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Abstract

Reinforced rubber components are omnipresent and widely used. The damping properties,
frictional behaviour, and the large tolerable elastic deformation are indispensable for indus-
trial applications. High-loaded components such as springs, dampers, hydraulic hoses, and
conveyor belts are reinforced with steel wires or steel cables. A total failure of such compon-
ents usually leads to a standstill of the entire system. A component repair or replacement
is required to continue operation. Therefore, it is essential to increase the lifetime of such
components.

To increase lifetime, the modes and causes of failure need to be known. In reinforced rubber,
debonding of the reinforcement/rubber interface and rubber fracture out of the interface
occur and lead to ultimate failure. The ability to predict failure enables the optimisation of
such components to increase lifetime.

In this work, concepts to predict failure in steel cable reinforced conveyor belts using frac-
ture mechanics are presented. Therefore, the stress and strain fields for later use in fracture
mechanics are determined using Finite Element Method (FEM) models. A FEM model captures
the mechanical load occurring in a conveyor belt test rig on a global scale. The mechanical
response of the steel cables during tension, bending, and torsion due to their wound struc-
ture is captured using special modelling approaches. For later use of fracture mechanics
on the local scale, more accurate stress and strain fields are evaluated using a submodel. A
fracture-mechanical concept is used to predict debonding at the steel cable ends. Predicting
rubber fracture out of the interface is a big issue and leads to a high computational effort.
Therefore, a concept based on configurational forces is developed to predict rubber fracture
more efficiently.

The presented concepts are crucial steps to predict failure in conveyor belts. In the future,
the concepts can be adapted and applied in the 3D case to predict failure in conveyor belts.
Such a fracture-mechanical procedure is general and can be transferred to other reinforced
rubber components.






Kurzfassung

Verstarkte Gummikomponenten sind allgegenwartig und weit verbreitet. Die Dampfungsei-
genschaften, das Reibungsverhalten und die grol3e tolerierbare elastische Verformung sind
unverzichtbar fir industrielle Anwendungen. Hochbelastete Bauteile wie Federn, Dampfer,
Hydraulikschlauche und Forderbander werden mit Stahldrahten und Stahlseilen verstarkt. Bei
einem Totalausfall muss in der Regel das gesamte System gestoppt werden. Um den Betrieb
fortzusetzen, ist eine Reparatur oder ein Austausch der Komponente erforderlich. Daher ist es
wichtig, die Lebensdauer solcher Komponenten zu erhohen.

Um die Lebensdauer zu erh6hen, muissen die Versagensarten und -ursachen bekannt sein.
Bei verstarktem Gummi tritt eine Ablosung der Grenzflache Verstarkung/Gummi und Riss-
ausbreitung in den Gummi aus der Grenzflache auf und fiihrt zu endgultigem Versagen. Die
Fahigkeit, Versagen vorherzusagen, ermoglicht die Optimierung solcher Komponenten, um
die Lebensdauer zu erh6hen.

In dieser Arbeit werden Konzepte zur Vorhersage des Versagens in stahlseilverstarkten For-
dergurten unter Verwendung der Bruchmechanik vorgestellt. Daher werden die Spannungs-
und Dehnungsfelder fur die spatere Verwendung in der Bruchmechanik mit der Finite-Ele-
mente-Methode (FEM) ermittelt. Ein FEM-Modell erfasst die in einem Fordergurtpriifstand
auftretenden mechanischen Belastungen auf globaler Ebene. Das mechanische Verhalten der
Stahlseile bei Zug, Biegung und Torsion, aufgrund ihrer gewundenen Struktur, wird mit spezi-
ellen Modellierungsansatzen erfasst. Fur die spatere Nutzung der Bruchmechanik auf lokaler
Ebene werden genauere Spannungs- und Dehnungsfelder mithilfe eines Submodells ausge-
wertet. Ein bruchmechanisches Konzept wird verwendet, um die Ablosung an den Seilenden
vorherzusagen. Die Vorhersage von Rissen in den Gummi aus der Grenzflache heraus ist eine
grolRe Herausforderung und fiihrt zu einem hohen Rechenaufwand. Daher wird ein Konzept
entwickelt, um Risswachstum im Gummi unter Verwendung des Konzepts der konfigurellen
Krafte effizienter vorherzusagen.

Die vorgestellten Konzepte sind entscheidende Schritte, um das Versagen von Forderban-
dern vorherzusagen. In Zukunft kdnnen die Konzepte angepasst und im 3D-Fall angewendet
werden, um das Versagen von Fordergurten vorherzusagen. Solche bruchmechanischen Ver-
fahren sind allgemein und auf andere verstarkte Gummikomponenten lbertragbar.
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1 Introduction

Reinforced rubber components are widely used and indispensable for industrial applications
since there are no alternatives for use under high loads and when flexibility is also required.
Rubber as matrix material is essential for these applications. The main reasons for using
rubber as a matrix material are the large tolerable elastic deformations and specific properties
like damping and frictional behaviour. These components are partially reinforced to achieve
the requirements of springs, dampers, hydraulic hoses, and conveyor belts. The focus of this
work lies in conveyor belts.

Conveyor belts of different sizes are used to transport bulk materials, as shown in
Fig. 1.1 (a). In mines, the loose bulk materials (such as ore) are transported using conveyor
belts over distances of up to several kilometres and must endure heavy loads. To sustain the
heavy loads, conveyor belts of the highest strength classes are used. In these strength classes,
conveyor belts are reinforced with steel cables in the longitudinal direction, as shown in
Fig. 1.1 (b). These belts are referred to as steel cable reinforced conveyor belts. The necessary
total length of several kilometres leads to issues with the transport and the manufacturing
of endlessly connected conveyor belts. Therefore, the conveyor belt is manufactured in
smaller, easy-to-handle segments. To connect the segments, the rubber is stripped from the
steel cables at the ends of segments and then the segments are connected using a specific
laying scheme of steel cables, as shown in Fig. 1.1 (c). The process is performed on-site to
get an endless conveyor belt using a mobile vulcanisation press. The connection of two belt
segments is called a splice. The splice is the weak point in a conveyor belt because there are
no continuous steel cables and the tensile load has to be transferred by shear stress in the
rubber between the steel cables.

i D@ D
(a )apphcatlon b) geometry c) splice

Figure 1.1: Application of a conveyor belt, which is used to transport loose bulk material (a). The geo-
metry shows the necessary steel cable reinforcement due to the heavy load (b). The splice
is used to connect the single belt segments to an endless conveyor belt (c).

The ultimate failure of a conveyor belt in the field is associated with high costs due to a
transport stop and, in the worst case, the downtime of a mine. Therefore, it is of tremendous
interest to avoid failure. Hence, conveyor belts are standardised in terms of their functional
and structural requirements [1], reinforcement design [2], and requirements for underground
use [3]. Also, vulcanised splices and the essential requirements depending on the conveying
task are standardised in [4] and [5], respectively. Therefore, the technical communication



2 1 Introduction

is simplified and the overall quality and reliability of belts from the various manufacturers
are comparable. Research has been conducted to study conveyor belts to prevent failure by
increasing knowledge and understanding.

Failure in conveyor belts results from mechanical loading and deformation during use. In
use, the conveyor belt is loaded with bulk material and runs over rolls. The first step in investig-
ating failure is to determine forces, pressures, and deformations of the conveyor belt running
over rolls, as done by Fedorko and Ilvanco [6] and MikuSova and Millo [7] using a Finite Element
Method (FEM) model. Furthermore, it is also important to investigate the deformation from a
flat to a tubular conveyor belt shape, as done by Fedorko et al. [8] and Fedorko and Molnar [9]
using FEM. Therefore, the dynamic interactions with conveyed bulk material particles and
system components such as idlers and drums are essential. To investigate this, Fimbinger [10]
presents a methodology using the discrete element method.

Since the splice is the weak point, a closer investigation has to focus on the splice of a
conveyor belt. For a splice to work, the splicing process and the splicing geometry work
together. Currently, the splicing is performed manually at the place of use. The manufacturing
accuracy and quality as well as the necessary manufacturing time are decisive factors. To
improve the splice quality and minimise the downtime of a belt conveyor, Zaremba et al. [11]
investigated the manual splicing process with a focus on using a pure water jet to remove
the rubber from the steel cables to automate the splicing process. The used splice geometry,
laying scheme, and rubber compounds influence the load transfer through the whole splice,
which influences the location of the highest stressed region. This is investigated by Keller [12]
using simplified small steel cable rubber test specimens and specimen FEM models. Also,
the influence of debonded steel cables and cable rupture on the load transfer in the splice
is investigated. The used material model and parameters to model the rubber compounds
influence the mechanical response in the splice. Therefore, a procedure to evaluate material
parameters for the rubber compounds is developed by Frobose [13]. The investigation of
failure in conveyor belt splices and their prediction can contribute to further optimisation.
Especially, the failure in the interface between steel cable and rubber is important. This is
investigated by Li et al. [14] using a shear damage criterion in a FEM model, where the steel
cable pull-out force is validated by experimental results. The prediction of failure in conveyor
belt splices, however, has not yet been explored in depth.

The failure mechanisms occurring in a conveyor belt splice are shown in Fig. 1.2. As de-
scribed by Keller [12], steel cable rupture, see Fig. 1.2 (a), appears at high test loads and a
low number of load cycles. On the other hand, at low test loads and a high number of load
cycles, debonding of steel cables or rubber fracture occurs, as shown in Fig. 1.2 (b), (c), and (d).
Keller also mentions that the failure of a conveyor belt typically does not occur spontaneously,



but progressively. Debonding of steel cables is observed on cable ends in the splice or on
ruptured cables. Kinking of a crack into the rubber, see Fig. 1.2 (d), occurs on ruptured cables
or debonded steel cables and leads to ultimate failure, as shown in Fig. 1.2 (e).

_ % '
ruptured I_[>
o %E
rubber
T —> L | ult|mate

failure
debonded (c) debondlng
cable end

fractu re

Figure 1.2: Failure mechanisms in a conveyor belt: Debonding of steel cables (c) occurs at ruptured
cables (a) and cable ends in the splice (b). Rubber fracture (d) appears at ruptured cables
or by kinking of debonded cracks out of the interface and leads to ultimate failure (e).

The overall goal of this conveyor belt research is to improve the cyclic strength of the splice,
which is determined experimentally by a standardised test [15]. In this test, a conveyor belt
with one splice is running (with a velocity v) on a test rig with two drums, see Fig.1.3. An
additional oscillating force F'(t) is applied to the drums, which stretches the belt in the lon-
gitudinal direction. The determination of this strength is relevant because the same failure
mechanisms occur as in the real application.

[ splice |  [conveyor belt|

D

drums

Figure 1.3: Test setup to evaluate the cyclic strength of conveyor belts [15].



2 Hypothesis and state of the art

In this work, the focus lies on the prediction of failure of the splice of a steel cable reinforced
conveyor belt. The common approach to predict failure is shown in Fig. 2.1. This approach is
divided into three parts. The test rig (a), where the failure should be predicted, such as the
test rig from [15], where the cyclic strength of a splice is determined. In the FEM modelling (b),
stress and strain fields are determined based on the load situation on the test rig using FEM
models. The failure mechanisms occurring in a conveyor belt splice are assessed using the
determined stress and strain fields in the failure assessment (c). Based on the assessment,
the failure on the test rig is predicted.

predicting failure

§ Ftnn\ion < F\'z\lid
@ cable rupture
[ splice | |conveyor belt| @

F<~3>F
M= M,
TR —— L4
g ‘ —=> debondmg i rubber
1 @ i fracture
tensile splice stress based
Y| | @

. mechanics? ¢

(a) Test rig (b) FEM modelling (c) Failure assessment

Figure 2.1: Schematic of predicting failure of conveyor belts: Test rig to evaluate the cyclic strength
of a splice (a), where failure should be predicted. Available FEM models in the literature
(b), where accurate steel cable modelling and the bending around the drums are missing.
Relevant failure mechanisms in a splice, which should be assessed using the models (c).

As a first approximation, the splices are loaded in tension using FEM, as shown in Fig. 2.1 (b).
These splice models contain one or more rubber layers and embedded steel cables. First
FEM models are presented by Nordell et al. [16] and further ones by Keller [12] and Frobdse et
al. [17]. For the rubber, a hyperelastic material model is used. The steel cables are approxim-
ated by solid cylinders with an isotropic linear elastic material model [12], [17] or by using
special FEM elements [16]. Steel cable rupture can be predicted in a simplified way using a
tensile force criterion, as shown in Fig. 2.1 (c). Such a tensile force criterion is described in [18].
These tensile FEM models are used for splice optimisation to avoid debonding and rubber
fracture based on stresses evaluated in the rubber. Also, the influence on the stress fields of
ruptured and debonded steel cables is investigated, as done by Keller [12].

The hypothesis of this work: The failure in conveyor belt splices can be predicted using FEM
models. To this end, FEM models in combination with Fracture Mechanics (FM) concepts are
used. FEM models compute accurate stress and strain fields on a global scale that can be used
on the small scale with FM concepts to predict failure.



To this end, various improvements and solutions to detailed problems are developed to
solve the whole issue. On the test rig, the conveyor belt is bent around the drums. In the
available FEM splice models, bending around the drums is not taken into account. However,
Nordell et al. [16] mentioned that bending a splice around a drum can significantly influence
the resulting stresses in the belt. Neglecting the effect of bending in the FEM model results
in uncertainties in the stress and strain results, as highlighted in Fig. 2.1 (b). Therefore, the
bending around the drums has to be taken into account.

Steel cables show high tensile stiffness, low bending stiffness compared to a solid, and a
tension-torsion coupling as a result of the wound structure, as described in Costello [19]. The
specific elastic response of steel cables is investigated by various research groups. Chen et
al. [20] experimentally investigated the bending of steel cables with a focus on the clamping
of the cable ends and found a significant influence on the bending stiffness. A distinct tension-
torsion coupling due to axial tensile load is reported by Utting and Jones [21]. Furthermore,
in conveyor belts, the rubber penetrates the steel cables. Bonneric et al. [22] investigated the
influence of rubber penetration in steel cables using FEM models and obtained an increasing
bending stiffness. In the conveyor belt splice, the steel cables are not aligned in a straight
way and are not arranged exactly in the load direction. In this case, where the steel cables
are realigned during loading, the approximation of a steel cable as a solid cylinder in FEM
using isotropic linear elastic material models yields unacceptable errors in tensile forces
and stresses because of neglecting the mechanical steel cable response, as highlighted in
Fig.2.1(b).

Rubber is the main component of a conveyor belt. The mechanical properties of rubber de-
pend on its molecular structure, as described in Rothemeyer and Sommer [23] and Gent [24].
Rubber is a viscoelastic and nearly incompressible material with a Young’s modulus range of
0.1 MPato 100 MPa [23]. The deformation behaviour is hyperelastic with endurable strains
from 100 % up to 1000 % [23]. Therefore, rubber ensures the necessary flexibility of conveyor
belts. Rubber is a brittle material because no plasticity occurs even at high temperatures. To
predict failure in the rubber, FM can be used. The strain energy release rate criterion proposed
by Griffith [25] is successfully used by Rivlin and Thomas [26] to describe crack growth. The
fracture toughness of rubber ranges from less than 100 J/m? up to several xJ/m2 [24].

For failure assessment, a stress-based concept for debonding of steel cables and rubber
fracture has been used [12], [17]. However, the evaluated rubber stresses at the cable ends
are mesh dependent and the mesh size affects the stress peak. Therefore, with a stress-based
prediction of failure (debonding and rubber fracture) only a qualitative statement is possible,
as shown in Fig. 2.1 (c). Accurate quantitative failure modelling using FM is missing. FM can be
used to predict the failure of components that fail due to crack growth. The main concepts
for assessing whether and in which direction a crack will propagate are based on Griffith [25],
Irwin [27], Rice [28], and Eshelby [29]. The crack propagates if the computed crack-driving
force is bigger or equal to the crack growth resistance of the material. Therefore, it is essential
to determine the crack-driving force numerically. This has been done by Sun and Davidson [30]
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by determining the energy release rate, taking into account the effects of friction and geomet-
ric nonlinearities. An overview of concepts to determine 2D crack propagation direction in
homogeneous materials is given by Brouzoulis et al. [31]. As mentioned above, to predict the
direction of crack propagation in rubber, a concept based on the strain energy release rate
is necessary, which is valid for rubber. Such a concept is the Maximum Energy Release Rate
(MERR) concept. The propagation direction of MERR can be found by introducing trial cracks,
see Hellen [32]. In the case of conveyor belts, the initial cracks are located in the interfaces
between the steel cables and the rubber matrix. In this case, further debonding or kinking of
a crack out of the interface is possible. The kinking of a crack out of the interface between
two elastic solids in the 2D case is analysed by He and Hutchinson [33] using a kink criterion
based on the MERR criterion. The proposed criterion uses the fracture toughnesses of the
interface and the weak material.

