 ∙ 𝐴 𝑗

𝑛𝑓

𝑗

,
𝜕V

 
(11) 

where 𝑛𝑓 is the number of faces that shape the element, and 𝑢⃗ 𝑔,𝑗 ∙ 𝐴 𝑗 is calculated from the 

volume swept by the control volume face 𝑗. The quantity 𝛿𝑉𝑗 results from the node 

displacements and is expressed as 
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𝑢⃗ 𝑔,𝑗 ∙ 𝐴 𝑗 =

𝛿𝑉𝑗

∆𝑡
. 

(12) 

The typical structure of an element or cell of an FVM is shown in Figure 4. All quantities 

are computed and stored in the cell or face centroids, and some are extrapolated from cell 

centroid to cell faces, whereas the nodes define the geometry of the element. The erosion 

process mandates that the boundary defined by the refractory wall must evolve over time; for 

this, the movement must be prescribed to the nodes. The node displacement over the refractory 

wall is a vector field, the magnitude of which is given by the product of the erosion rate with 

the time step, and the direction is normal to the refractory wall. The erosion rate for a node is 

computed using Equation (1), for which the wall shear stress (WSS) at the node is necessary. 

Finally, the normal direction for the nodes is required. All nodes lying on the refractory wall 

have two neighbouring cells and faces (see Figure 5); therefore, the approach taken here is to 

use a distance-weighted average of the WSS stored on the neighbouring face centroids, where 

the weights  𝑤𝑖 are defined as follows:  

 
 𝑤𝑖 =

1

‖𝑋 − 𝑋𝑖‖2
, (13) 

where ‖𝑋 − 𝑋𝑖‖2 represents the Euclidean norm, which is expressed as  

 
 ‖𝑋 − 𝑋𝑖‖2 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2, (14) 

and the wall shear stress for the node is computed as 

 
 

𝜏(𝑋) =
𝜏𝑖𝑤𝑖 + 𝜏𝑖+1𝑤𝑖+1

𝑤𝑖 + 𝑤𝑖+1
. (15) 

Similarly, the normal direction is determined by unit vectors with an area-weighted average. 

 
 

𝑛⃗ =
𝐴 𝑖 + 𝐴 𝑖+1

‖𝐴 𝑖 + 𝐴 𝑖+1‖
, 

(16) 

 

where 𝐴  is a vector in the direction normal to the face that has the magnitude of the element 

face area. Finally, the displacement vector is given by 

 
 𝜀 (𝑋) = 𝜀̇∆𝑡 ∙ 𝑛⃗ = 𝑘𝑑(𝜏(𝑋) − 𝜏𝑐)

𝑎∆𝑡 ∙ 𝑛⃗ . (17) 
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Figure 4. Schematic of 2D cell volume in FVM 

 
Figure 5. Refractory wall boundary 

The node displacement is incorporated into the program with a user-defined function 

(UDF) written in the C programming language, and it is applied to the refractory wall boundary.  

It is important to maintain a good mesh quality after the node updates because an 

insufficient mesh quality can generate poor results and affect the convergence of the model. For 

this purpose, different methods that ensure the quality of the mesh are implemented, and the 

mesh is constructed in a special manner. A boundary-layer mesh composed of quadrilateral 

elements was used adjacent to the refractory wall, and the rest of the domain was meshed with 

triangular elements. The nodes lying on the refractory wall were updated with the UDF 

depending on the prevailing WSS. The boundary-layer mesh was preserved using a boundary-

layer-smoothing method, where the node displacement of all interior nodes in this zone was the 

same as those prescribed for the wall nodes. The nodes in the triangular region were updated 

using a spring-based smoothing method. In this method, all edges connecting nodes are 

idealised as a network of springs. Node displacements (∆𝑥 𝑖) result in fictitious forces, which 

are modelled by Hooke´s law and defined for each node 𝑖 using Equation (18). The spring 

constant is defined by Equation (19), where 𝑘𝑓𝑎𝑐𝑡 is set as 1. The end position of the nodes was 

set by determining the equilibrium of these forces (Equation (20)). This method generally yields 

high-quality meshes. Furthermore, remeshing is possible in the triangular region when 
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smoothing leads to low-quality elements, and these elements can be marked and coarsened or 

refined for quality improvement. Remeshing was controlled with a skewness criterion of 0.7, 

which was based on the relative difference between the optimal and actual cell volumes. Further 

information on the described methods is presented in the Fluent user manual [19]. Figure 6 

presents a schematic of the application of the dynamic meshing methods on the discretised 

domain. 

 
𝐹 𝑖 = ∑𝑘𝑖𝑗(∆𝑥 𝑗 − ∆𝑥 𝑖)

𝑛𝑖

𝑗

 (18) 

 
𝑘𝑖𝑗 =

𝑘𝑓𝑎𝑐𝑡

√|𝑥 𝑖 − 𝑥 𝑗|

 (19) 

 

∆𝑥 𝑖
𝑚+1 =

∑ 𝑘𝑖𝑗∆𝑥 𝑖
𝑚𝑛𝑖

𝑗

∑ 𝑘𝑖𝑗
𝑛𝑖

𝑗

 (20) 

 
 The simulation time is important because the model is used in an inverse problem to 

estimate erosion parameters; therefore, multiple simulations are necessary. A typical inverse 

problem may require more than 250 simulations. Thus, it is necessary to find a compromise 

between accuracy and simulation time by adapting the simulation time-step and mesh sizes and 

neglecting effects such as the resolution of the slag/atmosphere interface with consideration to 

surface-tension effects. Moreover, the model was solved using parallel computation with a 

maximum of four partitions.  
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Figure 6. Dynamic meshing methods 

As shown in Figure 6, the sample tip is rounded on the edge because a sharp corner 

would be problematic for the dynamic meshing approach employed, especially for the corner 

node. However, this corner represents only a very small portion of the entire sample, and its 

influence is negligible. The dynamic meshing method is applied using an implicit method. This 

implies that the mesh is updated within the iterations used to solve the governing equations at 

each time step. The update frequency is 5; that is, the mesh is updated every fifth iteration 

within the time-step resolution. Furthermore, relaxation factors were employed to improve 

stability.  