To predict crack growth in realistic multi-material 2D structures, a FEM approach is neces-
sary. Such an approach is presented by Oneida et al. [34]. In this approach, it is assumed
that the crack propagates in homogeneous materials in the direction of MERR, where the
fracture toughness of mode | direction can be used. For crack propagation in the interface, the
fracture toughness depends on the occurring mode-mixity, as described by Evans et al. [35].
Therefore, the energy release rates for crack growth (and the individual mode-mixity for crack
propagation in the interface) are computed numerically by introducing trial cracks. Starting
from a crack in an interface or a crack tip touching an interface in a multi-material structure,
as shown in Fig. 2.2 (a), for every possible crack propagation along the interface, a trial crack
is introduced, see Fig. 2.2 (b). Also, the crack propagation direction is determined for every
adjacent material, as shown in Fig. 2.2 (c). This is done by introducing a large number of trial
cracks. The crack propagates if one ratio between energy release rate and fracture toughness
of the trial cracks is bigger or equal one. The crack propagates in the direction where this ratio
has a maximum. The determination of the crack propagation direction in each of the adjacent
materials results in a huge computational effort, because of the large number of introduced
trial cracks. Especially if the approach is transferred to the 3D case, because of the possible
individual crack propagation directions and crack propagation lengths along the crack front.
FM concepts have not yet been used in conveyor belts to predict steel cable debonding and
further rubber fracture out of the interface.

M material |
material Il
B material lll
% cracktip
= trial crack

trial cracks in (©) trial cracks in one
the interfaces neighbouring material

(a) starting crack (b)

Figure 2.2: Multi-material structure composed of three materials and containing a crack tip touching
two interfaces (a). The necessary trial cracks to investigate crack propagation in the inter-
face (in this case two) (b) and trial cracks to investigate crack propagation in material Il (c).



3 Methods and overview of publications

This work presents concepts to predict failure in steel cable reinforced conveyor belts in order
to improve the cyclic strength, which is evaluated at the test rig [15]. To do so, the FEM is
used on the global scale to evaluate the stress and strain fields and FM concepts are applied
on the local scale for failure assessment to predict debonding and rubber fracture. The FEM
modelling on the global scale is illustrated in Fig. 3.1 (a). The bending of the conveyor belt
around the drums affects the stress and strain fields. Since modelling the load in the test rig is
essential for predicting failure, the bending of the conveyor belt around the drums needs to
be captured. Therefore, the test rig set-up is modelled using an endless belt with one splice
running on two drums. To get more accurate stress and strain results for the later use of FM to
predict failure, a submodelling approach is used. The test rig modelling and submodelling
used are described in Paper A. To capture the specific elastic response of the steel cables,
various modelling approaches are developed and investigated, as described in Paper B. The
failure assessment on the local scale is illustrated in Fig. 3.1 (b). To predict debonding, an
energy-based FM concept is used, as described in Paper C. In the 3D case, the prediction of
rubber fracture requires high computational effort, since an enormous number of trial cracks
is necessary. Therefore, a 2D concept is developed to predict the crack propagation direction
more efficiently, as described in Paper D.

§ thmi(m < F\nli(l

cable rupture

test rig model

N

debondin

F~E=>F -

‘ Paper C

submodelling

------- { fracture mechanics i

(a) FEM modelling (b) Failure assessment

Figure 3.1: FEM modelling of the test rig (a), with steel cable modelling and an introduced submodel.
Occurring failure mechanismsin asplice (b). Cable rupture is predicted using a tensile force
criterion. Debonding of steel cables and crack propagation in the rubber is predicted using
fracture-mechanical concepts.

3.1 Global scale: FEM modelling

This section describes the FEM modelling of the test rig, which is used to determine accurate
stress and strain fields for later use to predict failure using FM concepts. It is shown, that
bending around the drums of a conveyor belt can have a significant influence on the stress
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and strain fields. Also, the mechanical response of the steel cables influences the stress and
strain fields. Therefore, several modelling approaches for steel cables are developed and
compared to model the mechanical response of a steel cable. Large deviations are obtained
by using a solid cylinder instead of a more detailed steel cable model.

3.1.1 Test rig model

The test rig is modelled as an endless belt with one splice running on two drums, see Fig. 3.2.
The test rig modelling is described in Paper A. To keep the model as simple as possible, the
assembly of the belt and starting up the test rig are not taken into account in the model. The
belt is modelled already running, with an initial velocity v. The drums are modelled as rigid
bodies with frictional contact between the belt and the drums. In the initial state, the splice is
located near the left drum and the regions around the drums are already bent.

[ splice | [conveyor belt]

Figure 3.2: Sketch of the FEM test rig model. The test rig is modelled by a belt running on two drums.

The flat manufactured belt is modelled as being bent around the drums, which corresponds
to deformation and leads to corresponding initial stresses in the belt. Therefore, stresses
for a bent belt are determined in a separate model and applied as initial stresses in the test
rig model for both bent regions around the drums, as shown in Fig. 3.3 (a). The element size
used to discretise the gap between the cables of a few millimetres and the overall dimen-
sions of the model of several meters results in a huge number of elements. In this model
with its huge element count and where contact plays a role, a quasi-static explicit simulation
is performed to reduce the computational costs and make the simulation feasible. In the
test rig, the oscillating longitudinal force is applied to the drums for several thousands of
revolutions of the belt. It is thereby assumed that the stress and strain fields during failure can
be assessed by statically applying the maximum oscillating longitudinal force I, as shown in
Fig. 3.3 (b). Starting with a running belt, the force is applied smoothly. The maximum force is
reached before the splice reaches the right drum. The rubber is modelled with a hyperelastic
material model. For the steel cables, a modelling approach is used that captures the tensile
and bending stiffness, see Fig. 3.3 (c), as described in Sec. 3.1.2. The steel cables in reality are
coated with a zinc layer to provide better steel-rubber bonding. Due to the cutting process,
however, there is no zinc layer on the steel cable’s ends. Therefore, the modelled steel cables
are ideally bonded to the rubber everywhere, except for the steel cable ends.
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As a result of applying the Force F' and modelling the already running belt using initial
stresses in the bent regions unwanted dynamic artefacts occur. Therefore, additional support
drums and a damper are introduced to reduce initial oscillations in the running belt, see
Fig. 3.3 (d). Once the maximum force has been reached, the contact between the support
drums and belt is switched off in the model to avoid an influence on the results. For the later
use of FM in the local-scale modelling (Sec. 3.2), more accurate stress and strain fields are
necessary. Therefore, a more finely discretised submodel is used in the region of interest, see
Fig. 3.3 (e). The displacement results from the test rig model are applied to the outer surfaces
of the submodel, except the top surface (which does not contact the drums). The submodel is
meshed twice as finely as in the test rig model.

bent region asistatic (© steel cable handle dynamic sub-
modellmg b) qu ¢ modelling artefacts modelllng

Figure 3.3: Modelling features of the test rig model. In the bent region, residual stresses are applied
(a). The maximum oscillating load is applied smoothly in a quasi-static state (b). The steel
cables are modelled with a suitable modelling approach (c), described in Sec.3.1.2. The
unwanted dynamic artefacts are eliminated by support drums and a damping element (d).
A submodel approach is used to get more accurate stress and strain fields (e).

The diameter of the drums of the test rig is dq,um = 1.25 m. The conveyor belt contains nine
steel cables, and seven steel cables in the splice. The maximum principal stress results of the
submodel in the most stressed region are plotted in Fig. 3.4 (a). The detail is located in the
bent region att = 0.8 s. The highest stress occurs at the debonded cable end. The highest
maximum principal stresses vs. the simulation time ¢ are plotted for the global model and the
submodelin Fig. 3.4 (b). Fort < 0.65s, the detailed region is located in the straight region
between the drums and fort > 0.65 s, the detailed region is located in the bent region around
the drum. In the whole time range, higher maximum principal stresses are obtained in the
submodel compared to the global model due to the finer mesh size. More than 17.5 % and
14.3 % higher maximum principal stresses are observed in the bent region than in the flat
region for the global and submodel, respectively.

The higher stresses in the bent region show the significant influence of bending, which
cannot be neglected for predicting failure. Locating the highly stressed regions and a qualitat-
ive assessment of different splice laying schemes is possible as long as similar local stress
distributions occur. However, the stress singularity at the detached cable end yields higher
stresses if a finer mesh size is used. Due to the mesh-dependency of the stress results, the
prediction of failure based on stresses is inappropriate. Therefore, FM concepts are used in
this work to quantitatively predict failure.
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Figure 3.4: Results of the test rig model: Stress field in the submodel of the most stressed region (a),
highest maximum principal stress vs. time from the global model and the submodel (b) —
the transition between the straight and the bent region at ¢ = 0.65s is marked by a red
line.

3.1.2 Steel cable modelling

Steel cables are used as reinforcement in highly loaded conveyor belts. To use a tensile force
criterion, as described in [18], with FEM to predict failure, the mechanical response of the steel
cable has to be captured in the model. Steel cables show a high tensile stiffness, a low bending
stiffness compared to a solid due to their individual steel wires, and a tension-torsion coup-
ling due to the wound structure [19], as shown in Fig. 3.5 (a). Various modelling approaches
using common finite elements are investigated in Paper B. The FEM test rig model described
in Sec. 3.1.1, uses one of those approaches. The advantage of such approaches is the low

computational effort compared to modelling the full steel cable geometry.

In those modelling approaches, it is assumed that the rubberised steel cables can be mod-
elled as homogenised cylinders. By combining solid elements and/or beam elements using
elastic material models the mechanical response of a steel cable is modelled. As a reference, a
fully-modelled seven-wire rubberised strand is used, see Fig. 3.5 (a). The mechanical response
of the modelling approaches and the reference model is characterised using the Homogen-
ised Stiffness (HS) values for tension, torsion, bending, and their coupling values, as done by
Cartraud and Messager [36]. The parameters of the modelling approaches are fitted to reach
the same HS values as the reference model.

To model the mechanical response using beam elements, the beam elements are located
on the central axis of the cylindrical solid. The beam elements and the solid elements share
the same nodes on the central axis by using beam and solid elements in combination. By
using beam elements only (without solid elements), the beam nodes are coupled to the cor-
responding rubber nodes at the cylinder surface. The tension-torsion coupling is captured
using a coupling term that connects the tensile strain to the shear strain in the cylindrical
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coordinate system of the steel cable. The approaches are compared with a focus on capturing
the HS values of the reference model. For comparison a single cable is used. The tension,

torsion, and bending deformation is applied to the cable ends.

The HS values of the approaches normalised to the HS values of the reference model are
plotted for three selected cable modelling approaches in Fig. 3.5 (b). For these results, the
remaining tension, torsion, or bending deformations that are not fitted are fixed. The solid,
solid/beam, and beam approach use solid elements only, a combination of beam and solid
elements, and only beam elements, respectively. The beam approach uses an anisotropic
material considering the tension-torsion coupling using a coupling term which connects the
tensile to the torsional strain. The other two approaches use linear elastic material with cubic
symmetry in a cylindrical coordinate system, thereby not considering the tension-torsion
coupling. The modelling approaches plotted in Fig. 3.5 (b) show good agreement for tension
and torsion HS values. The solid approach as used in [12], [17] overestimates the bending HS
value by a factor of nine. In the case of bending, only the solid/beam and the beam approach
show good agreement with the reference. The beam approach, which also considers the
tension torsion coupling, meets all four HS values on the reference.

As a first approximation, the solid/beam approach is used in the test rig model (Sec. 3.1.1).
The parameters are fitted to tensile and bending test data. If tension-torsion coupling is found
to be relevant, one of the other modelling approaches could be used (based on appropriate
test data).
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Figure 3.5: Rubberised steel cables with seven wires (a). Normalised homogenised stiffness values for
solid, solid/beam, and beam approaches (b).

3.2 Local scale: failure assessment

Classical FM concepts are not directly applicable to conveyor belts because conveyor belts con-
tain multiple material interfaces and large strains occur in the rubber. This section describes
how FM concepts can be used to predict debonding and crack propagation. To predict rubber
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fracture out of the interface for a crack tip located in the interface, the crack propagation
direction has to be determined by examining all adjacent materials with trial cracks. To reduce
the necessary number of introduced trial cracks, a new concept for homogeneous materials
is presented to find the crack propagation direction more efficiently.

An incremental crack propagation concept predicts crack propagation, as shown in Fig. 3.6.
It predicts the crack driving force starting from an initial crack. If the crack propagation
criterion is met, the crack propagates by a crack increment; otherwise, the load is increased.
For further crack propagation, the procedure is repeated.

> crack driving

force

increase
load

starting

crack L —¥<1—|

propagation

Figure 3.6: Flowchart of the incremental crack propagation.

3.2.1 Debonding

A FM concept is implemented and adapted to predict debonding failure in a fibre pullout
test. The application is demonstrated, as presented in Paper C, using an axial-symmetric FEM
model, see Fig. 3.7 (a). A glass fibre bundle is embedded in a silicone rubber matrix and pulled
against a punch. The starting crack is modelled as a cylindrically debonded fibre bundle.
Contact with friction is modelled between punch and specimen and also between the crack
flanks. To predict failure, it is assumed that only debonding occurs and no kinking of the crack
out of the interface occurs. Also, it is assumed that the fracture toughness of the interface
is independent of the occurring mode-mixity at the crack tip. To predict crack propagation,
the incremental crack propagation concept is used. The energy release rate is computed by
the energy difference between two models with different crack lengths. Furthermore, the
dissipated frictional energy is taken into account. The influence of the fracture toughness,
crack propagation increment, and friction coefficients are investigated.

The resulting maximum principal stress oy fields are shown in Fig. 3.7 (a) with a crack length
of a = 4mm and an applied displacement of v = 1 mm. The tensile force F' vs. the applied
displacement w is plotted in Fig.3.7 (b) for a fracture toughness of G. = 700J/m? and a
crack propagation increment of Aa = 1 mm. A crack propagation by one crack propagation
increment Aa causes a vertical jumpin F. Higher G values cause crack propagation at higher
loads (higher displacements u). A smaller Aa yields a smaller vertical jump in F'. Therefore,
for an accurate evaluation of F, a small Aa value has to be used. It is observed that in this
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model, the frictional dissipation is much smaller than the strain energy. Therefore, frictional
dissipation is not considered when computing the energy release rate. However, for a higher
friction coefficient, crack propagation occurs slightly earlier, since the stress field is influenced
by crack closure in the region close to the punch.

5.65
4.91
4.18
3.44
2.7
1.97
1.24
0.50
-0.23

silicone
rubber

—_
]
I

\}

(9]
|

< +Aaq

tensile force F' [N]

max. principal
stress o; [MPal

0.0 0.5 1.0 1.5
displacement u [mm]

(a) (b)

Figure 3.7: Maximum principal stress field of a loaded specimen in a fibre pullout test (a). Tensile force
vs. displacement during crack propagation (b), where Aa is the crack propagation incre-
ment.

3.2.2 Crack propagation

Crack propagation concepts are used to determine whether or not a crack propagates and to
determine the crack propagation direction. In homogeneous materials, these concepts are
divided into explicit and implicit crack propagation concepts: Explicit concepts use the current
crack to evaluate crack propagation and in implicit concepts, the propagated trial crack is
used. To predict crack propagation of a crack kinking out of an interface in multi-material
structures, explicit concepts are only applicable to simple cases [33]. Therefore, an implicit
concept is more suitable to predict the crack propagation direction in every neighbouring
material by trial and error, as done by Oneida et al. [34]. This technique requires a high number
of trial cracks for every neighbouring material, which results in high computational costs.
Therefore, a more efficient concept is developed to evaluate the crack propagation direction
in homogeneous materials based on MERR, as presented in Paper D.

The developed 2D concept is based on configurational forces and uses nodal configurational
forces f occurring at the nodes near the trial crack increment containing the crack tip, see
Fig. 3.8. To find the propagation direction for MERR, a crack correction angle is computed
from the occurring f. The concept takes advantage of the fact that configurational forces
can be interpreted as an energy gradient caused by a change in geometry. Based on the
configurational forces, an iterative Targeted Angle Correction (TAC) of the trial crack increment
(containing the crack tip) is done, which finds the direction of MERR in a targeted manner.
To identify the crack propagation direction of MERR using TAC, a permissible angle error is
introduced to stop the iterative process. The approach is tested in a three-point bending
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model to predict crack paths using incremental crack propagation, where the influence of
the permissible angle error is also examined. The accuracy of the concept is evaluated in a
simplified model.

—®

Figure 3.8: Nodal configurational forces f around the trial crack increment (containing the crack tip)
are used to determine the crack correction angle.

Predicted crack paths of a three-point bending plate containing three holes and three
initial crack positions are plotted in Fig. 3.9. The crack paths are predicted using an explicit
concept based on the crack tip configurational force and the implicit TAC concept for various
propagation increments. For crack paths B and C, where also experimental tests from [37] are
available, both concepts provide similar results. However, initial crack C shows deviations
between the two concepts and the used propagation increment. It is shown that in finding
the propagation direction of MERR, implicit concepts are more accurate than explicit ones.
However, the curvature of the crack path and the used propagation increment determine the
accuracy. The TAC concept is as accurate as the implicit concept using a range of seven trial
cracks in finding the propagation direction of MERR and requires approximately 4.7 times less
computational effort in the case considered (using a permissible angle error of .., = 0.4°).
Compared to the explicit concept used, which is based on the crack tip configurational force,
the TAC concept gives considerably more accurate results but requires only approximately 1.5
times more computational effort.
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— 0.125 -- 0.125
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Figure 3.9: Predicted crack paths with the explicit and the TAC concept for various crack propagation
increments Aa. The experimental results from [37] are shown as black lines.
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4 Conclusions

This work presents concepts to predict failure in conveyor belts. The aim is to increase the
prediction quality by using physically-based fracture-mechanical concepts instead of stress-
based concepts. Essential elements for the prediction are developed and published in various
papers. The developed models and concepts can be connected to predict failure in conveyor
belts running on a test rig, as shown in Fig. 4.1: A FEM model of the test rig is developed to
capture the stress and strain fields in the conveyor belt. The necessary length scale to capture
the mechanical response in the conveyor belt and the length scale where failure occurs differ
severely. Therefore, a multi-scale approach is used. The critical part of the conveyor belt
is additionally modelled in a submodel. To predict failure, cable rupture and debonding of
steel cables are considered. Cable rupture and progressive debonding cause ultimate failure.
Additionally, first steps towards modelling rubber fracture and kinking of a crack out of an
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Figure 4.1: Approach to predict failure in conveyor belts: The test rig setup and the developed FEM
model are shown. The model assesses failure mechanisms such as cable rupture, debond-
ing, and rubber fracture, which lead to progressive failure and can lead to ultimate failure.

The mechanical response in the conveyor belt running on the test rig is captured in a quasi-
static FEM model. The bending around the drums, which can have a significant influence on
the stress and strain fields, is taken into account. Also, the simplifications in the steel cable
modelling approach influences the stress and strain fields. Various steel cable modelling
approaches capturing the mechanical response of steel cables are investigated and compared
to a fully-modelled steel cable. The steel cable modelling approach used in the test rig model
captures the low bending stiffness compared to the high tensile stiffness of a steel cable. Mod-
elling the belt’s bending and the mechanical steel cable response allow for the determination
of accurate displacement fields. Cable rupture can thus be assessed more reliably based
on the cable forces. However, the prediction of steel cable debonding and rubber fracture
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using stresses is limited due to the mesh dependence near stress singularities. Therefore,
submodels with smaller mesh size are introduced, where fracture-mechanical concepts can
be used.

An energy-based fracture-mechanical concept is used to predict debonding. For a given
initial debonding, further debonding can be predicted by introducing a propagated crack.
Therefore, the crack-driving force is evaluated and is compared to the interface fracture tough-
ness. This concept can be directly applied to the submodelin the 3D case to predict debonding
of the steel cables in a conveyor belt assuming a constant crack propagation increment. The
prediction of rubber fracture out of an interface, however, is a big challenge in the 3D case.

To predict crack kinking out of the interface, both debonding and crack kinking have to be
considered. In the 3D case, crack kinking results in a huge number of possible crack propaga-
tion directions around the debonded steel cable. Doing this by trial and error results in high
computational cost. To reduce this computational effort, an efficient concept to find the crack
propagation direction in homogeneous 2D materials is developed. This concept determines a
crack correction angle for an existing trial crack to meet the crack propagation criterion of
maximum energy release rate. Using this 2D concept, the computational effort is significantly
reduced compared to using trial and error. In the 3D case, this idea of correcting an existing
trial crack around the steel cable to meet the crack propagation criterion can be used as
well but needs some assumptions about the crack shape. In future work, the concept will be
adapted and applied in the 3D case to predict crack kinking with reduced computational effort.

In summary, this work presents some crucial steps in predicting conveyor belt failure were
taken on different length scales. In the future, these steps can be merged to get a multi-scale
approach that can predict debonding of steel cable and kinking of cracks in a conveyor belt
splice.
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Abstract: This work introduces a finite element model of a steel cable-reinforced conveyor belt to
accurately compute stresses in the splice. In the modelled test rig, the belt runs on two drums and
is loaded with a cyclic longitudinal force. An explicit solver is used to efficiently handle the high
number of elements and contact conditions. This, however, introduces some issues of dynamics in
the model, which are subsequently solved: (a) the longitudinal load is applied with a smooth curve
and damping is introduced in the beginning of the simulation, (b) residual stresses are applied in
regions of the belt that are initially bent around the drums, and (c) supporting drums are introduced
at the start of the simulation to hinder oscillations of the belt at low applied forces. To accurately
capture the tensile and bending stiffness of the cables, they are modelled by a combination of solid
and beam elements. The results show that numerical artefacts can be reduced to an acceptable extent.
In the region of highest stresses, the displacements are additionally mapped onto a submodel with

ﬁgeﬁtffsr a smaller mesh size. The results show that, for the investigated belt, the local maximum principal
Citation: Frankl, S.M.; Pletz, M.; stresses significantly increase when this region of highest stresses comes into contact with, and is
Wondracek, A.; Schuecker, C. bent by, the drum. Therefore, it is essential to also consider the belt’s bending to predict failure in
Assessing Failure in Steel such applications.
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Academic Editor: Francesco
Tornabene 1. Introduction

Conveyor belts are used in a wide range of applications such as supermarkets, logistic
centres, and mining. The conveyor belts in mining are reinforced with steel cables to reach
the high strengths required. Such conveyor belts can have lengths of several kilometres.
They consist of belt segments that are connected on site. In this connection, which is
Publisher’s Note: MDPIstaysneutral - a]led splice, the steel cables are arranged in a specific laying scheme. The strength of this
with regard tojurisdictional claims i g5}ice Jimits the belt’s strength in cyclic loading and is thus of great interest to engineers.
The splice strength is experimentally determined in a test rig where a conveyor belt with
one splice runs on two drums and is cyclically loaded [1], see Figure 1. The failure of

the belt can be caused by cable-rubber debonding, tearing of the rubber, and the rupture
of cables.

To certify a belt for a tensile force, a certain number of cycles must be reached in the
test rig without failure. To better understand the failure mechanisms, some effort has been
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geometry, and the debonding strength of the cable-rubber interface [5]. For conveyor belts
of lower strength classes, which are reinforced with textiles, Finite Element Method (FEM)
models that compute the stress-distribution in belts that are loaded in tension exist [6,7].
The steel cables, on the other hand, pose a challenge in such models due to their complex
stiffness: steel cables have high tensile stiffness but very low bending stiffness, and can
feature tension/torsion coupling [8]. This can play a role in the failure of splices.

Vpelt

(b)

Figure 1. Belt test rig to determine the cyclic strength of a belt splice following [1]: (a) Setup of the
test rig and (b) applied load curve.

Various research groups have developed numerical models to predict the strength of
a splice, putting the emphasis on different aspects of the complex conveyor belt system.
Nordell et al. [9,10] presented a very detailed FEM model of a splice, which even accounts
for the tension/torsion coupling of cables. Similar to Keller [11], they argued that simpler
specimens can be designed to show damage behaviour similar to that observed in the belt
splice, which can then be used to study the damage behaviour in detail, where the influence
of belt-drum contact and bending was also discussed. Another research group introduced
similar FEM models to study a range of rubber materials and introduce an automated
tool for investigating splice schemes [12,13]. In more recent work, other groups such as
Li et al. [14] and Wheatley and Keipour [15] presented similar models, focusing on simpli-
fied specimens loaded in tension. None of those models account for bending of the belt
on the drums in the test rig. Usually, the splice optimisation is carried out according to
evaluated stresses in the FEM models. The bending of the belt, however, can affect the
local stress fields in the splice in a nonlinear way. This can shift the damage mechanisms
compared to a belt loaded purely in tension.

This work introduces a conveyor belt test rig model that fully accounts for contact
and bending of the belt on the two drums. The computed stress fields can be used as an
indicator of the belt’s strength (Li et al. [16] use a stress-based criterion for damage initiation
that agrees well with experimental results of failure). It can, thus, predict the influence of
bending on the tested strength of a belt. Note that this work computes static stresses and
could be extended towards fatigue models that are based on those stresses, as described by
Carraro et al. [17] and Ferdous et al. [18]. Since all steel cables of a belt need to be modelled
to capture the stress variations in the splice, a full 3-d model including drums contact is
very challenging in terms of computational time. For this reason, a two-scale approach
using an explicit full-scale test rig model and a finer-meshed implicit submodel of the
region of highest stresses is taken. The models are used to assess whether the bending
of the belt at the drums introduces additional stresses in the splice. This work, which is
the first full 3-d splice model with bending, can thus answer the question of whether the
bending loads are relevant for the mechanical design of conveyor belts. Challenges such
as obtaining an initial state of movement and stresses in the belt and coping with initial
dynamic artefacts are solved in the explicit model.

2. Methods

In this section, the modelling of the conveyor belt setup and the splice scheme used
are explained. Additionally, the setup of the global test rig model and the submodel is
presented. The belt is stress-free and flat after production. In the global test rig model, the
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initially-bent regions are applied with residual stresses. Furthermore, specific techniques
are described to avoid unwanted dynamic effects in the explicit global test rig model.

2.1. Material Models and Splice Geometry

This work uses a simple conveyor belt with nine cables and only one rubber material.
This belt, which can be simulated much faster, can be assumed to feature similar effects of
the bending to realistic belts. The setup of a conveyor belt is shown in Figure 2a with the
longitudinal direction, the out-of plane direction, and the lateral direction, defined as x, y,
and z-directions, respectively. Such a steel cable-reinforced conveyor belt can consist of
several reinforced and non-reinforced rubber layers. The belt considered in this work is
made up of only one rubber material reinforced by parallel steel cables and no additional
transverse reinforcement, see Figure 2b. The belt has a total thickness of i = 42.5 mm with
hy = 16.75mm and hy = 25.75mm. The rubber is modelled as a hyper-elastic material
using the Mooney-Rivlin formulation. The strain energy function is given by

U = Cuo(lh ~3) + Con(l2 ~3) + (1~ 1, 0

where Cjp, Cp1, and D are material parameters, and I; and I, are the first and second
invariant of the left Cauchy—Green deformation tensor, respectively. | is the determinant
of the deformation gradient. The material parameters are listed in Table 1. The parameters
Cyo and Cy; are taken from Frobdse et al. [12] for a rubber material with a shear modulus
of G = 1.7MPa. The rubber density is not given and is assumed as pyypper = 1000 k8/m?.
To use a typical Poisson’s ratio for rubber of v very close to 0.5 would introduce high-
frequency noise in the explicit simulation, as described in [19], suggesting an upper limit of
v = 0.495. Therefore, the parameter D is set to reach a Poisson’s ratio of v = 0.485.

Table 1. Material parameters.

Cqo [MPa] Co1 [MPa] D [1mPa]
0.7083 0.1417 0.03565

reinforce- top

ment layer
core o

steel laver =

OO |
bottom <

X
layer

Z .

A (a) X z

e—> (b)

Figure 2. General structure of a conveyor belt with possible rubber layers and reinforcements (a) and
cross-section of the conveyor belt used in this work (b).

Due to their inherent structure, the steel cables cannot be modelled accurately by a
simple solid material model. Steel cables feature high tensile stiffness and low bending
stiffness compared to a solid material of the same diameter. Also, they can feature a
tension/torsion coupling, which requires special modelling in FEM. In this work, the
steel cables are modelled so that they reach accurate tensile and bending stiffness. To this
end, the volume of the cylindrical steel cables is meshed with solid elements and, in the
cable’s axis, additional beam elements are introduced. This setup is illustrated in Figure 3.
The mechanical response is assumed to be linear elastic. The beam elements share nodes
with the solid elements. It should be mentioned that the volume elements are not affected
by the rotations of their connected nodes. The steel cables in this work have a radius of
Tcable = 6.75 mm.

A very small radius of the beam is chosen so that the solid elements account for the
whole bending stiffness of the cable. To determine the Young’s modulus for the solid
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elements Eqi4, a three-point-bending test of a rubberised steel cable with a bending length
Ihend = 110 mm has been performed. From the linear region at the beginning of the force-
displacement curve, a bending stiffness Speng = 95 % is obtained and yields a Young’s
modulus for the solid elements as

3
Sbend lbend

4
12 Tcable 7

Esolia = = 1615.68 MPa. @)

To determine the average Young’s modulus of the cable, a tensile test of a sin-
gle cable with a test length of Iigje = 200mm has been performed. A tensile stiff-
NESS Stensile = 25 KN/mm is obtained from the linear region at the beginning of the force-
displacement curve and yields a Young’s modulus for the cable:

L
Ecaple — ensile Zensile _ 34 931 13 MPa, 3)

rvol Tt
In order to not induce any additional bending stiffness by the beam, the area ratio of
the solid and the beam cross-sections is set to ¢y olpeam = 1000. This results in a beam radius
of peam = 0.214mm. The Young’s modulus of the beam Ej,,, needs to be adjusted to
reach the total cable stiffness by the combination of the beam and solid elements. Therefore,
Epeam has to account for the tensile stiffness that has not been accounted for by the solid
elements as
Epeam = Cvolbeam(Ecable - Esolid) = 33,300 GPa. 4)

The density of the steel cable p.,ple is computed from the density of the rubber p,ypper,
the density of steel pgee] = 7850k8/m?, and an assumed volume ratio of steel in the rub-
berised cables (st = 0.6. Therefore, the density of the steel cable is given by

kg

Pcable = Gt Psteel T (1 - Cst)prubber = 5110 E (@)

The Poisson’s ratio of the solid and the beam elements is assumed to be 0.3.

+ &

solid beam solid + beam

(a) (b) (©
Figure 3. Steel cable modelling: (a) Solid elements that account for bending stiffness, (b) beam
elements that account for tensile stiffness, and (c) the combination of solid and beam elements.

The splice scheme used for the splice is shown in Figure 4 and the corresponding
parameters of the splice are listed in Table 2. Outside the splice, the steel cables are arranged
in parallel with an equal distance between the cable axes of spe;. Within the splice, the
steel cables are rearranged to a lateral distance between the cables of sgpjice. Cubic splines
are used to describe the lateral change in the steel cable axes between outer regions and
the splice.
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Figure 4. Geometry of the splice: (a) full view of the splice and (b) closer view of one part of the
splice. Note that the lateral cable distance is smaller within the splice compared to outside the splice.

Table 2. Parameters of the splice.