From Equation (8) we noticed that although variables are stored at cell centroids, the 

values at the faces are necessary for the calculation of convective fluxes. Cell-to-face 

interpolation for the x-, y-, and swirl-velocities was achieved with a convective upstream 

interpolation for convection kinetics (QUICK) scheme. This method uses quadratic 
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interpolation with the values of the two neighbouring elements and a further element at an 

upstream location. Pressure was interpolated using a different method: the pressure staggering 

option (PRESTO!). This method imitates the characteristics of a staggered grid arrangement, 

in which the pressure is stored in the cell centroids and the velocities at the faces.  

Equations (3)–(6) show that a pressure gradient is necessary when solving for the 

velocity components, which is also part of the solution process. However, no independent 

equation for pressure is available for an incompressible flow, and the velocities must satisfy the 

continuity equation (7). The pressure-velocity coupling is achieved using the pressure-implicit 

with splitting of operators (PISO) algorithm. References [20,21] or any fundamental book on 

CFD provide a detailed description of this method. Fundamentally, this is an iterative method, 

in which a guess of the pressure field is first used to solve the equations for the velocity 

components, and then a correction for the pressure and velocities is applied. Notably, in the 

case of large erosion, particularly at the corner, the stability of the solvers can be significantly 

improved using the coupled solver, where all equations are solved simultaneously. Time 

resolution is achieved with the first-order implicit method; that is, the time derivative is 

approximated with a first-order backward formula, and the fluxes and source terms are 

considered at the current time-step, which makes it implicit. 

 
2.3 Inverse Problem 

The model was used with the optimisation software Dakota v.6.11 for the inverse 

calculation of the erosion parameters 𝜃 = (𝑘𝑑, 𝜏𝑐, 𝑎)𝑇. A least-squares problem (Equation (21)) 

was formulated with the residual vector (𝑟 ) computed from the difference between the 

experimental and simulated erosion profiles.  

 
min 

𝜃
𝑓(𝜃) = min

𝜃

1

2
∑𝑟𝑗

2(𝜃)

𝑛

𝑗

 
(21) 

 
The resolution of the minimisation problem given by Equation (21) translates into 

solving the system of equations for the first-order optimality condition: 

 𝜕𝑓(𝜃)

𝜕𝜃𝑖
= 0,   𝑖 = 1. . 𝑚. 

(22) 

Here, m takes the value of 2 if a is set to unity, and 3 otherwise. The NL2SOL method 

proposed by Dennis et al. was used as the solver [22]. This is a modified version of the Gauss–
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Newton (GN) method shown in Equation (23), where 𝐽 is the Jacobian matrix, and                   

∆𝜃 = 𝜃𝑘+1 − 𝜃𝑘 is the difference between the current and next iterations. In the GN method, 

the Hessian matrix of 𝑓(𝜃): 𝐻 = 𝐽𝑘
𝑇𝐽𝑘 + ∑ 𝑟𝑗(𝜃𝑘)𝐻(𝑟𝑗(𝜃𝑘))

𝑛
𝑗=1  is approximated by 𝐽𝑘𝑇𝐽𝑘, where 

𝐻(𝑟𝑗(𝜃𝑘)) represents the Hessian matrix of the residual term 𝑟𝑗 with respect to parameter 𝜃. The 

method proposed by Dennis et al. [22] consists of an augmentation of this Hessian to include 

the effects of the terms neglected in the GN method. Furthermore, the method utilises a trust-

region method to determine the optimal step length, and it can choose whether augmentation to 

the Hessian is necessary because in some cases, the GN method will exhibit better performance. 

The Jacobian was computed using finite differences with a step size of 0.001 relative to each 

parameter. For convergence, the relative objective function reduction of a full Newton step (no 

damping of the step through the trust-region method) was compared with the convergence 

criterion 𝜀 = 10−3. This reduction was relative to the minimal actual value of the objective 

function between the current and previous iteration results. 

 𝐽𝑘
𝑇𝐽𝑘∆𝜃 = −𝐽𝑘

𝑇𝑟 𝑘 (23) 

It is necessary for the model to run automatically with the parameters passed by the 

optimisation solver and return the residuals at the end of the simulation, which is achieved with 

C-shell scripting. This is performed in conjunction with a Fluent journal file to automate the 

execution of the CFD model. The first step is the generation of the UDF source files with the 

current erosion parameters. Then, the CFD model is launched with the journal file, the UDFs 

are compiled, and the simulation is started from a converged steady-state solution and advanced 

with the prescribed time step for the corresponding erosion time. At the end of the simulation, 

the erosion profile is printed to a file, namely a profile of the radius of the sample along the 

axial direction. Because the resolution of the model is not necessarily equal to that of the 

experimental erosion profile, interpolation of the former into the latter was performed using a 

Python script based on the NumPy library to calculate the residuals. Each model run used a 

separate directory, in which the end simulation results were also stored. CFD simulations were 

conducted without a graphical output and in parallel mode with up to four nodes to reduce the 

simulation time. One iteration of the NL2SOL solver requires one full CFD model run. 