Parameter Name Symbol Value Unit
belt width Whelt 190 mm
splice length Isplice 47 m

cable positions X; 0.2, 0.7, 2, 3, 4, 45 m

outer steel cable spacing Shelt 20 mm
inner steel cable spacing Ssplice 17 mm
gap between cable ends lgap 70 mm

2.2. Test Rig Model

In this section, the global FEM model of the conveyor belt test rig is described. In the
test rig [1], the belt is cyclically loaded in tension as it is running on the drums. This
work considers the quasi-static case of the conveyor belt running around the drums with a
constant applied load F. For reasons of efficiency, an explicit solver is used. This means
that dynamic effects in the model are considered as artefacts and have to be reduced to
a small extent. To be able to start the simulation with a belt running on the two drums,
the bending stresses of the belt on the drums have to be considered. This is reached by
the application of residual stresses. Additionally, the application of the load is optimised
and additional drums are introduced that avoid belt oscillations in the beginning of the
simulation. The model is used to determine stress and strain fields for the conveyor belt
running in the test rig. The validity for the quasi-static case is examined. The region of
highest stresses in the belt running around the drum is determined and investigated further
in a submodel.

2.2.1. Model Setup

The conveyor belt test rig shown in Figure 1 is represented as a quasi-static FEM
model. The belt geometry, splice scheme, and materials of the model are taken from above.
The left end of the splice is initially positioned right above the centre of the left drum. All
model parameters are listed in Table 3. To handle the non-linearities in the material, the
contact between the belt and drums and a high number of elements, an explicit solver is
used, which is much more efficient for such models. Velocities in the model, thus, have no
physical meaning and dynamic effects are considered as artefacts.

The drums are modelled as rigid discrete surfaces with reference points in each of their
axes. In the x- and y-axes, the drum'’s rotation is fixed. The displacement of the drum’s
reference points is also constrained in y- and in the z-direction. An additional reference
point P for applying the tensile load of the belt F is introduced, see Figure 5a. The reference
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point P is coupled to the reference points of the left drums P4 and right drum P4 in the
x-direction:

Uy + 1c gy = 0 and

Ux — e Uy = 0,

(6)

with uy as the displacement of P, 14y as the displacement of P4, 1,4y as the displacement
of P4, and 7. as the weight factor for the coupling. Since F should be applied in the belt,
the weight factor for the coupling is set to 7. = 4. The contact between the drums and the
belt is modelled with penalty contact. The friction coefficient between rubber and steel piys
for the dry condition is between 0.6 to 1.1 according to Cruz Gémez et al. [20]. Therefore,
Hrs = 0.8 is assumed.

Table 3. Parameters of the test rig.

Parameter Name Symbol Value Unit
distance of the drum axes lda 7 m
diameter of the drums dqrum 1.25 m
velocity of the belt Equation (7) Upelt 6.454 m/s
number of circulations per load cycle [1] Neple 18 1
time period of one load cycle [1] tie 50 s
angular velocity of the drums Equation (8) Wdrum 9.987 rad/s
point mass of the drum Equation (9) Mdrum 1502 kg
moment of inertia of the drums Equation (10) I, dram 429 kg m?
tensile load in the belt Equation (12) Foelt 655.2 kN

The explicit simulation starts with a running belt with the initial velocity of the belt
Upelt, Which can be calculated from the number of circulations per tensile load cycle g
and the time period of one load cycle fy., as defined in [1]:

Nepl (dd T+ 2 ld )
Ubelt = ¥~ @)
Ic
Note that this means that the belt is running with the actual speed stated in Table 3,
even though the model is developed for a quasi-static analysis. The angular velocity of the
drums wgy,um that corresponds to the belt speed calculates as

2 Upelt
w, =0, 8
drum Aaram + 1 (©)]
where the neutral axis is assumed to be in the middle of the belt thickness. Since the right
drum is the driving drum, this angular velocity is applied to the right drum continuously
throughout the simulation and to the left drum as an initial condition only.
A point mass Mgy is applied at the reference points of the drums. For the mass,
a hollow cylinder of steel with an external diameter of douter = dgrum, an internal di-
ameter dinner = dqrum — 2 - 200 mm, and a height of hg,ym = Wpeyr + 2 - 50 mm is assumed.
The point mass 114, is then given by
2 2

B oy —
Mdrum = Psteel ﬂhdrum — 1 Hner, ©)

A moment of inertia I, 4,4, for rotation in the drum axis is specified for the left drum,
which is given for a hollow cylinder by

+d2

4 mner) i (10)

2
I _ 1 douter
zdrum — E Mdrum
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The tensile load F is applied smoothly enough and slowly enough so that dynamic
effects do not alter the results and, therefore, the displacement caused by the load appli-
cation increases smoothly. The tensile force on the belt is applied to point P in a way so
that oscillations in the belt are minimised: it was discovered that starting with a force
F = Fyeit/8 at t = 0 and then using a polynomial with the smooth-step option of Abaqus to
increase it to Fyepr at t = t; works well, see Figure 5b. Additionally, the reference point P is
connected to a damper in the x-direction, which has a damping coefficient 4 of 100 Ns/mm.
The time t; is chosen such that the constant applied force is reached before the splice runs
into the bent region on the drum:

lga — lsplice
Upelt

t=

= 0.3564s. (11)

4
Fbcll

test load
e

l
time ¢

@ (b)

Figure 5. Setup of the conveyor belt test rig model (a) and applied test load vs. time curve (b).

The applied load is selected to be 60% of the nominal strength per width ky; of 7.8 %
of such a steel cable-reinforced belt. The width in the nominal strength is taken as the
number of cables in the splice ng. (here ns. = 7) times their distance spj;. The force Fyeyt
thus calculates as

Foett = 0.6 f1sc Spelt kN- (12)

The belt is meshed with a global mesh size of 3 mm. Four elements are used over the
gap length of the rubber gaps between cables. Outside the splice region, a mesh size of
10 mm is used along the running direction of the belt. To avoid hour glassing, eight-noded
fully-integrated hexahedral elements are used for the volume except for the regions near
the steel cable ends, where it is not possible to mesh this geometry change using purely
hexahedral elements. Thus, those regions are meshed using six-noded wedge elements
with reduced integration and four-noded tetrahedral elements. The beams of the steel
cables are modelled using two-noded Thimoshenko beam elements. The cables and the
rubber are perfectly connected (shared nodes), except for the end faces of the cables, where
an initial debonding is assumed. This is because the necessary surface modification of
the steel cables to increase the adhesion to the rubber is not present at the ends that have
been cut. The drums are meshed with a global mesh size of 10 mm and four-noded rigid
quad elements.

To solve the model, the nonlinear explicit solver of the commercial FEM code Abaqus [19]
is used where large deformations are considered. A simulation time of 0.80638 s is sufficient
for about 60% of the splice running into the bent region of the drum, and the region of
highest stresses is located in the middle of the bent region. Mass scaling is used to achieve a
stable time increment of At = 1.75 - 10~° s with a total change in the model’s mass of 4.46%.
The test rig model has a total of about 3,250,000 elements and takes 92 h to run on 72 cores.

2.2.2. Applying Initial Stresses in Bent Belt Regions

Whenever the conveyor belt is bent, it contains some bending stresses in the cables and
the rubber regions. In FEM models, the geometry is usually considered stress-free at the
start of the computation. For the regions of the belt that are initially not straight but are bent
around the drums, the stresses that correspond to bending with a curvature of 2/d,,, need
to be applied as initial stresses. Since the bending stress in a cable-reinforced rubber belt is
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not trivial, a small implicit simulation is carried out to obtain those stresses. This model
contains the belt in its bent shape and straightens it, where the bent shape corresponds to
the shape it will initially have in the test rig model (see Figure 6a,b). The stresses in the
cable direction are evaluated and their inverse values are applied element-wise in the initial
step of the test rig model. It has been verified that this procedure yields an approximately
stress-free state in the segment, see Figure 6¢,d.

(@ (b) © (d)

Figure 6. Procedure to determine and apply the residual stresses in the initially bent regions: (a) bent

m
I
(=}

e bl

(=} (=3

2

s o g

stress

belt, (b) straightened belt and resulting stress distribution, (c) bent belt with applied residual stresses,
and (d) approximately stress-free belt after straightening.

2.2.3. Avoiding Belt Oscillations Using Support Drums

Due to the internal stresses in the initially bent regions, the belt tends to deform as
shown in Figure 7a, particularly if only low tensile forces are applied to the drums. In a
dynamic model, this induces initial oscillations. To avoid such oscillations, additional
support drums are used, but only during the first phase until the final loading state is
reached, see Figure 7b. Note that these drums are only introduced to avoid numerical
artefacts and are not part of the test rig. The horizontal distance of the support drum axes
Isqa is set to 6.8 m, therefore they lie 100 mm closer together than the test rig drums. The
diameter of the support drums is the same as the test rig drums, and the vertical distance
of the support drum axes wyq, is set to 2.585 m. The support drums initially have the same
angular velocity wqp,m as the test rig drums; however, their rotational velocity is free to
change during the simulation. Apart from rotation around the z-axis, where an inertia
of I, 4rum is applied as in the left drum of the test rig, all translations and rotations of the
drums are constrained. The support drums use the same mesh and contact conditions
to the belt as the test rig drums. Once the maximum applied load is reached at t;, their
contact condition between the support drums and belt is switched off in order to effectively
remove them from the simulation.

(a) (b)

Figure 7. To avoid oscillations with belt deformations schematically shown in (a), four support drums
are introduced (b).
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2.3. Submodel

In this work, the region with the highest stresses in the rubber is modelled in the
submodel with a finer mesh to investigate this region in more detail. This region is defined
in Figure 8, where the same belt geometry and the same material models as the test rig
model are used. The submodel length I, and the submodel width wg,y, are set to 135 mm
and 51.5mm, respectively. The displacements of the test rig model are mapped to the
lateral surfaces and the bottom surface of the submodel, see Figure 8. The displacements
are mapped separately for the steel cable and the rubber nodes. The nodes at the steel
cable/rubber interface use the displacement field of the cable elements in the global model.
To avoid convergence issues, the rotational degree of freedom around the beam axes of the
beam nodes belonging to the left lateral surface is fixed.

I}

sub

Xy X3 X5

[ lateral surface
O bottom surface

right cable number

left cable number
L= B S R L =ANE e )
=R S IR Y =N )

submodel
origin

0 X, X4 Xg
position [mm]

Figure 8. Sketch of the submodel, which is located in the splice. Additionally, the surfaces are defined
for boundary conditions.

The submodel uses eight-noded fully-integrated hybrid hexahedral elements and is
meshed with a global mesh size of 1.5mm. Eight elements are used in the rubber gap
between the steel cables. The beams of the steel cables are modelled using two-noded Thi-
moshenko beam elements, as in the global model. For computation, the nonlinear implicit
solver of the commercial FEM code Abaqus [19] is used, considering large deformations.
For verification of the submodelling approach, the stresses of the global model and the
submodel are compared to see if the submodelling approach is valid for that case.

3. Results and Discussion

Before showing the results of the test rig model and the submodel, this section starts
with an evaluation of the test rig model. It is discussed whether the strategies for avoiding
dynamic artefacts have been successful in reaching a quasi-static loading in the model.
Figure 9a shows the force applied to point P in the x-direction as well as the computed
velocity and displacement at this point as a function of simulation time. After reaching a
constant force (t > 0.3564 s), a small delay occurs before reaching a displacement plateau.
Therefore, the used values for damping and applying the initial tensile force, as well as
the used support drums, yield accurate steady-state stress fields for t > 0.48s, where
the deviation from the maximum value u2x = 327.5mm is less than 1.5%. The residual
stresses remaining after straightening the initially bent belt are shown in Figure 9b. Only
slight artefacts are visible in the stresses, which confirms that the residual stresses have
been applied in a valid manner. The increased stresses in the bent region for t = 0.05s
compared to t = 0s occur due to the applied loading at this time in the simulation.
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Figure 9. (a) Evolution of velocity, displacement, and tensile force in the x-direction of the refer-

t=0.05s

ence point P and (b) validation of the applied residual stress in the initially bent regions of the
conveyor belt.

The results of the global model for t = 0.806 s are shown in Figure 10. The maximum
principal stress ¢ is plotted for the plane of the steel cable centre axes in Figure 10a, where
o1 is computed at the element centre. A small schema shows the position of the splice at
the time of the stress evaluation. The highest maximum principal stress 0jmax Occurs at the
cable end of the third and seventh cable from the left-hand side, counted from the bottom.
These regions feature 07,y in all time steps. One of these regions is plotted in more detail
and is indicated by a red frame. This region’s stress field is plotted for f = 0.556 s, when it
lies in the flat part of the test rig, in Figure 10b. The 07 ax occur at the cable end since, in the
model, the cable end face is detached from the rubber. This means that, at the front surface,
all nodes except the outer nodes are duplicated. Here, 01max Occurs at the bottom of the
cable due to shear load between a cable from the left and the right-hand side of the splice.
The influence of bending at the drums can be seen in Figure 10c, where the same region is
plotted for t = 0.806 s, where it lies in the bent region of the belt. In the flat and in the bent
region 0y max, values of 38.9 MPa and 45.7 MPa are reached, respectively. This indicates that
the bending of a belt in the test rig can have a significant influence on arising stresses and
is not negligible. It is obvious that the mesh in Figure 10 only roughly approximates the
stress field; therefore, a study with a finer mesh is relevant.

The results of the submodel are shown in Figure 11, where the same times and regions
as in Figures 10b,c are plotted. Due to the finer-meshed submodel, the stress field can be
approximated better and the o7 are higher. For the flat and the bent region 0y, values
of 61.0 MPa and 69.7 MPa are obtained, respectively. In the submodel, the o7 values at
locations which are not close to the stress concentrations at the cable ends are similar to the
o1 values in the global model. This indicates the validity of this submodel.

The 07 max results of the global model and submodel are plotted over time in Figure 12.
For t < 0.65s, the investigated region is located in the flat region, and for t > 0.65s, the
investigated region is located in the bent region of the test rig. The o7 values in the belt in
the bent case are higher than in the flat case by 17.5% and 14.3% in the global model and
the submodel, respectively. For t < 0.65s, first a pronounced increase in ¢ max occurs due
to bending, followed by a slight increase in both models. This slight increase at the end of
the curve can be observed more clearly in the submodel.
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Figure 10. Stress results of the splice determined in the global model: (a) Top view of the splice with
a general view where the splice location is shown, (b) detail of the splice for straight condition, and
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Figure 11. Stress results of the splice determined in the submodel: (a) Detail of the splice for straight
condition, and (b) detail for the splice for bent condition.
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Figure 12. Time series of highest maximum principal stress values evaluated in the test rig model
and the submodel. At t = 0.65s, the point of highest stress runs into the bent region of the belt.
4. Conclusions

This work introduces a modelling approach using FEM to predict the stress and strain
fields of a conveyor belt in a test rig, where the influence of the bending of the belt around
the test rig drums is also considered. It is shown how a quasi-static loading can be achieved
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for an explicit FEM-simulation using suitable modelling techniques such as smooth load
application with damping and added support drums. A computational cost of 3.8 days
using 72 CPUs on a cluster is obtained for the investigated seven-cable splice belt. This
means that larger belts with more steel cables can also be computed in an acceptable time
frame. Existing conveyor belt models from the literature only consider tensile loading of
the belt, therefore one key question addressed in this work is how much the stresses are
influenced by the bending. The test rig model and an additional submodel of the region of
highest stresses show that

®  The region of highest stresses in the used splice scheme occurs at two cable ends due
to shear stresses to the neighbouring cables;

e The test rig model computes by 17.5% higher maximum principal stresses while the
critical position of the splice is bent at the drums compared to in the flat region;

. The submodel, where eight instead of four elements are used between the steel cables,
computes higher stresses than the global model. The maximum principal stresses
reach 14.3% higher values in the bent region than in the flat region.