Additionally, the gradients were computed numerically via forward differences; therefore, each 

iteration requires 𝑚 + 1 simulations for computation, where 𝑚 is the number of parameters 

being determined. Moreover, model failure, that is, the premature ending of the simulation is 
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communicated to the optimisation software in a special way by passing very large residuals to 

discourage exploration of the solver in this region of the parameter space. Model failure is 

generally associated with poor meshing issues, which is related to a combination of erosion 

parameters that results in an excessively high erosion rate.  

2.4 Test-problem 

A test problem was employed to study the behaviour of the identification method and 

determine the best choice of solver. The test problem consisted of arbitrarily choosing erosion 

parameters and constructing artificial experimental data using model prediction and adding 

artificial noise. Noise was obtained by drawing random numbers from a normal distribution 

with a zero mean and a given standard deviation. MATLAB’s normrnd command was used 

with a standard deviation 𝜎 = 10−3𝑚𝑚. Notably, when the experimental errors are 

independent and normally distributed, the least-squares solution is also the maximum likelihood 

solution. This justifies the chosen design of the artificial experiments, particularly because 

experimental errors are typically normally distributed as a consequence of the central limit 

theorem [23].  

In the test problem, the real solution was known beforehand; thus, the assessment of the 

solution was straightforward. However, this information was not used to solve this problem. 

Multiple random initial points were employed to sort out convergence to local minima. If 

different solutions were encountered, they were discriminated based on the minimal value of 

the objective function.  

Furthermore, the standard deviation of the constructed experimental data was known; 

therefore, a chi-square (𝜒2) test was used to assess the goodness-of-fit provided by the solution. 

The observed 𝜒𝑜𝑏𝑠
2  provides a measurement of the misfit between the experimental data and 

model, as defined in Equation (24). Under the hypothesis used in the least-squares problem, 

that is, an uncorrelated, normally distributed error with standard deviation 𝜎, this variable is 

chi-square distributed with 𝜈 = 𝑛 − 𝑚 degrees of freedom [23]. For a large 𝜈, at a level of 

significance 𝛼 = 0.05, 𝜒𝑜𝑏𝑠
2  must lie in the interval given by Equation (25) if the model 

parameter 𝜃 represents the experiment. This was used to check the statistical acceptability of 

the solutions.  
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Moreover, a plot of the residuals scaled by the standard deviation exhibits no clear 

tendencies, and they appear to be randomly distributed around zero. 

In Equation (24), 𝑦𝑖,𝑒𝑥𝑝 are the values obtained from the superposition of the noise with 

the simulated radii, and 𝜎 is the standard deviation of the noise. With this approach, the 

behaviour of the problem with different configurations was studied: both a two-parameter 

erosion rate, obtained by fixing parameter 𝑎 to 1, (𝑚 = 2) and a three-parameter rate (𝑚 = 3) 

were considered for the noisy generated profiles. Furthermore, an analysis of the exact problem, 

that is, no noise added to the data, was also conducted, where the chi-square test was not applied 

because the data had no errors.  

For the test problem, a refractory with a radius of 10 mm and an immersion length of 57 

mm was considered. The clearance to the crucible bottom was 20 mm, and the crucible radius 

was 32.5 mm. The slag viscosity and density were 0.6186 Pa ·  s and 2589 kg/m3, respectively. 

The Taylor number was 412, which was well below the critical Taylor number of 5231 

calculated from DiPrima et al. [13]. Additionally, the Reynolds number with the gap width as 

the characteristic length is 19.7. Figure 7 shows the simulated flow field for this setup. Here, a 

typical CC flow was observed in the annular region, where the velocity magnitude decreased 

from the prescribed rotational speed at the inner cylinder to zero at the crucible wall.  

𝜒𝑜𝑏𝑠
2 = ∑

(𝑦𝑖(𝜃) − 𝑦𝑖,𝑒𝑥𝑝)
2

𝜎2

n

𝑖=1

 
(24) 

(√2𝜈 − 1 − 1.96)
2

2
≤ 𝜒𝑜𝑏𝑠

2 ≤
(√2𝜈 − 1 + 1.96)

2

2
 

 

(25) 
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Figure 7. Velocity contours of the simulated test-problem 

Figure 8 (a) shows a comparison of the analytical CC solution (Equation (2)) with our 

simulation results at two different axial positions: at half the cylinder length and near the sample 

tip. It is evident that the velocity magnitude is well predicted by the CC solution at the half-

length line, with an average relative error of 0.2%, whereas the flow field deviates from the 

prediction toward the end of the sample. The velocity gradient at the refractory wall results in 

the WSS distribution shown Figure 8 (b); the axial coordinate begins at the slag/atmosphere 

interface and increases toward the tip of the sample. The WSS is the variable of interest that 

dominates the erosion process, according to Equation (1). Additionally, in this figure, the 

theoretical CC-WSS was computed from the analytical solution given in Equation (26). The 

simulated WSS deviated from the analytical values more noticeably near the slag/atmosphere 

interface, where the no-shear boundary condition was imposed, and close to the sample tip, 

where these stresses were larger.  

𝜏 = 2𝜇Ω1 (
1 − 𝜇Ω

1 − 𝜂2
) (26) 
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                                  (a)                                                                      (b) 

Figure 8. Velocity magnitude at different axial positions in the annular gap (a). Wall 
shear stress profile (b) 

 
3. Results and discussion 

3.1 Results of test-problem 

The inverse problem was conducted with the following choice of erosion parameters: 

𝜃 = (𝑘𝑑, 𝜏𝑐, 𝑎)𝑇 = (2 ∙ 10−9𝑚 Pa−1 s−1, 5 𝑃𝑎, 1), and the erosion time was 30 min.  