The developed modelling approach shows a significant influence of bending on the
local rubber stresses in the used test rig setup. Therefore, the influence of bending is essen-
tial for further fatigue modelling, where accurate stress fields are required. The submodel
illustrates how, at a smaller scale, more accurate fracture mechanic concepts such as damage
criteria can be used. Other researchers and engineers can benefit from this work by seeing
the significance of bending loads on splices and being presented with a modelling approach
that can compute this.
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Abstract: Spiral steel cables feature complex deformation behavior due to their wound geometry. In
applications where the cables are used to reinforce rubber components, modeling the cables is not
trivial, because the cable’s outer surface must be connected to the surrounding rubber material. There
are several options for modeling steel cables using beam and/or solid elements for the cable. So far,
no study that lists and evaluates the performance of such approaches can be found in the literature.
This work investigates such modeling options for a simple seven-wire strand that is regarded as
a cable. The setup, parameter calibration, and implementation of the approaches are described.
The accuracy of the obtained deformation behavior is assessed for a three-cable specimen using a
reference model that features the full geometry of the wires in the three cables. It is shown that a
beam approach with anisotropic beam material gives the most accurate stiffness results. The results
of the three-cable specimen model indicate that such a complex cable model is quite relevant for the
specimen’s deformation. However, there is no single approach that is well suited for all applications.
The beam with anisotropic material behavior is well suited if the necessary simplifications in modeling
the cable-rubber interface can be accepted. The present work thus provides a guide not only for
calibrating but also for selecting the cable-modeling approach. It is shown how such modeling
approaches can be used in commercial FE software for applications such as conveyor belts.

Keywords: finite element modeling; homogenization methods; steel cables; steel-cable-reinforced
rubber

1. Introduction

Steel cables are an indispensable part of the infrastructure and many engineering
applications because they reliably provide high strengths with low bending stiffness. They
consist of individual steel wires that are wound into strands, which in turn are wound
to form the cable. Since cables consist of many parallel thin wires, their tensile stiffness
is very high, whereas the bending and compressive stiffness are low. Because of this
helical topology of spiral cables, there is a coupling of tensile deformation and torsional
deformation of the cable (see Figure 1). Steel cables have many design options in terms of
steel grade and cable geometry. Much work has been done on computing the influence
of those parameters on the cable stiffness, accounting for the trajectories of the individual
wires and contact between them. Many analytical and semi-analytical solutions have
been developed and are listed in the review papers by Utting and Jones [1], Cardou and
Jolicoeur [2], and the works of Costello [3] and Feyrer [4]. For standard cable types, good
agreement of existing cable models with experiments can be reached. Effects like wire-wire
friction can be captured. Hysteresis effects, the nonlinearity of the cable stiffness, and cable
failure have been studied as well. Most of the work of such cable models is setting up the
geometry, particularly for a non-straight cable; see Wang et al. [5]. Recently, the finite element
method (FEM) has become widely used for modeling the mechanical response of cables:
Jiang et al. [6] modeled a seven-wire strand using cyclic symmetry, and Foti and de Luca di
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Roseto [7] investigated the elastic-plastic effects of the wires. Furthermore, FEM provides a
basis for newly developed simplified models; see Chen et al. [8] and Cao and Wu [9].

(@) (b)

Figure 1. A three-cable specimen: (a) unloaded and (b) vertically loaded with a twist due to a
tension/torsion coupling of the cables.

Many of the mathematical cable models refer to tests of a seven-wire strand reported
by Utting and Jones [10], who reported a distinct tension/torsion coupling. When testing
cables, the constraints of the cable ends influence the test results. The cable ends can
be free, clamped, or even welded together. This effect of the cable ends was studied by
Chen et al. [11] for thick cables, and they showed that in cable tests and FEM simulations
of cables, much care must be put into applying the loads.

Modeling steel cables in reinforced rubber on the one hand requires capturing the
influence of the rubber penetrating the cable (see Bonneric et al. [12]). On the other hand, the
outer surface of the cable needs to be connected to the rubber. This interface between cable
and rubber is crucial for the failure of cable-reinforced rubber components, as modeled by
Frankl et al. [13].

Cable-reinforced rubber components can be conveyor belts, for example; see Nordell [14],
Fedorko et al. [15], and Frankl et al. [16]. Obtaining the stiffness of cables that are used
in rubber components requires tests on cables that have been penetrated by rubber (rub-
berized cables). How to separately capture tensile, bending, and torsion stiffness and
the tension/torsion coupling of the cable that is embedded in rubber is a big challenge.
Nordell et al. [17] stated that they developed a special element in the commercial FEM code
ANSYS based on principles described by Costello [3], but did not give any details about
this element.

In the present work, a variety of such cable modeling approaches is evaluated for
their use in rubber components using the commercial FEM code Abaqus [18]. Those
efficient modeling approaches use solid elements, beam elements, or a combination of
both. In some of those modeling approaches, an anisotropic material model is used to
mimic the tension/torsion coupling of the cable. To not have to deal with uncertainties of
tests, the results of a fully modeled rubberized cable are taken as the reference to evaluate
the accuracy of these modeling approaches. In this reference model, all wires and the
surrounding rubber are modeled with a linear elastic and a hyperelastic material model,
respectively. This model is called a full-geometry model, in contrast to the efficient models
that account for wires and rubber in a way such that the overall cable stiffness is captured.

To keep the computational cost low, a seven-wire rubberized strand is used as the
cable. For this cable, the homogenized stiffness matrix is computed from a full-geometry
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simulation similar to what was reported by Cartraud and Messager [19]. The various
cable-modeling approaches are then calibrated and their ability to capture the homoge-
nized stiffness components of the full-geometry model is evaluated. Then, the modeling
approaches are evaluated in a simple rubber shear specimen containing three cables. The
loads applied in these specimens are similar to those in conveyor belts; see Nordell et al. [17].
The full-geometry version of the three-cable specimen is used as a reference, and the stiff-
ness, deformation, and strains in the specimen are used to assess the performance of the
efficient models.

2. Methods

This section introduces the homogenized cable stiffness S;; and a range of efficient
modeling approaches that attempt to mimic this stiffness matrix S;;. The cables are regarded
as linear elastic throughout this study. For typical cable loads, this is a good approximation
despite the nonlinear elastic response of the rubber. This section further describes the setup
of the single-cable FEM model that computes the S;; matrix for a seven-wire rubberized
strand and is used to calibrate and evaluate efficient cable-modeling approaches. Addition-
ally, a FEM model of a three-cable specimen is introduced, which is used to evaluate the
performance of the efficient cable models.

2.1. Cable Stiffness

Figure 2 illustrates the loads (normal load Fy, twist moment My, and flexural moment
M}y,) and corresponding deformations (longitudinal strain ey, twist per length ¢y, and
curvature x) of a cable, which is drawn as a cylinder. Longitudinal shear deformation is
not considered and the elastic bending response is considered to be independent of the

bending direction.
M by, R

(\&
Fy, ex

My, ox

Figure 2. Definition of the loads and strains of a cable.

Since we regard small deformations, the stiffnesses in tension and compression and
the stiffness for positive and negative twist are assumed to be the same. The elastic behavior
of the cable can then be described by a stiffness matrix S (or S;;) that couples the loads and
deformations as

oFK  dF 9L
Fx Jdex 0y IS

M My M Ex £
My = 85: E)(p,t BKX Px =S POx (1)
My, oM, oM, oM, K K
ey dpx Ok
with S defined as
Sxx qu) be
S= S X S oyl S @b 2)

Sbx  Sbe  Swb
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Inverting the stiffness matrix S yields the compliance matrix C (or C;;). Similar to the
definition of Young’s modulus, we define stiffness parameters of the cable Eyy, Exq, - - - ,
which correspond to the inverse of the components of C:

1 1
Ex FX Exx X Ex FX
ox | =S M | = L1 L M ®3)
x x Eox Ego Egb X
K My, 11 1 M,
Epx  Ebe Epb

If all non-diagonal terms vanish (all terms except Sxx, S¢ ¢, and Sy, are zero), the
values Eyy, E¢ ¢, and Ey, are the same as Sxx, S¢ ¢, and Spp, respectively. If this is not
the case, it means that Sy is the longitudinal stiffness that is observed when twist and
bending strains are constrained during loading. On the other hand, Ey« corresponds to the
longitudinal stiffness when twist and bending are free (My and M, are zero).

Let us assume that we have a cable that has off-diagonal terms, which means that
tension, twist, and bending are coupled. When we use an efficient cable model that cannot
account for those coupling terms, we can fit either Syx, S¢ ¢, and Spp, or Exy, E¢ ¢, and Epy,.
In the first case, the modeled cable has the same stiffness as the real cable when all other
strains are set to zero during loading. For tension, this means that torsion ¢, and curvature
x are constrained during loading. When fitting Eyy, E ¢, and Eyy,, the efficient cable model
shows the same stiffness as the real cable during loading in one direction when strains in
the other directions are unconstrained.

For an FEM model of a cable, the cable’s stiffness matrix can be obtained by applying
three orthogonal strain vectors similar to [19]. The stiffness matrix can be built from the
resulting load vectors. If the applied strains ey o, ¢x 0, and xg are set to 1, the resulting load
vectors constitute the columns of the stiffness matrix. Otherwise, the terms of the stiffness
matrix must first be divided by the applied strain.

€x €50 0 0
Px = 0 ’ q)X,O ’ 0 (4-)
K 0 0 Ko

2.2. Cable-Modeling Approaches

The cables can be modeled either by using solid elements that share nodes with the
surrounding rubber, by using a beam that is coupled in some way to the corresponding
rubber nodes, or with a combination of solid and beam elements (see Figure 3). The nodes
of the beam in the solid/beam approach cannot transmit rotation since a direct nodal
connection is used and the solid element nodes do not have rotational degrees of freedom.
Each option requires a specific calibration of material parameters. These parameters are not
physical but selected such that the whole modeled cable captures the target elastic response.

Our efficient cable-modeling approaches aim to reach Sxx, S¢ ¢, Sx¢, and Sy, as closely
as possible (Section 3.1 will show that Sy, and S,p, can generally be neglected). Some
simplified approaches are also investigated that do not account for the coupling term Sy,.

The first challenge is to independently capture the tensile and bending stiffness. This
can be done in the following ways:

(a) Solid elements: Use a material that has different tensile and compressive stiffness.
(b) Beam elements: Set the radius of the beam such that Sy, and Sy, fit the target values.

Solid /beam approach: The whole bending stiffness is captured by the solid elements,
whereas beam elements are used to capture the tensile stiffness that is not captured by the
solid elements; see [16]. The beam elements have a very small cross-section such that the
high tensile stiffness does not affect the overall bending stiffness.
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Louphng

e

solid beam solid/beam

Figure 3. The three modeling approaches used for the cables: solid, beam, and a combination of both.

In the following, the cable-modeling approaches are presented and their material pa-
rameters are derived. For a linear elastic material model with cubic symmetry, the Young's
modulus E, the shear modulus G, and the Poisson’s ratio v can be selected independently.
For all models with linear elastic material, v is set to zero in order to avoid unphysical
effects in the cable deformation.

To account for the tension/torsion coupling of the cable, the linear elastic cubic material
can be extended to a special kind of anisotropy that couples 7, and &,, in the cylindrical
coordinate system of the cable:

Eqq 0 0 Ex 0 0 Exx

0 Ez1 O 0 0 0 Eyy

0 0 E11 0 0 0 €77 . . E11 =E

Ek 0 0 Gy 0 0 Ty | ifEx =0: { Gy =G ®)
0 0 0 0 G O Txz

0 0 0 0 0 Gn Vyz

The parameter Ex accounts for the coupling of ¢, and ¢,,. Whereas Eq; and Gy are
taken from the analytical calculations, Ex is calibrated to reach the target Sy, value of the
efficient cable model. If Ex is set to zero, the coupling vanishes and the model corresponds
to cubic material symmetry, with independent values of E and G, and the Poisson’s ratio
is set to zero, as in the cubic approach. This linear elastic material model is suited for
both solid elements and beam elements. Alternatively, a hyperelastic material model with
anisotropic stiffness is used in the solid models. This hyperelastic modeling approach can
account for both the tension/torsion coupling and the tensile and bending stiffness and is
introduced in the next section.

The material parameters of the homogenization approaches can be calculated ana-
lytically or calibrated using FEM models. The analytical calculations are based on the
equations for a beam with circular cross-section and radius R. The tensile stiffness Syy,
torsional stiffness S, and bending stiffness Sy}, of the beam can be written as

So=EA withA=nR? (6)
See =GIp withIp =05 R 7)
Spend = E I with I =0.25 7 R* (8)

The elastic material parameters for the beam, solid, and solid/beam approaches are
derived in the following. There, the S;; components are written in the equations. To fit E;;
with the homogenized cable (see Section 2.1 for details), the S;; terms in the formulas can
be replaced by the corresponding E;; terms, which then, of course, yields the corresponding
stiffness for unconstrained loading.

2.2.1. Solid Approaches

There are two types of solid element approaches, where the material model is
(a) linear elastic (with either cubic or anisotropic material symmetry) or (b) hyperelastic
with anisotropic material response using the Holzapfel-Gasser-Ogden (HGO) formulation.
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For linear elastic material, the Young’s modulus and shear modulus of the material can be
computed directly from the target values of tensile stiffness Sy, and torsional stiffness S as

_ Sxx
E=~ )
G = M (10)
Ip

This approach results in a bending stiffness Speng that can be computed using the cable

radius R by
4

7T R
Sbend = ET = Spp (11)

This means that for the solid approach with cubic material, the axial stiffness Sy and
the torsional stiffness S can be made to fit while the bending stiffness is too high. The
tension/torsion coupling can be captured when the anisotropic linear elastic material is
chosen and the previously introduced coupling term Ey is calibrated.

The solid approach can account for Sxy, S¢ ¢, Spp, and Sy when a material model
with anisotropic behavior and a difference in its tensile and compressive stiffness is used.
One such model is the Holzapfel-Gasser-Ogden (HGO) material model [20,21], which
considers a hyperelastic matrix material model with fiber reinforcements. The HGO
matrix uses the neo-Hookean model parameter Cyo; the parameters k; and k; define the
stiffness of the reinforcements. The parameter x defines the level of dispersion of the
fiber directions and lies between 0 for uniaxial orientation and 1/3 for evenly distributed
fiber orientations. In the HGO model, the reinforcements only increase the stiffness of the
material in the fiber direction under tension, but not under compression. It thus provides
the possibility to reach a lower bending stiffness with solid elements, in contrast to the
linear elastic anisotropic modeling approach. For this modeling approach, « is set to zero to
model uniaxial reinforcement. The parameter k; is an additional parameter to account for
nonlinear effects and is set to k; = 1 in this work. The parameter D of the HGO model is
set to zero, which is equivalent to incompressible material behavior. This deviates from the
linear elastic cable models where v is set to 0. Since, compared to the rubber, there are only
small deformations in the cables, this inconsistency is expected to have a negligible effect
on deformations and stresses. Within this HGO approach, the cable is modeled by solid
elements and the orientation of the reinforcements is defined to be wound similar to the
strands in a cable with a helix angle apygo. Note that this o of the HGO model approach
can differ from the actual helix angle of the cable since it is calibrated to fit the stiffness
components of the cable. The fitting parameters of the HGO approach, therefore, are this
helix angle apGo, the material stiffness parameters of the matrix Cyp, and the stiffness
parameter of the reinforcements k.

2.2.2. Beam Approaches

When the cable is modeled using beam elements, the beam radius r can be used to
also fit the bending stiffness of the cable. To that end, the equations for Sxx and Sy can be
formulated for the two unknowns, E and r:

S = Er?m (12)
4
Spp = EX 4’ (13)

After eliminating r by inserting Equation (12) into Equation (13), the Young’s modulus
can be written as
S
- 47 Sbb

(14)
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This expression for E can be inserted into Equation (12) to yield the beam radius r:

SXX
r=\ 7% (15)

Using Equation (10), the shear modulus of the beam can be calculated from the radius
r and the desired S as
See _ 25¢¢
G= = (16)

Ip Tt

This means that the beam approach can capture Sy, S¢¢, and Sy, by adjusting E,
G, and r. Furthermore, Sy, can be captured using a calibrated Ex of the linear elastic
material model.

2.2.3. Solid /Beam Approaches

For a combination of solid and beam elements, the Young’s modulus of the solid
elements E; is calculated from the bending stiffness:

B, — b a7
I

The shear modulus follows directly from the torsional stiffness; see Equation (10).

A beam radius 1}, is applied to the beam elements, which is a factor of 1000 smaller
than the actual cable radius. Thus, the contribution of the beam elements to the torsional
and bending stiffness can be neglected. The Young’s modulus for the beam elements is
chosen such that the combination of solid stiffness and beam stiffness add up to the desired

longitudinal stiffness Sxy:

E, = M (18)
T

2.3. Single Cable Models

In this section, two kinds of single cable models are introduced. The first is a model
with fully modeled steel wires and rubber. This model is used to obtain the cable stiffness
matrix S;;, which serves as a reference for the other models. The modeling with steel wires
and rubber is referred to as full geometry in the following. The second kind of single cable
models are the efficient cable models, which are set up to mimic the reference stiffness Sij
using solid elements, beam elements, or a combination of both.

The load definition and the computation of the stiffness are the same for the full-
geometry cable model and the efficient single cable models. At the center of the two ends of
the modeled cable, reference points are defined. All nodes of the two end surfaces (or end
nodes in the case of the beam models) are rigidly coupled to the corresponding reference
point. The load is applied at the right-side reference point while the left-side reference point
is completely fixed. This constraint of the radial displacements introduces an additional
stiffness to the model. It thus must be checked whether the modeled cable length L ,pe is
long enough for the influence of these end effects to vanish. The models are analyzed using
the implicit nonlinear solver of Simulia Abaqus [18].

2.3.1. Full-Geometry Single-Cable Model

The full-geometry cable model uses a seven-wire rubberized strand as a very simple
example of a cable. The strand geometry is defined in Figure 4 and Table 1. It is adapted
from [7], but to provide a good-quality mesh [12], the rubber gap between the middle wire
and the outer wires is increased. The steel of the wires is modeled linear elastically using a
Young’s modulus as given in [7], E = 188 GPa, and Poisson’s ratio v = 0.3; the helix angle « of
the strand is 11.8°. A perfect bond between the rubber and the steel wires is modeled (they
share the same nodes in the interface) such that there can be no debonding or friction. The
rubber is modeled as a Mooney-Rivlin hyperelastic material model with its parameters Cyy,
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Co1, and d; taken from [22] as 0. MPa, 0. MPa, and 0. MPa, respectively. The full-geometry
single-cable model uses two meshing options: (a) bilinear hexahedral elements with hybrid
formulation (C3D8H) for the rubber elements and reduced integration (C3D8R) for the
steel elements and (b) quadratic tetrahedral elements with hybrid formulation (C3D10H)
both for rubber and steel elements.

The strand length Lyt ang of a cable is the axial distance at which one wire is completely
wound around the cable axis. This length Lg.ng depends on the helix angle « and the
distance between the cable axis and the axis of the wire. In the case of the seven-wire strand
used, the strand length of the six outer wires is calculated as

Lstrand = (ri + 70+ d) = 118.8 mm (19)

tan(a)

L cable \l

s [

|l

Figure 4. The geometry of the full-geometry single-cable model with its key parameters.

Table 1. Geometric parameters of the seven-wire strand.

Parameter Name Value
Radius 7 (mm) 6
inner radius r; (mm) 1.95
outer radius 7o, (mm) 1.75
gap d (mm) 0.25
winding angle a (°) 11.8

The wires in the strand can be wound in two directions, referred to as the z-type and
the s-type, where z is wound like a right-hand screw and s like a left-hand screw. All single
cable models use the z-type (see Figure 4) and for the efficient models of s-cables needed in
the tree-cable specimen, Sy, of the z-type cable is multiplied by —1.

2.3.2. Efficient Single-Cable Models

As stated in Section 2.2, the efficient cable models can be divided into approaches
that use cubic material models and approaches that use some kind of anisotropic material
response. The latter can be implemented using a linear elastic or hyperelastic material
model to account for the tension/torsion coupling of the cables. For both the cubic and
anisotropic approaches, cable models consisting of beam elements, solid elements, or both
solid and beam elements can be set up. Table 2 defines the combinations of elements and
material models used in this study.

Table 2. Options of the efficient modeling approaches in terms of elements and material models used.

Linear Elastic Hyperelastic
Approach Cubic (E, G, v =0) Anisotropic (E, G, Ex) HGO (Cy, k1, «ggo)
Solid X X X
Beam X X -

Solid /beam X - -
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The grey areas in Table 2 indicate the combinations that had not been implemented.
The hyperelastic material model is used for solid elements only. The solid/beam does
not use anisotropic solid material because there, the solid elements represent only a small
part of the cable’s tensile stiffness. This means that the tension/torsion coupling could
not be achieved. The solid/beam approach does not use anisotropic material for the beam
because the beam rotation cannot be transmitted through the nodes they share with the
solid elements.

The parameters for the efficient cable models (Ex for the anisotropic solid and beam
models and all parameters of the HGO model) are derived as described in Section 2.2. The
calibration procedure of those parameters uses a Nelder-Mead algorithm [23]. For the
length of the efficient single-cable models, 40% of the strand length (40% of 118.8 mm) have
proven to be sufficient and the global mesh size is set to 1 mm. In the longitudinal direction,
the length of the elements is set to 3 mm. For the anisotropic approaches that can feature
tension/torsion coupling, S;; components are used to obtain the model parameters. Note
that for the solid and beam model, Ex is calibrated to best fit Scuple- With the solid HGO
approach, all four S;; components are used for the calibration. Although more increments
are needed for convergence in the HGO approach, the resulting force and moment curves
are approximately linear within the modeled load range. To ensure that the minimum
found for the HGO approach in the calibration procedure is not a local one, three starting
points of the Cyg, k1, and apgo parameters are evaluated: 600 MPa, 10,000 MPa, 5°; 600 MPa,
26,500 MPa, 11°; and 500 MPa, 10,000 MPa, 20°. They all yield approximately the same
results as those stated in Section 3.2. The efficient single cable models are meshed by
bilinear hexahedral elements with hybrid formulation (C3D8H) for the solid regions and
linear beam elements (B31) for the beams.

2.4. Model of the Three-Cable Specimen

The cable modeling approaches are assessed using an FEM model of a three-cable
shear specimen. The geometry and boundary conditions of the specimen are defined in
Figure 5. The corresponding geometry parameters are defined in Table 3.

All nodes on the left faces of the two outer cables are fully constrained. Similar to
the single-cable models, the right face nodes of the central cable are rigidly connected to
a reference point that is used to apply the displacement load of 10 mm in the x-direction.
During loading, all other displacements of the reference point except the rotation around
the x-axis are constrained. When the center cable is pulled in the positive x-direction, the
load is transferred through the rubber to the outer cables that are fixed on the left side.
The cables are modeled as defined for the full-geometry cable model or the efficient cable
models. The rubber properties defined in Section 2.3.1 are taken for the rubber region.

Lends

$ dcable

b S—

:

Lends
Figure 5. The geometry of the three-cable specimen. Contact is defined in the orange-dashed regions.

The orange-dashed lines in Figure 5 mark regions that can come into contact when
the specimen is loaded. This contact is defined using a penalty algorithm and friction-
less behavior. For the model with full geometry, quadratic hybrid tetrahedral elements
(C3D10H) with a typical edge length of 1.25 mm are used. This model contains about
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620,000 elements. The efficient cable models use bilinear hybrid hexahedral elements and
reduced integration with a typical element edge length of about 1 mm and a swept mesh
along the x-axis. In the sweeping direction, the element edge length is set to 3 mm. This
swept mesh is important for the beam-type modeling approach, where the rubber nodes
that lie on the outer cable surface are rigidly connected to the beam node that has the same
x-coordinate, as illustrated in Figure 3. The models with solid and solid /beam approaches
use about 77,000 elements and the beam approach models contain about 33,000 elements.
The same element types as stated in Section 2.3.2 are used.

Table 3. Geometry parameters of the three-cable model.

Parameter Name Value
length L (mm) 100
height H (mm) 62
depth T (mm) 20

outer cable length Loyt (mm) 100
cable end length L¢,q5 (mm) 10
cable distance d_,pe (Mmm) 8

Several combinations of s-type and z-type cables are possible in the specimens. Here,
the setup with bottom, central, and top cable s, z, and s is used, respectively. For this szs
setup, the outer cables and the center cable want to rotate in opposite directions. Note that
for a cable-reinforced component with a large number of parallel cables, the component
will not be as free to twist as the three-cable specimen, and the stresses will be affected by
the cable’s tension/torsion coupling.

3. Results and Discussion

In this section, results are presented first for a single cable using the full-geometry
and efficient modeling techniques. Afterward, results of three-cable specimen models are
presented. The cable-modeling approaches are evaluated using the three-cable models in
terms of the specimen’s stiffness, deformation field, and strain fields in the rubber.

3.1. Full-Geometry Single-Cable Model

The full-geometry model of the seven-wire strand is used to obtain the components
of the stiffness matrix that are used to evaluate the efficient cable models. Here, we look
into the nonlinearity of the overall stiffness response of the full model and the influence
of element type, mesh size, and cable length on the cable’s stiffness, which is relevant for
the full-geometry three-cable specimen of Section 3.3. The length of the modeled cable is
quantified as a fraction of the strand length (the axial distance so that the outer wires are
completely wound around the cable axis, as described in more detail in Section 2.3.1) and
denoted as relative cable length.

To show the nonlinearity in the cable stiffness, two load cases are studied. A cable
load (ex0, ¢x, 0, ko) of (5%, 0,0) and (0,0, 10/m) is applied in load case A and load case B,
respectively. Figure 6 shows the axial force Fy, the torsional moment My, and the bending
moment M, of the cable over the longitudinal strain ey (load case A, Figure 6a) and over
the curvature x (load case B, Figure 6b). For a mesh size of 0.5 mm and a relative cable
length of 0.8, the F and My plots are approximately linear, whereas the My, curve shows a
slight nonlinearity towards higher curvatures.

The influence of cable length and mesh size are investigated for applied loads of
ex = 0.5%, ¢x =2 rad/m, and « = 1/m, which are applied individually. The longitudinal
strain of 0.5% corresponds to a maximum Mises stress of Oipises = 960 MPa in the central
wire and a total force of Fx = 60 kIN. We here assume that those loads cover the relevant
range for the intended applications and that nonlinear effects that occur at higher loads can
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be neglected. The stiffness parameters are evaluated as secant stiffnesses of the loading
curves and are plotted over the cable length and mesh size in Figure 7. The range and units
of the individual stiffness parameters Sxx, S¢ ¢, Sbb, Sxe, and Sy are quite different. To
better visualize the dependency of those parameters on the cable length and mesh size,
they are plotted relative to their respective most accurate values (such as those obtained for
either highest cable length or smallest mesh size, as explained in the following).

—e— F, [KN]
—o— M, [KN mm]
—e— M, [KN mm]

force, moment
— [ [ - wn
> =3 > > =3
=] [—] (—] <> [—]
1 1 1 1 1
force, moment
1

1 1
—
\
~

=
1

0 1 2 3 4 0 2 4 6 8 10
longitidinal strain ¢, [%] curvature x [m_I]

Figure 6. Tensile force, torsional moment, and bending moment plotted over (a) the longitudinal

strain e and (b) the curvature x of the seven-wire strand model for a mesh size of 0.5 mm and a

relative cable length of 0.8.

In Figure 7a, the cable length is varied for linear hexahedral elements with reduced
integration and a fixed mesh size of 0.5 mm. The relative cable length of 1.4 is assumed to
give the most accurate results, so those S;; components are used to normalize the respective
results of the other models. As expected, the rigid connection from the cable ends to their
corresponding reference points introduces numerical artifacts that increase the evaluated
Sij components for smaller cable lengths. The bending stiffness Sy, is particularly sensitive
to these cable end effects.

The element type and mesh size are varied in Figure 7b for a constant relative cable
length of 1.2, since this is the length for which the stiffness parameters have already
reached a plateau, as shown in Figure 7a. The results for the smallest mesh size of the
quadratic tetrahedral elements (0.75 mm) are used to normalize S;;. The curves for bilinear
hexahedral and quadratic tetrahedral elements show that the finer the mesh size, the higher
the computed stiffness components. For the hexahedral elements, no clear plateau of S;;
components is reached for the finest mesh size of 0.3 mm. This indicates that bilinear
hexahedral elements would need to be much finer to accurately compute the cable’s
stiffness. The quadratic tetrahedral element results show a plateau at a mesh size of about
1 mm. Similar to the cable length study, the bending stiffness Sy, is most sensitive to the
mesh size. The 1.25 mm mesh with quadratic tetrahedral elements (see the pictogram in
Figure 7b) yields acceptable computation times and quite accurate results: The stiffness
parameters are up to 4% lower than for a mesh size of 0.75 mm. Therefore, in the bigger
three-cable specimen models with full geometry, quadratic tetrahedral elements with a
mesh size of 1.25 mm are used.

Table 4 lists the model size, necessary RAM, and computation time for the full-
geometry single-cable models of Figure 7. To keep the table short, only model parameters
of the maximum and minimum cable length (length study) and mesh size (mesh study) are
listed. For bilinear hexahedral elements, no mesh convergence is reached at a mesh size of
0.3 mm with computation times of 20 min. The finest quadratic tetrahedral element results
took about 5 min to compute.
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Figure 7. Relative stiffness components of the strand model with (a) varied cable length using
bilinear hexahedral elements with a mesh size of 0.5 mm and (b) varied mesh size with both bilinear
hexahedral and quadratic tetrahedral elements for a relative cable length of 1.2.

Table 4. Information on the model size, necessary RAM to load the full stiffness matrix, and compu-
tation time (four cores of a six-core Intel Xeon E5-1650 v3 @ 3.5 GHz workstation with 128 GB RAM)
for the full-geometry single-cable model (tensile load case) with varied element type, relative cable

length, and mesh size.

. . Degrees of Necessary Computation

Mesh Type Relative Length Mesh Size (mm) Nodes Elements Freedom RAM (MB) Time
Hex. 02/2 05 14427/156021 10,162/109.965 40,397/396291  240/3985 7 min/ask
Hex. 14 03/12 474907/14352  344,606/8744  1203365/35068  19,867/205 2017 ﬁllg/ 0:08
Tet. 14 0.75/2 40509/36,660  26,702/14,304  100,875/82,882 738/442 4:36 nr;::;/ 0:43

The finest mesh size of the tetrahedral elements is assumed overall to give sufficiently
accurate S;; components. Those S;; components for the quadratic tetrahedral elements
with a mesh size of 0.75 mm and a relative cable length of 1.2 are therefore extracted. The
efficient cable models are set up to fit these components:

Sxx Sx<p be
Sex Seo 5<pb

Sbx  Sbe  Sbb

(20)
11,7932 kN 7,746.3 kN mm 0
= | 79413 kNmm 15,593.5 kN mm? 0
0.5 kN mm —0.7kNmm?  10,837.4 kN mm?

Since the matrix is nearly symmetrical, we make it symmetrical by setting Sy, and S,
which are much smaller than the other components, to zero and introduce a parameter
Scouple that we use in the following for both Sxe and Sex:

Sxb = Spx = Snpb = Sb(p =0 (21)

Sxo +S
Scouple = % = S;q, = Sl(px (22)
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This simplification results in only four S;; parameters that should be reached in the
efficient cable models; see Table 5. Inverting the simplified S;; matrix yields E;;. As mentioned
in Section 2.1, the cubic modeling approaches can be fitted based on either S;; or Ej;.

Table 5. Stiffness parameters S;; and E;; from the full cable model with quadratic tetrahedral elements
(mesh size of 0.75 mm) and cable length per strand length of 1.2.

Sxx 11,793 kN Exx 7848 kN
See 15,594 kN mm? Epo 10,376 kN mm?

Scouple 7843 kN mm Ecouple —15,601 kN mm
Sbb 10,837 kN mm? Epp 10,837 kN mm?

3.2. Efficient Single-Cable Models

The cable-modeling approaches introduced in Section 2.2 are set up as described in
Section 2.3. Table 6 lists the parameters that are either calculated analytically or calibrated
using the cable FEM models. To obtain the model parameters, the stiffness parameter
Sij or Ej; are used. For the approaches that do not have a tension/torsion coupling, the
parameters are calculated once with S;; and once with Ej;.