Simulation with the chosen parameters for 30 min of flowtime permits the computation 

of our erosion profile, which is shown in Figure 9. The continuous line represents the model 

profile used in the exact problem, and the scatter plot represents the solution with random noise 

added to the data. A grid independence test was conducted, where refining the mesh from 20307 

to 81228 elements only led to a change of 1.3% on average in the WSS distribution; therefore, 

the coarser mesh was chosen. Furthermore, a time step of 1 s was used for the simulation, and 

the independence of this choice was checked by performing simulations with a time step of 0.1 

s. The predicted erosion profile changed by 0.001% when the average radius of the sample was 

considered. Moreover, simulations comparing the multiphase model were conducted, where the 

surface-tension effects were considered as described in our previous study [24]. However, this 

approach requires significantly smaller time steps for the stability of the Volume of Fluid solver. 

Additionally, the results of the single-phase model, where the slag/atmosphere interface is 

modelled as a no-shear boundary, are in good qualitative agreement with those of the 

multiphase simulation.  

10 15 20 25 30 35
r [mm]

0

0.05

0.1

0.15

0.2

0.25

v 
[m

/s
]

CC Solution
Simulation z = 1/2L
Simulation z = L



20 
 
 
 
 

 
Figure 9. Erosion profile (exact) and noisy data 

 
3.1.1 Exact problem, m = 2  

The first configuration that was studied was the simplest, where a two-parameter erosion 

rate was considered by fixing the exponent 𝑎 to 1, and no artificial noise was added to the 

simulated profile. The solution of five multiple random starts is summarised in Table 1, where 

𝑓 represents half of the sum of squares of residuals. For the exact problem at the optimum (𝜃∗), 

𝑓(𝜃∗) is 0. 

 

Table 1. Solutions of exact problem with m = 2 

 
𝑓 𝑘𝑑 

(𝑚/𝑠) 
𝜏𝑐 

(𝑃𝑎) det(𝐽𝑇𝐽) 

1 4.00E-22  2.00E-9 5.00 6.55 
2 4.50E-22 2.00E-9 5.00 6.56 
3 4.50E-22 2.00E-9 5.00 6.56 
4 5.00E-22 2.00E-9 5.00 6.59 
5 8.35E-22 2.00E-9 5.00 6.54 

In all cases, the solution was the true solution with very small values of the objective 

function, and changes in these values did not affect the parameters, at least in the first five 

decimals. In most cases, convergence occurs owing to the absolute convergence criterion. 

Additionally, the determinant of the approximated Hessian matrix is shown in this table; the 

determinant is similar for all solutions and is indicative of nonsingular matrices. Furthermore, 
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the appropriateness of the NLS2SOL solver was verified, which is an ideal outcome, owing to 

the quadratic convergence of this gradient-based solver. 

 
3.1.2 Exact problem, m = 3  

Here, a three-parameter problem and an exact simulated profile were employed. The 

results for the inverse problem are presented in Table 2. 

 
Table 2. Solutions of exact problem with m = 3 

 𝑓 
 

𝑘𝑑 
(𝑚/(𝑠 𝑃𝑎𝑎)) 

𝜏𝑐  
(𝑃𝑎) 𝑎 det(𝐽𝑇𝐽) 

1 1.80E-21 2.00E-9 5.00 1.00 4.76E-10 
2 5.75E-21 2.00E-9 5.00 1.00 5.09E-10 
3 6.60E-21 2.00E-9 5.00 1.00 5.05E-10 
4 5.78E-13 9.00E-10  0.005 1.18 9.24E-05 
5 5.79E-13 9.00E-10 0.000 1.18 8.81E-05 

The first three solutions corresponded to the exact solution, whereas solutions 4 and 5 

were different and corresponded to local subminima based on the larger value of the objective 

function. This highlights the necessity of using multiple random initial points for the inverse 

calculation. Notably, the determinant of the approximated Hessian matrices were close to zero, 

and the matrices were close to singular. Aster et al. [23] claimed that in practical cases, this is 

indicative of an ill-posed problem. In this case, the true solution was found; however, the 

situation with noisy data will be proven to be different.  

 
3.1.3 Artificial experimental problem, m = 2  

For these experiments, random noise was added to the simulated profile, as explained 

in Section 2.4, and the erosion parameters were calculated with 𝑎 fixed to 1.0. With a known 

standard deviation 𝜎 of random noise, the least-squares problem was transformed such that the 

residuals were scaled by the standard deviation, as follows: 

 𝑟 =
𝑦𝑖 − 𝑦𝑒𝑥𝑝,𝑖

𝜎
. (27) 

The value of the objective function 𝑓 now represents half of the sum of the squared scaled 

residuals, and 𝜒𝑜𝑏𝑠
2 = 2𝑓. The solutions are listed in Table 3. 
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Table 3. Solutions with artificial erosion profile with m = 2  

 
𝑓 𝑘𝑑 

(𝑚/𝑠) 
𝜏𝑐 

(𝑃𝑎) 𝜒𝑜𝑏𝑠
2  det(𝐽𝑇𝐽) 

1 101.4 2.0046E-9 5.10 202.7 6.5 
2 101.4 2.0049E-9 5.10 202.7 6.6 
3 101.4 2.0046E-9 5.10 202.7 6.6 
4 101.4 2.0051E-9 5.10 202.7 6.6 
5 101.4 2.0046E-9 5.10 202.7 6.5 

All solutions with the five random starting points were the same and were close to the 

parameters used for the design of the problem with errors of 0.2% and 2% for 𝑘𝑑 and 

𝜏𝑐, respectively. The calculated interval for 𝜒𝑜𝑏𝑠
2  using Equation (25) was [177.6 259.2], and 

the reported values lie within this interval. In all cases, the determinant of the Hessian matrix 

was similar to those presented in Table 1. This was expected because these values are only 

dependent on the model itself, and the experimental data has no influence on them. Moreover, 

this matrix was nonsingular, and unique solutions were obtained. In the Figure 10, the scaled 

residuals are shown, and they appear randomly distributed with no apparent trends in their 

distribution. 