Table 6. Material and geometry parameters for the efficient cable models from analytical calculation
or calibration by FEM models.

Fit Towards E (GPa) G (GPa) Ek * (GPa)
Solid Ejj 69.39 5.097 -
Sij 104.3 7.660 17.32
Fit towards Ci0 * (GPa) k1 * (GPa) k**[1] apco ¥ (°)
Solid, HGO Sij 0.7581 26.47 0.0 14.08
Fit towards E (GPa) G (GPa) r (mm) Ex * (MPa)
Beam Eij 452.2 216.6 2.35 -
S 1021 735.1 1.917 531.5

ij

Solid /beam Fit towards Esolig (GPa) Geolid (GPa)  1peam ™ (mm)  Epeam (GPa)
E; 10.65 5.097 0.006 58,740,000

S,-j 10.65 7.660 0.006 93,628,000
* Calibrated to fit S;;. ** Chosen values.

Figure 8 shows the components of S;; and E;; obtained for the cubic modeling ap-
proaches. The diagrams use a logarithmic scale with relative values normalized to the
target S;; or Ej; values stated in Table 5. Figure 8a,b show the stiffness values for cable
model parameters calculated to fit S;;. As expected, the stiffness parameters obtained for S;;
plotted in Figure 8a fit well to the target values, except for the bending stiffness in the solid
approach, which is too high by a factor of 9. The fit of the beam and solid /beam approaches
is equally good. The E;; components for the same efficient cable models, however, are
about 53% higher than the components of the full-geometry model. When the cable models
are calibrated to E;; (see Figure 8c,d), the E;; components fit well, but components of S;;
are lower by about 36%. This shows that for a cable that has tension/torsion coupling
(Sx # 0), an efficient cable model with cubic material can fit either S;; or E;; but not both
at the same time. Syx corresponds to the stiffness in tension with constrained torsion and
E.x to tension with free torsion. When using such a cable model with cubic material, the
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model’s parameters should be calculated depending on the application of the model. If
the application is unknown, an intermediate stiffness of S;; and E;; should be used for
the models.
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Figure 8. Components of S;; and Ej; relative to their target values for varying cable-modeling
approaches without anisotropic material behavior. The parameters of the models are calibrated to
(a,b) fit 51] or (C,d) fit El]

Three efficient cable-modeling approaches that can account for the tension/torsion
coupling are investigated, and their S;; and E;; components are plotted in Figure 9. Similar
to the cubic approaches, the bending stiffness of the solid approach is too high by a factor
of 7.8. The solid, solid-HGO, and beam approaches can capture S;; well; see Figure 9a. The
largest differences are observed for Sy, in the solid-HGO approach, which is 22% higher
than the target value. Note that due to having only three calibration parameters in the
HGO approach, the four independent stiffness parameters cannot all be fitted at the same
time. Other HGO parameters such as D, ky, and x could be fitted as well but do not help to
improve the accuracy of S;;.

The components of the E;; matrix of the solid and the beam approach in Figure 9b fit
well to the target E;; components, except for the Ey, of the linear elastic solid approach.
For the solid~-HGO approach, only the E, component fits well, whereas the other E;;
terms are lower by 46% to 60%. This is due to an amplification of the deviation of the S;;
components since the S;; matrix is inverted to calculate E;;. Furthermore, the convergence in
the simulations with the solid HGO approach is bad, which requires many more iterations
in the FEM simulation. The solid approach can therefore be used for applications where
bending does not play a role, and the beam approach can be used in all cases where
inaccuracies related to the coupling of the beam nodes to the rubber are acceptable—for
example, because the rubber/cable interface is not of special interest in the model.
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Figure 9. The three anisotropic efficient cable-modeling approaches with their relative stiffness values

in terms of (a) S;; and (b) E;;. Note that the parameters of the efficient models were calculated or fit
to reach S;;.

3.3. Three-Cable Models

The three-cable shear specimens of the szs-type with efficiently modeled cables are
now evaluated in terms of stiffness, deformation fields, and stress fields, and compared to
the full-geometry results. The rubber between the outer and the central cable is sheared,
and the forces in the cables causes them to rotate in opposite directions, which is only
slightly hindered by the rubber.

3.3.1. Stiffness of the Three-Cable Specimens

Figure 10 shows the longitudinal force F, and the end rotation of the central cable ¢y
versus the end displacement uy. The dashed black line and the solid lines illustrate the
response of the full-geometry and efficient approaches, respectively. A linear relation of
both F, and ¢y with respect to 1y can be seen.

full geometry

solid, isotropic (Ej;)
solid, isotropic (S;)
solid, anisotropic
solid, HGO

beam, isotropic (E;)

-, [deg]

beam, isotropic (Sj)

beam, anisotropic

0 1 1 1
0.0 2.5 5.0 75 100 0.0 2.5 5.0 7.5 100

u, [mm] u, [mm]

solid/beam, isotropic (Ej;)

solid/beam, isotropic ()

Figure 10. Force—displacement and end rotation-displacement plots of the three-cable szs-type
specimen with free end rotation ¢y.

There is good agreement between the F, curves of all the efficient cable-modeling
approaches, but they all lie above the Fy of the model with full geometry by about 14%.
This can partly be explained by the non-uniform strain fields in the full-geometry model.
Furthermore, the results in Section 3.1 show that the mesh of the full-geometry three-cable
model can underestimate the cable stiffness by up to 4%, which can also contribute to this
difference. In addition, the full-geometry model has a layer of rubber around the wires
that can be sheared (see Figure 4, where the gap from the six outer wires to the surface of
the whole cable can be written as r — r; — 2 7, — d = 0.3 mm). In the efficient models, this
outer gap is assigned the same material properties as the rest of the cable, which is much
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stiffer than the rubber. When an efficient model is fitted to test data, the cable radius thus
should be set to not include this layer of rubber to avoid this overestimation of stiffness in a
rubber component. The end rotations of the central cable ¢y, plotted in Figure 10, are zero
for all cubic modeling approaches since those models do not account for tension/torsion
coupling. The anisotropic beam and anisotropic solid approaches show a good agreement
with the full-geometry approach, whereas the solid-HGO approach overestimates the end
rotation by about 150%.

The model size in terms of number of nodes, number of elements, degrees of freedom,
necessary RAM to load the full stiffness matrix, and computation time are listed in Table 7
for all approaches in the three-cable model. There is a substantial difference in model size
and computation time between the full-geometry approach and the efficient approaches,
with the full-geometry model requiring about 50 GB of RAM to load the full stiffness matrix
and a computation time of 4:35 h. The efficient three-cable models, on the other hand, need
less than 2 GB of RAM and compute in about 2 min.

Table 7. Information on the model size, necessary RAM to load the full stiffness matrix, and compu-
tation time (four cores of a six-core Intel Xeon E5-1650 v3 @ 3.5 GHz workstation with 128 GB RAM)
with varied model setup of the three-cable models.

Nodes Elements DFigeZileosn(:f RN :;ngclrg) Comp. Time
Full geometry 1,528,220 641,279 3,282,099 50,509 4:35h
Solid 165,198 77,642 338,343 1953 2:16 min
Beam 74,053 33,990 165,081 843 0:46 min
Solid /beam 166,056 78,071 393,630 1961 1:45 min

3.3.2. Deformations of the Three-Cable Specimens

The tension/torsion coupling of the cables can cause a twisting of the specimen. One
key result variable of this twist is the difference of the out-of-plane displacement 1,, which
is plotted in Figure 11. If u, is the same above and below the central cable, there is no
twist—the displacement is merely a result of the Poisson effect in the rubber (especially
the peaks at the right-hand side, which can be seen most clearly in Figure 11e). Otherwise,
a twisting of the specimen occurs, which can be assessed by the u, displacement at the
top and bottom surface. Since such behavior can only be described by the anisotropic
cable-modeling approaches, only one of the cubic approaches (solid/beam, fitted to S;;) is
shown for reference.

For the full-geometry model of Figure 11a, there is a distinct difference in the 1, fields
above and below the central cable: On the top and the bottom of the specimen, a u, of
0.7 mm and —0.7 mm is computed, respectively. Note that the highest values of u, at the
top face occur at about 60% along the length of the rubber block in the specimen. The results
for the cubic cable-modeling approach (see Figure 11e) show a completely symmetric u,
field with respect to the xy-plane. The anisotropic solid approach in Figure 11b shows the
same trend as the full-geometry model, but with a less pronounced twist of the specimen.
The solid-HGO approach in Figure 11c, on the other hand, drastically overestimates the
out-of-plane displacement of the specimen with u, on the top and bottom of the specimen
of 1.7 mm and —1.7 mm, respectively. The best agreement with the full-geometry model is
obtained by the anisotropic beam approach of Figure 11d: The u, fields are only slightly
different above and below the center cable, with the top and bottom maximum values of 1,
occurring on the right end of the rubber block.

The poor performance of the HGO model can be explained by the unwanted coupling
factors inherent to this approach. In addition, the HGO approach requires the highest
computational effort for a convergence of the simulation. The better fit of the anisotropic
beam approach compared to the anisotropic solid approach can only be attributed to their
difference in bending stiffness: Since the twisting of the specimen is associated with a
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bending deformation of the cables, the excessive bending stiffness of the solid approach
affects these results.

top f:
___topface

(d) (e)

Figure 11. Contour plots of the out-of-plane displacements u, in mm for (a) the full-geometry model

and the four efficient cable-modeling approaches (b) solid, anisotropic, (c) solid, HGO, (d) beam,
anisotropic, and (e) solid/beam, cubic (fit to S) of the three-cable szs-type specimen with free
end rotation.

3.3.3. Stresses in the Three-Cable Specimens

In many cases of reinforced rubber components, cable/rubber debonding and rubber
failure is more relevant than deformations. Thus, the stresses in the rubber are evaluated
in the following. It is assumed that the maximum principal stress o7 is the best indicator
for rubber failure. Figure 12 shows o7 for the full-geometry model and various efficient
modeling approaches. The specimen is cut in the plane of the cable axes. The main load
of the rubber is shear between the central cable and the outer cables. These shear stresses,
however, are not uniform and feature surface effects near the free surfaces at both ends
of the rubber block (points A, A’, B, and B’): The highest o7 occurs at the junction of the
center cable and the rubber on the right-hand side of the specimen (point A and point
A’). Those maximum values of oy amount to 12.54 MPa, 9.74 MPa, 9.87 MPa, 10.17 MPa,
and 9.11 MPa for the full-geometry, solid—anisotropic, solid-HGO, beam-anisotropic, and
solid/beam (fitted to S;;) approach, respectively. The junction of cable and rubber material
imposes a singularity. This means that those stresses depend on the mesh size in the model,
which must be accounted for in failure predictions. For relative comparisons like geometric
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studies with similar mesh, such results can be used nonetheless. There are also high stresses
at the junction of the outer cables and the rubber on the left-hand side of the specimen
(point B and point B).

S, Max. Principal

(b)

(d) (e)

Figure 12. Contour plots of the maximum principal stress o (MPa) for (a) the full-geometry model
and the four efficient cable-modeling approaches (b) solid, anisotropic, (c) solid, HGO, (d) beam,
anisotropic, and (e) solid/beam, cubic (fit to S;;). The three-cable szs-type specimens are cut in the
plane defined by z = 0.

The stress field in the full-geometry model shown in Figure 12a shows additional
peaks where the cable wires reach farthest into the space between the center cable and
the outer cables. This effect introduces another parameter to the model: If such a region
coincides with the surface of the rubber block (is close to point A or A’), the stresses will
be considerably higher. This effect is not studied here but should be considered when
predicting the failure of cable-rubber specimens.

The stress fields in the models with efficiently modeled cables are more uniform.
The stresses generally increase towards the right side of the specimen. Similar to the
full-geometry approach, the highest maximum principal stresses occur at points A and A’".
The highest maximum principal stress o7 in the solid/beam approach (see Figure 12e) of
9.11 MPa is lower than that of the other modeling approaches (9.87 MPa to 10.17 MPa). This
can be explained by the very low Young’s modulus of the solid elements in the solid /beam
approach, which leads to a shear deformation between the beam and the cable surface. The
differences in the highest computed o7 of the varying cable-modeling approaches are rather
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low, indicating that for such three-cable specimens, a stress-based failure assessment is
not sensitive to the selection of the modeling approach. There is a slight increase in the
o1 peaks due to the coupling term. For example, the beam approach computes maximum
o1 = 10.17 MPa in the anisotropic approach and o7 = 10.02 MPa in the cubic approach.

4. Conclusions

A variety of approaches for efficiently modeling the elastic response of a steel cable
in a reinforced rubber component is introduced and evaluated both as a single cable
and in a three-cable shear specimen. The aim is to reach an accurate representation of
the high tensile stiffness, the high torsional stiffness, the low bending stiffness, and the
tension/torsion coupling of steel cables. The modeling approaches considered consist of
beam elements, solid elements, or a combination of both. In addition to an approach with
linear elastic material behavior and cubic material symmetry, a special kind of anisotropic
linear elastic material model is selected and fitted to capture the tension/torsion coupling.
Furthermore, an approach using an anisotropic hyperelastic material model (HGO) is
evaluated. The cable-modeling approaches are able to model the target stiffness of the cable
to a varying extent:

e  Solid linear elastic approaches: The bending stiffness is too high, but the other stiffness
components are captured.

e  Solid approach with anisotropic hyperelastic material: Only three parameters are
available to fit four independent stiffness parameters. Not all four of them can be
calibrated accurately at the same time. At least one of them differs up to 20% from the
target value.

e  Beam approach: All components of the target stiffness can be captured. However, the
beam nodes are rigidly coupled to the rubber nodes at the cable surface, which is only
valid if the cable is considerably stiffer than the rubber.

e Solid/beam approach: The tension/torsion coupling could be implemented in the
beams, but the beam rotations would need to be coupled to the solid nodes. This
coupling would induce numerical artifacts and is thus not implemented. Furthermore,
the solid elements in the solid /beam approach have a very low Young’s modulus that
can lead to unphysical shear deformations inside the cable.

From those observations, the best modeling approach can be selected for a given
application. The key questions for this selection is whether the cables experience a bending
deformation and whether the tension/torsion coupling plays an important role in the
model’s application. Generally, the anisotropic beam approach is easy to calibrate and
can capture the stiffness of the cable well. Inaccuracies introduced by the coupling of
rubber nodes to the beam may not be acceptable, like in applications where evaluations
at the rubber/cable interface require solid elements in the cable. In this case, the solid
approach can be used if the cable bending is not relevant or the solid /beam approach if the
tension/torsion coupling can be neglected. If both bending and tension/torsion coupling
need to be captured, the HGO approach can be used, but it is associated with considerable
discrepancies of all components of the stiffness matrix.

This work shows how to calculate and calibrate the geometric and material parameters
of all cable modeling approaches and how to implement them. There is no approach that is
suited for all possible applications, such as conveyor belts, hydraulic hoses, or tires. The
modeling approach should be selected with care based on the type of loads the cables are
exposed to in the application.
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Abstract

A finite element model is infroduced to predict the delamination behaviour of a fibre pull-out test of an elastomer-
matrix composite in an incremental appreach. A displacement lead is monotonically increased and stable crack
growth is predicted. The finite element model vses energy differences of models with two different crack lengths to
compute the energy release rate of the delamination crack. Parametric studies have been performed to determine the
necessary element size and crack size increments, and investigate the effect of friction.
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1. Introduction

Fibre-reinforced rubber materials are used in various applications such as soft robotics, tires, conveyor belts
and hydranlic hoses. While the fibres provide high strength and stiffness in fibre directions, the rubber can allow for
high flexibility in other directions. Compared to classical carbon-fibre reinforced polymer laminates, the stiffness
difference between fibre and matrix is considerably higher for mubber-based composites. This puts high demands on
the fibre-matrix interface., as described for conveyor belts by Fedorko et al. (2014) and for hydranlic hoses by
Fedorko et al. (2015).
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There are various test methods to measure interfacial strength, such as a simple test for a single fibre described
in Hampe et al. (1995) and Zhandarov et al. (2018) but also for fibre bundles, as described in Beter et al. (2019). All
those tests feature highly non-uniform interfacial stress fields. Calculating the interfacial strength by dividing
reached forces by interface area thus does not capture the physics of the problem. To treat the problem, a fracture
mechanics approach is more realistic, by using a model that accounts for the stress fields and a delamination crack.