 
Figure 10. Scaled residuals of the solution along the axial coordinate 

3.1.3 Artificial experimental problem, m = 3:  

The same problem was attempted with the power law of the excess shear stress; the 

results are shown in Table 4 for five different starting points. 
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Table 4. Solutions with artificial erosion profile and m = 3 

 
𝑓 𝑘𝑑 

(𝑚/(𝑠 𝑃𝑎𝑎)) 
𝜏𝑐 

(𝑃𝑎) 𝑎 𝜒𝑜𝑏𝑠
2  𝜀𝐶𝐶̇  

(m/s) det(𝐽𝑇𝐽) 

1 101.4 2.77E-9 7.16 0.92 202.7 4.715E-8 3.48E-10 
2 101.7 1.30E-9 2.39 1.10 203.5 4.715E-8 1.49E-09 
3 101.9 1.16E-9 1.65 1.13 203.8 4.715E-8 2.02E-09 
4 102.0 4.07E-9 9.65 0.83 204.1 4.715E-8 3.18E-10 
5 1E14 6.07E-9 8.73 1.43 2E14 4.310E-7 - 

In this case, no unique solution was obtained; similar values of the objective function 

led to different solutions, and none corresponded to the parameters used in the design of the test 

problem. Moreover, from a statistical point of view, all solutions except solution 5 are 

acceptable because the values of 𝜒𝑜𝑏𝑠
2  lie within the calculated interval of [176.7, 258.1]. These 

solutions all produced the same characteristic erosion rate, which was calculated using the 

solution parameters and analytical CC-WSS. This is characteristic of an ill-posed problem. This 

was also noticeable in the determinants of the Hessian matrices, which were indicative of nearly 

singular matrices. A possible explanation for this behaviour is the relatively low variation in 

the WSS distribution along the axial coordinate resulting from the CC flow field. This is easily 

understood when a constant WSS distribution is considered. Then, an infinite combination of 

parameters would produce the same erosion rate, and therefore, the same erosion profile. 

Solution number 5 is a case of divergence owing to the repetitive failure of the model, where 

large residuals are passed.  

 
3.1.4 Artificial experimental problem, m = 3, Nexp = 2:  

Finally, it is feasible to perform multiple experiments with different erosion times. Here, 

the determination was attempted using combined data from two experiments: one with an 

erosion time of 30 min and the other of 15 min, as shown in Table 5.  

 
Table 5. Solutions with artificial erosion profile for m = 3 using two experiments (t = 15 

min and t = 30 min erosion) 

 
𝑓 𝑘𝑑 

(𝑚/(𝑠 𝑃𝑎𝑎)) 
𝜏𝑐 

(𝑃𝑎) 𝑎 𝜒𝑜𝑏𝑠
2  𝜀𝐶𝐶̇  

(m/s) det(𝐽𝑇𝐽) 

1 204.7 3.24E-9 8.19 0.89 409.5 4.713E-8 6.25E-10 
2 204.7 3.28E-9 8.26 0.88 409.5 4.714E-8 6.33E-10 
3 204.8 3.53E-9 8.74 0.87 409.6 4.713E-8 5.64E-10 
4 206.6 8.82E-10 0.00 1.19 413.2 4.713E-8 2.33E-04 
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Convergence to the design optimum was not achieved, and the multimodality of the 

problem was evident and explained by the Hessian matrix determinant. Repetition of the 

experiment, that is, using the same erosion time with a new set of random errors, also led to the 

same conclusions, shown in Table 6. 

 
Table 6. Solutions of artificial erosion profile for m = 3 and two experiments  

 
𝑓 𝑘𝑑 

(𝑚/(𝑠 𝑃𝑎𝑎)) 
𝜏𝑐 

(𝑃𝑎) 𝑎 𝜒𝑜𝑏𝑠
2  𝜀𝐶𝐶̇  

(m/s) det(𝐽𝑇𝐽) 

1 228.0 2.55E-9 6.72 0.95 456.1 4.722E-8 3.58E-10 
2 228.2 3.06E-9 7.88 0.90 456.2 4.722E-8 3.42E-10 
3 229.3 1.28E-9 2.37 1.10 458.5 4.722E-8 1.56E-09 
4 230.6 8.75E-10 0.005 1.19 461.1 4.721E-8 1.14E-06 

In both cases, the calculated interval for 𝜒𝑜𝑏𝑠
2  was [378.6 494.2], and all solutions lie 

within it.  

 
3.2 Result from real experiments  

The experimental setup consisted of an alumina coarse-grained refractory material. The 

slag was in the CaO-Al2O3-SiO2-MgO system with weight percentages of 32.42%, 11.16%, 

49.56%, and 6.86% for calcia, alumina, silica, and magnesia, respectively. The experimental 

temperature was 1450 °C, and the slag density and viscosity were 2595.2 kg/m3 and 1.0187 

Pas, respectively. The rotational speed was 200 rpm with an erosion time of 30 min. All the 

other experimental parameters were as defined in Section 2.4. The results for the five initial 

random points are presented in Table 7. The information from the test problem already indicated 

the infeasibility of inverse calculation with 𝑚 = 3; therefore, we attempted the determination 

with a at a fixed value of 1.  

Table 7. Solutions with real experimental erosion profile 

 𝑓 𝑘𝑑 
(𝑚/(𝑠 𝑃𝑎𝑎)) 

𝜏𝑐 
(𝑃𝑎) 

𝜀𝐶𝐶̇  
(m/s) det(𝐽𝑇𝐽) 

1 3.159E-7 7.220E-9 29.58 1.771E-7 7.25E8 
2 3.159E-7 7.224E-9 29.60 1.771E-7 5.90E3 
3 3.159E-7 7.205E-9 29.50 1.773E-7 2.02E3 
4 3.161E-7 7.304E-9 29.95 1.765E-7 3.77E9 
5 3.166E-7 7.380E-9 30.24 1.762E-7 6.48E8 
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The results are unique and differed only in decimals, owing to the premature 

convergence of the solver. The solution is shown graphically in Figure 11, where the fit between 

the model and experiment can be estimated. The largest discrepancies between the model and 

experimental data were observed in the slag/atmosphere near 𝑧 below approximately 5 mm. 

This may have been caused by parameters 𝑘𝑑 and 𝜏𝑐 not being constant over the entire specimen 

length. Lower erodibility was expected close to the slag surface because this region might be 

less affected by pre-corrosion. This effect could be cancelled by evaluating the profile for 𝑧 >

5 𝑚𝑚 only. Notably, the determinants of the Hessian matrices were indicative of a nonsingular 

matrix (see Table 7 ). 

 
Figure 11. Results of inverse calculation of parameters for real experimental erosion 

profile 

 
The standard deviation was not known when the real experimental erosion profiles were 

used. One approach is to approximate the standard deviation from the residuals, as per Equation 

(28). This incurs a statistical cost, and with this standard deviation, the solution always passes 

the chi-square test; therefore, other methods for statistical assessment are necessary.  

 
𝑠 =  √

∑ (𝑦𝑖(𝜃) − 𝑦𝑖,𝑒𝑥𝑝)2 𝑛
𝑖

𝜈
 (28) 

Confidence intervals and regions were calculated to evaluate the solutions. Here, a 

nonlinear problem was considered, but the calculations for confidence intervals and regions 

were based on the linearisation of the model, as described in the literature [23,25]. This 
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approximation does not necessarily lead to a good estimation of such intervals or regions; 

therefore, caution must be exercised. Other methods for calculating confidence regions, not 

based on linearisation, include the F-test, log-likelihood method, and Monte Carlo techniques. 

However, these methods require many more function evaluations, which translates to 

significant simulation effort. Linearisation was performed with the approximated Hessian 

matrix, which was computed using the Jacobian matrix calculated with difference 

approximations at the optimum solution (𝐻 = 𝐽(𝜃∗)𝑇𝐽(𝜃∗)). The covariance matrix was 

approximated using Equation (29), which was reported by Donaldson and Schnabel as the best 

linearisation approach [25] in terms of results and computation effort. The confidence intervals 

were calculated based on a t-student distribution with a confidence level of 95%, as shown in 

Equation (30), with 𝑠 calculated from Equation (28): 

 
 𝐶𝑜𝑣(𝜃) = 𝑠2(𝐽𝑇𝐽)−1 (29) 

 
𝜃 ± 𝑡𝜈,0.975 𝑑𝑖𝑎𝑔(𝐶𝑜𝑣(𝜃))

1
2. (30) 

Here, 𝑑𝑖𝑎𝑔(𝐶𝑜𝑣(𝜃))
1

2 refers to a vector of 𝑚 components obtained from the diagonal of the 

covariance matrix by taking the square root of each element. 

The difference between the confidence intervals and regions is that the regions allow 

for correlations between the parameters. When using linearisation, the shape of the regions is 

elliptical, centred on the solution, as given by Equation (31). The confidence level is determined 

from the 𝜒2 distribution with 𝑚 degrees of freedom, as expressed in Equation (32), for which a 

95% confidence is employed.  

 
 (𝜃 − 𝜃∗)𝑇𝑠−2𝐽𝑇𝐽(𝜃 − 𝜃∗) ≤ ∆2  (31) 

 ∆2= 𝐹𝜒2,𝑚
−1 (0.95)  (32) 

The Hessian and covariance matrices for the first solution presented in Table 7 are given 

as follows: 

 𝐻     =  (9.153 ∙ 1011 −123.403
−123.403 7.927 ∙ 10−4) ;  𝐶𝑜𝑣 =  (2.422 ∙ 10−21 3.771 ∙ 10−16

3.771 ∙ 10−16 2.797 ∙ 10−6 ). 
 

 

The confidence intervals are 

 7.123 ∙ 10−9  ≤ 𝑘𝑑 ≤  7.317 ∙ 10−9,   

 29.579 ≤ τc ≤  29.586.  
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The confidence intervals were narrow for both parameters. The confidence region is 

plotted in Figure 12 with the box defined by the confidence intervals. It can be observed that 

both the region and intervals are similar, but the region is slightly larger. 

 

  
Figure 12. Confidence regions (shaded ellipsoidal area) and confidence region (box) 

for solution 1 

 
The low inclination with respect to the parameter axis 𝑘𝑑 can be observed from the 

coefficient of correlation between the parameters. 