This work proposes a finite element model for such a fibre pull-out test regarding the energy release rate of an
interfacial crack and introducing a methodology for an incremental fibre-matrix delamination. The setup of the
model is based on the pull-out test of Beter et al. (2019). There, a fibre bundle is pulled out of a rectangular rubber
block which is held by a specimen holder. The load is applied as a monotonically increasing displacement, causing a
stable crack growth with increasing applied displacement.

2. Modeling
2.1. Fibre pull-out model

An implicit finite element (FE) model for the test setup of the fibre bundle pull-out test from Beter et al. (2019) is
developed using the commercial FE code ABAQUS (2014). The test is modelled as an axial symmetric model as
shown in Fig. 1, where the geometric parameters of the model are defined. As indicated, the left end of the fibre is
pulled horizontally to the left with a displacement u, causing the rubber part to contact the rigid punch, which is
fixed in all directions. There can be an initial delamination between fibre bundle and rubber part with the
delamination length a. Between the punch, the rubber part and the crack faces, contact is modelled with a penalty
formulation. The tangential contact uses a Coulomb friction law with a friction coefficient of x; and u, for punch-
rubber and crack faces contact, respectively. The deformable bodies use four-node axisymmetric quadrilateral
elements with hybrid formulation. The model uses nonlinear geometry to account for geometric and material
nonlinearities.

Ly

a

L
- P »| ‘

Fig. 1: Setup of the axial-symmetric fibre pull-out model.

The fibre bundle and the rubber part are modelled as one part with shared nodes but different material models.
The fibre bundle uses homogenized isotropic material properties with linear elastic behaviour. As in Beter et al.
(2019), an E-glass fibre bundle with the classification EC9-68x5t0 of CS Interglas AG is used, a Young’s modulus
is taken from the corresponding datasheet as 33 GPa. For the homogenized fibre bundle, a Poisson’s ratio of 0.3 is
assumed. A hyperelastic material model with the Yeoh-form is used to describe the deformation of rubber part,
which in Beter et al. (2019) consists of silicone rubber. The Yeoh parameters are fitted to a uniaxial test curve for a
similar silicone rubber material from Hoffmann (2012) in ABAQUS, setting the Poisson’s ratio for the fit to 0.4.
Those Yeoh parameters are given in Table 1.

Table 2 shows the parameters chosen in the model to represent the geometry of the test from Beter et al. (2019).
Concerning the friction coefficients and the fracture energy of the interface, typical values are assumed. In addition,
the two friction coefficients were assumed to be the same. These parameters are used as values in the model, some
of which will be varied in the results section.
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Table 1: Yeoh parameters for the rubber part
Cyo [MPa] C,o [MPa] Cso [MPa] D, [1/MPa] D, [1/MPa] D; [1/MPa]
0.2365 5.778E-02 7.316E-02 0.906 0 0

Table 2. Model parameters

Description Symbol Value Unit
Fibre radius Re 0.25 mm
Outer radius silicone part Rs 4 mm
Length silicone part Lg 10 mm
Length to retrain I 5 mm
Punch inner radius Rpi 0.4 mm
Punch edge radius Rpe 0.1 mm
Friction coeff. rubber / punch  p;

Friction coeff. crack faces sy 05 !
Mesh size m 0.1 mm
Initial crack length ao 0.25 mm
Fracture energy G, 500 J/m?

2.2. Evaluation of energy release rate

At interfaces and for delamination cracks, the classical K-concept with a stress intensity factor is not valid.
However, the more general energy release rate concept can be used. The energy release rate G is defined as the
change of the energy which is released through crack growth (change of crack face area A ) of an existing crack.
This energy release rate G consists of the external work W, the strain energy U (negative) and the frictional
dissipation W;(negative) as used by Sun and Davidson (2006):

G We — (U + Wp)] M

B aAcrack

The derivative can be replaced by a finite difference, where AU = U(at+Aa) - U(a) and similar for W, and W;. If
the same displacement is applied for both crack lengths, the change in the external work W, becomes zero and G can
be written with A4,k = 27 RyAa as:

1 AU+AWf
4nRp lda  Aa

2

The values needed for U(a), U(at+Aa), Wa) and Wi{a+Aa) are determined from FE models with according crack
lengths. This assumes that running the model with a crack length of a+Aa yields the same energies as a model that
has initially a crack length of @ and then the crack is extended by Aa. This path-independency is not necessarily
valid if friction is not negligible in the model. This simplification will be discussed in section 3.1, where typical
values of U and W; are shown. When the computed energy release rate G reaches its critical value, the fracture
energy G, the crack propagates and keeps propagating until G of the growing crack drops below G, or full
separation is reached.

2.3. Incremental crack propagation model
To predict the growth of the delamination crack, an incremental crack propagation model is introduced. It uses

the FE model described in section 2.1 and the evaluation of the G values described in section 2.2. The model starts
with an existing initial crack with the length a = a,. Then, the displacement u is applied stepwise in Au increments
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and after each Au, the energy release rate G is computed according to equation 2 from the FE model of the current
displacement load u for the current crack length a as well as a + Aa. The crack propagates by Aa if the G value is
higher than G.. The model checks for further crack propagation, until G < G, or the maximum crack length @,y is
reached. Then, the model runs for # + Au with the updated crack length.

Fig. 2a shows this procedure by plotting the strain energy plus the frictional dissipation (U + W) over the
displacement u. Applying an initial displacement Au, the difference between the U + W} curves for the crack lengths
a and ay + Aa is used to compute G according to equation 2. Since G is below G., the crack is not extended and u is
increased by Au. For a value of u = 2Au, G is computed in a similar way and is above G.. The crack thus grows by
Aa, but G for a + Aa, is too small for the crack to grow another Aa. So u is increased again, and it takes three Au
steps until the crack grows again by Aa. These Au and Aa steps are shown in Fig. 2b. Fig. 2c shows the resulting
force-displacement curve.

This concept can also be employed with more complex crack growth criteria or even competing crack growth.

=
=
]

2Aa+ay

AH. Au. Aul

crack length a
Aa+ay

tensile Force F

strain energy plus frictional
dissipation U+ W}

0 a
!

displacement u [Aul displacement u [Aul displacement u [Aul

Fig. 2: Scheme of the iterative concept with (a) the strain energy U and the frictional dissipation W, (b) the crack length @ and (c) the tensile
force F plotted over the applied displacement u.

3. Results and discussion
3.1. Study of necessary mesh size in FE model

Fig. 3 shows a contour plot of the von-Mises stress, oy, in the model with a crack length of ¢ = 4 mm, an
applied displacement of # = 0.4 mm and a mesh size of m = 0.1 mm. The end of the fibre bundle is pulled to the left,
and the rubber part is pressed against the rigid punch. Severe deformations can be seen at the crack tip, with
maximum oy, values of 8.5 MPa. These maximum stresses of course highly depend on the mesh-size. Close to the
rigid punch, the crack faces are pressed together.

For computing stiffness and energies, it must be ensured that the mesh size has no influence on the energy output
of the simulation. To investigate this, the mesh size m is varied between 0.025 mm and 0.6 mm in 8 steps with a
logarithmic distribution. In general, the necessary mesh size has to be derived for all crack lengths. In this section,
three representative crack lengths of ¢ = 0.25 mm, 1 mm and 4 mm are used. For the simulations, the parameters
from Table 2 are used and a displacement at the fibre bundle end of u = 0.4 mm is applied.

Fig. 4 shows how the external work I¥,, the strain energy U, the frictional dissipation W}, and the tensile force '
change with varied mesh size m. Since those values strongly depend on the crack length, they are shown in a
normalized way, i.e. divided by their value for an m value of 0.025 mm. Table 3 shows their absolute values for all
three crack lengths. It can be seen that the W} value lays two orders of magnitudes below W, and U. As mentioned in
section 2.2, the path-dependence of the crack opening is not regarded in the model, i.e. the ¥} values might not be
very accurate. This is indicated in the W results, since W; with a value of 2.09 mJ for a crack length of 4 mm is
smaller than ;= 6.22 mJ for a crack length of 1 mm. These unrealistic changes, however, are considerably smaller
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than the changes in the U values between different crack lengths and therefore do not alter the predictions about
crack growth and in the following, the I7; value is disregarded in the computation of G.

A mesh size of 0.1 mm is chosen for the following models, because U and F reached already the same values as
for smaller m. The m value of 0.1 mm is indicated in Fig. 3 with a red, dashed line.

[MPa]
8473
7.767
7.061
6.355
5.649
4943
4,236
3.530
2.824
2.118
1.412
0.706
0.000

Mises stress

[TTIETTT]

i

-—

Fig. 3: Contour plot of the von-Mises stresses oms in the model with a crack length of 4 mm, an applied displacement of 0.4 mm and a mesh size

of 0.1 mm. The stress limits are chosen to see the maximum o of 8.5 MPa in the rubber. Grey regions have s values above 8.5 MPa.
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Fig. 4: Results of the normalized values of (a) the external work ., (b) the strain energy U, (c) the frictional dissipation W;and (d) the tensile

force F plotted over the mesh size m. The suitable mesh size is chosen as 0.1 mm and denoted in the figers with a dashed red line.

Table 3: Energies and forces for the calculation with the mesh size of 0.1 mm and a displacement load of 0.4 mm

Crack length @ [mm] External work 7, [J] Strain energy U [J] Frictional dissipation W [J] Tensile force F [N]

0.25 9.866E-04 9.826E-04 2.262E-06 5.986
1 7.319E-04 7.243E-04 6.221E-06 3.824
4 4.254E-04 4.231E-04 2.087E-06 2.167

3.2. Incremental crack propagation model

3.2.1. Effect of crack growth increment Aa

Every time a crack is propagated by Aa, there is a kink in the energy-displacement and also force-displacement
curve. Choosing smaller Aa values obviously increases the number of those kinks and makes the curve smoother. To
investigate the influence of crack length increment Aa, two values of Aa = 0.5 mm and A¢ = 1 mm and the model
parameters from Table 2 are used to propagate a delamination crack with an initial crack length @, of 0.25 mm. The
main interest of these models is to see if lower Aa values also shift the crack propagation curves.

Fig. 5 shows results of (a) the strain energy U, (b) the crack length a, and (c) the tensile Force F' over
displacement u for the two different Aa values up to a crack length of 9 mm. A smaller Aa brings better resolved
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results but has no influence on the trend of the curves. However, there is a clear dependency of the maximum tensile
forces F on Aa, so for an accurate calculation of maximum F values, Aa has to be chosen even smaller than 0.5 mm.
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Fig. 5: Results for the incremental crack propagation model with different crack length increments Aa showing (a) the strain energy U, (b) the

crack length a and (c) the tensile force F plotted over the applied displacement u.

3.2.2. Effect of fracture energy
To examine the effects of a change in fracture energy on the crack propagation model results, three fracture
energy G, values of 300 J/m?, 500 J/m? and 700 J/m? are used in the simulations with a crack increment of 1 mm.
Fig. 6 shows results of (a) the strain energy U, (b) the crack length a and (c) the tensile Force F' over the
displacement u for the three G, values up to a crack length of 9 mm. Obviously, higher G, values shift the crack
growth towards higher energy values and higher displacements . In addition, higher force values are reached, and

force-displacement curves from Fig. 6¢ could be compared to test curves to estimate G, values for the rubber-fibre
bundle interface.
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Fig. 6: Results for the incremental crack propagation model with different fracture energies G, showing (a) the strain energy U, (b) the crack
length @ and (c) the tensile force /" plotted over the applied displacement u.

3.2.3. Effect of friction coefficients

In section 3.1, it has already been stated that the frictional dissipation #; is much smaller than the strain energy
U and was therefore not regarded in the computation of the energy release rate G. To investigate how the friction
influences the strain energy in the model and thus the G values, the incremental crack propagation model is
calculated with the default parameters from Table 2 with the friction coefficient u (u; = u») set to 0.3, 0.5 and 0.7.
For the fracture energy G., a value of 700 J/m” is chosen. The initial crack length is 0.25 mm.

Fig. 7 shows the results of the incremental crack propagation model for the three friction coefficients. A slight
shift to earlier crack propagation is seen for higher friction coefficients. This is because the crack is closed in the
region close to the punch (see Fig. 3), where different friction coefficients can influence stress fields.
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Fig. 7: Results for the incremental crack propagation model with different friction coefficients uy, u» showing (a) the strain energy U, (b) the
crack length a and (c) the tensile force F plotted over the applied displacement u.

4. Conclusions

A model for predicting incremental crack growth of a fibre bundle pulled out of a rubber block was developed.
The energy release rate G for a delamination crack is computed from energetic consideration of two models with
different crack lengths. A mesh size that is sufficiently small for an accurate computation of G values has been
identified. Computation times for that mesh size amount to about 2 minutes on a common desktop computer. From
looking at the energy values, the contribution of the frictional dissipation for the calculation of G can be disregarded.

For the incremental crack propagation model, previously run finite element models with various crack lengths
were used to predict how the crack propagates with an applied displacement load. Depending on geometric
parameters, material properties and fracture energy G., force-displacement curves can be computed for the fibre
pull-out test. In future work, the G, values will be fitted to test curves and the method for computing delamination
crack growth can be extended to realistic applications with more complex geometry and competing damage modes,
for example the possibility for the crack to deflect into the rubber part.
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ARTICLE INFO ABSTRACT

MSC: In many applications, fracture mechanics is indispensable in predicting structural failure. In
00-01 this paper, a concept for predicting discrete crack paths according to the criterion of maximum
99-00 energy release rate, which uses the finite element method, is presented. Within existing
Keywords: approaches to determine the incremental crack propagation direction, on the one hand, the
Fracture mechanics information of the current crack is used in explicit approaches, leading to inaccuracies. On the

Configurational forces
Incremental crack propagation
Finite element method

other hand, the information of introduced virtual cracks can be used in implicit approaches,
with the required number of virtual cracks determining the computational effort. This work
introduces a 2D concept for quasi-static crack propagation in elastic materials and that uses
configurational forces to estimate an angle error of a virtual crack increment; the concept uses
this angle error in an iterative crack correction. The concept is evaluated using a simplified
model for one crack propagation increment and a three-point bending model that contains holes
for predicting crack paths in combination with the incremental crack propagation method. The
results are compared with those of existing explicit and implicit crack propagation direction
concepts, as well as experimental results. It is shown that the presented concept fulfils the
concept for maximum energy release rate as accurately as a computationally expensive implicit
concept, while the computational effort of the proposed concept is close to fast explicit concepts.

1. Introduction

Fracture mechanics can be used to understand, predict, and prevent failure of components by evaluating whether and in which
direction the crack propagates; the main concepts for crack growth are based on Griffith [2], Irwin [3], and Rice [4]. To assess
whether a crack is propagating, a crack-driving force is computed in various ways and compared with the resistance of the material
against crack growth. Additionally, there are concepts to predict the crack propagation direction, such as the maximum tangential
stress concept of Erdogan and Sih [5], the maximum shear stress concept proposed by Otsuka et al. [6], and the Maximum Energy
Release Rate (MERR) concept as a generalisation of the Griffith concept. Also, the assumption for crack propagation in the direction
of pure mode I loading at the crack tip is used, which is supported by numerous experiments, see, for example, Broberg [7]. Some
concepts like the vector J-Integral used by Ma and Korsunsky [8] and the configurational forces concept introduced by Eshelby
[9]1 compute the crack driving force as a vector, which allows for predicting the crack propagation direction. The validity of crack
propagation direction concepts depends on the application (load situation and material properties). Repeated crack propagation
yields the crack path. Hence, the use of a suitable concept to predict a crack path is of great importance.

Many scientists have numerically determined crack paths using the Finite Element Method (FEM). One option of doing so is
incremental crack propagation, where a crack path consists of a series of straight crack increments. The available concepts that
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Nomenclature
a Crack length
Aa Crack increment length
C Eshelby stress tensor
s Cy x and y coordinates of the crack
D Hole diameter
d, Radius of rigid coupling
E