 
𝜌𝑘𝑑,𝜏𝑐

=
𝐶𝑜𝑣(𝑘𝑑 , 𝜏𝑐)

√𝑉𝑎𝑟(𝑘𝑑)𝑉𝑎𝑟(𝜏𝑐)
= 0.0046 

 

 
Table 8 shows confidence intervals and parameter correlation for all solutions presented 

in Table 7, where the lower and upper bounds of the intervals are denoted with subscripts 𝐿 and 

𝑈, respectively. It can be observed that similar solutions, such as solutions 1 and 2, produce 

different confidence regions and parameter correlation. Therefore the reliability of the 

linearisation approach for the estimation of parameter confidence is not ensured and should be 

analysed for each individual case. 
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Table 8. Confidence intervals and correlation coefficients for all solutions 

 𝑘̅𝑑𝐿
 𝑘̅𝑑 𝑘̅𝑑𝑈

 𝜏𝑐̅𝐿
 𝜏𝑐̅ 𝜏𝑐̅𝑈

 𝜌𝑘𝑑,𝜏𝑐
 

1 7.12E-9 7.22E-9 7.32E-9 29.58 29.58 25.59 0.0046 
2 7.01E-9 7.22E-9 7.43E-9 27.99 29.60 31.21 0.9433 
3 6.66E-9 7.21E-9 7.75E-9 27.67 29.50 31.34 0.9817 
4 7.24E-9 7.30E-9 7.37E-9 29.70 29.95 30.20 -1.0000 
5 7.21E-9 7.38E-9 7.55E-9 30.23 30.24 30.24 0.0052 

4. Conclusions 

This study developed and tested a method for the inverse calculation of the erosion 

parameters of refractory materials in liquid slags. Investigations with a test problem proved that 

the problem is well suited for gradient-based solvers, and the NL2SOL solver can be employed. 

With the exact problem, identification of the true erosion parameters is achievable for both 

𝑚 = 3 and 𝑚 = 2; however, the determinants of the Hessian matrix for 𝑚 =  3 proves the 

difficulties associated with this approach. 

An analysis with noisy generated erosion profiles revealed an ill-conditioning of the 

problem for 𝑚 = 3. In these cases, multiple solutions were obtained and were equally 

acceptable; thus, erosion parameters could not be uniquely identified. This may be a result of 

the low variation in the WSS distribution along the axial coordinate. These results highlight the 

irrelevance of exact problems in the analysis of inverse-problem capabilities. The conclusions 

are confirmed by the determinant values of the Hessian matrices, which were close to singular 

for all cases with 𝑚 =  3.  

For the case of 𝑚 =  2, where parameter 𝑎 is set to 1, unambiguous identification was 

possible. However, local subminima were also encountered in the solution process, which 

suggest the necessity for using multiple random starting points. The results for the test problem 

were validated using the chi-square test.  

Finally, the methodology was successfully applied to real experiments, in which the 

erosion parameters for a linear erosion rate could be identified. Confidence regions and intervals 

were also calculated; however, their reliability was not guaranteed because similar solutions 

produced dissimilar confidence regions. The methodology developed in this study is suitable 

for the inverse calculation of erosion parameters for refractory erosion in liquid slags and can 

guide further investigations of refractory erosion.  

Future investigations might concern the application of the method for different material/ 

slag systems. Further, the evaluation with erosion profiles obtained from service conditions is 
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of interest but it presents further challenges associated to the resolution of the flow-field for the 

given processes, where turbulence and other process associated phenomena not included in this 

work may also be relevant.  

 
 

Acknowledgements 

The authors gratefully acknowledge the funding support of K1-MET GmbH, metallurgical 

competence center. The research programme of the K1-MET competence center is supported 

by COMET (Competence Center for Excellent Technologies), the Austrian programme for 

competence centers. COMET is funded by the Federal Ministry for Climate Action, 

Environment, Energy, Mobility, Innovation and Technology, the Federal Ministry for Digital 

and Economic Affairs, the Federal States of Upper Austria, Tyrol and Styria as well as the 

Styrian Business Promotion Agency (SFG) and the Standortagentur Tyrol. Furthermore, we 

thank Upper Austrian Research GmbH for the continuous support. In addition to the public 

funding  from COMET, this research project is partially financed by the scientific partners the 

Chair of Ceramics of the Montanuniversität Leoben and the industrial partners voelstalpine 

Stahl GmbH, RHI Magnesita GmbH and Böhler Edelstahl GmbH. 

 
Data Availability Statement  

The data that support the findings of this study are available on reasonable request from the 

corresponding author.  

 
References 

 

[1] Vollmann S, Harmuth H. CFD simulation of mass transfer coefficients relevant for 

refractory wear. Interceram: Int Ceram Rev/Refractories 2012:19–21. 

[2] Guzmán AM, Martínez DI, González R. Corrosion–erosion wear of refractory bricks in 

glass furnaces. Engineering Failure Analysis 2014;46:188–95. 

https://doi.org/10.1016/j.engfailanal.2014.09.003. 

[3] Partheniades E. Erosion and Deposition of Cohesive Soils. Journal of the Hydraulics 

Division 1965;91:105–39. https://doi.org/10.1061/JYCEAJ.0001165. 



30 
 
 
 
 

[4] Al-Madhhachi A-ST, Hanson GJ, Fox GA, Tyagi AK, Bulut R. Measuring Soil 

Erodibility Using a Laboratory “Mini” JET. Transactions of the ASABE 2013;56:901–10. 

https://doi.org/10.13031/trans.56.9742. 

[5] Hanson GJ, Simon A. Erodibility of cohesive streambeds in the loess area of the 

midwestern USA. Hydrological Processes 2001;15:23–38. https://doi.org/10.1002/hyp.149. 

[6] Weidner K, Petrie J, Diplas P, Nam S, Gutierrez M, Ellenberg M. Numerical Simulation 

of Jet Test and Associated Soil Erosion, Paris: 2012. 

[7] G. J. Hanson, K. R. Cook. APPARATUS, TEST PROCEDURES, AND 

ANALYTICAL METHODS TO MEASURE SOIL ERODIBILITY IN SITU. Applied 

Engineering in Agriculture 2004;20:455–62. https://doi.org/10.13031/2013.16492. 

[8] Karmaker T, Das R. Estimation of riverbank soil erodibility parameters using genetic 

algorithm. Sādhanā 2017;42:1953–63. https://doi.org/10.1007/s12046-017-0733-6. 

[9] Wan CF, Fell R. Laboratory tests on the rate of piping erosion of soils in embankment 

dams. Geotechnical Testing Journal 2004;27:295–303. https://doi.org/10.1520/gtj11903. 

[10] Briaud JL, Ting FCK, Chen HC, Cao Y, Han SW, Kwak KW. Erosion Function 

Apparatus for Scour Rate Predictions. Journal of Geotechnical and Geoenvironmental 

Engineering 2001;127:105–13. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105). 

[11] Kircher V, Burhanuddin, Harmuth H. Design, operation and evaluation of an improved 

refractory wear testing technique. Measurement 2021;178:109429. 

https://doi.org/10.1016/j.measurement.2021.109429. 

[12] Taylor GI. Stability of a Viscous Liquid Contained between Two Rotating Cylinders. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences 1923;223:289–343. https://doi.org/10.1098/rsta.1923.0008. 

[13] DiPrima RC, Eagles PM, Ng BS. The effect of radius ratio on the stability of Couette 

flow and Taylor vortex flow. Physics of Fluids 1984;27:2403. 

https://doi.org/10.1063/1.864544. 



31 
 
 
 
 

[14] Astill KN. Studies of the developing flow between concentric cylinders with the inner 

cylinder rotating. Journal of Heat Transfer 1964;86:383–91. https://doi.org/10.1115/1.3688703. 

[15] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Dover 

Publications, Inc.; 1961. https://doi.org/10.1017/S0022112062210592. 

[16] Andereck CD, Liu SS, Swinney HL. Flow regimes in a circular Couette system with 

independently rotating cylinders. Journal of Fluid Mechanics 1986;164:155–83. 

https://doi.org/10.1017/S0022112086002513. 

[17] Ansys ®. Ansys Fluent 12.0 Theory Guide 2009. 

[18] Demirdžić I, Perić M. Space conservation law in finite volume calculations of fluid 

flow. International Journal for Numerical Methods in Fluids 1988;8:1037–50. 

https://doi.org/10.1002/fld.1650080906. 

[19] ANSYS I. ANSYS Fluent User’s Guide 2017. 

[20] Versteeg H, Malalasekera M. An introduction to computational fluid dynamics: The 

finite volume method, 2nd Edition. Pearson; 2007. 

[21] Ferziger JH, Peric M, Street RL. Computational methods for fluid dynamics, Fourth 

Edition. Springer; 2020. 

[22] Dennis JE, Gay DM, Walsh RE. An Adaptive Nonlinear Least-Squares Algorithm. 

ACM Transactions on Mathematical Software 1981;7:348–68. 

https://doi.org/10.1145/355958.355965. 

[23] Aster RC, Borchers B, Thurber CH. Parameter estimation and inverse problems. 

Elsevier Inc.; 2013. https://doi.org/10.1016/C2009-0-61134-X. 

[24] Guarco J, Harmuth H, Vollmann S. Method for determination of mass transfer 

coefficients for dissolution of dense ceramics in liquid slags. International Journal of Heat and 

Mass Transfer 2022;186:122494. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122494. 



32 
 
 
 
 

[25] Donaldson JR, Schnabel RB. Computational experience with confidence regions and 

confidence intervals for nonlinear least squares. Technometrics 1987;29:67–82. 

https://doi.org/10.1080/00401706.1987.10488184. 

 


	Method for determination of mass transfer coefficients for dissolution of dense ceramics in liquid slags
	1 Introduction
	2 Methodology of mass transfer calculation
	3 Experimental set-up
	4 Hydrodynamics of large Schmidt numbers
	5 Flow field
	6 Model description
	7 Results and discussion
	7.1 Comparison to documented mass transfer equations

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References

	Method for determination of effective binary diffusivities in dissolution of dense ceramic materials
	1 Introduction
	2 Materials and methods
	2.1 Experiment
	2.2 Simulation

	3 Results and discussion
	3.1 Experimental results
	3.2 Simulation results
	3.3 Diffusivity calculations
	3.3.1 Diffusivity calculation based on mass flux density
	3.3.2 Diffusivity calculation by curve fitting

	3.4 Literature discussion

	4 Conclusions
	Declaration of competing interest
	Acknowledgments
	References

	Application of an improved testing device for the study of alumina dissolution in silicate slag
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Experiment
	2.3 Continuous wear curve evaluation
	2.4 Diffusivity determination

	3 Results and discussion
	3.1 CW curves
	3.2 Dissolution parameters
	3.3 Diffusivity

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

	Sherwood correlation for finger-test experiments
	1 Introduction
	2 Review of mathematical model
	3 Sherwood correlation
	3.1 Application to dissolution studies
	3.2 Comparison to documented equations

	4 Conclusions
	CRediT author statement
	Declaration of competing interest
	Acknowledgements
	References


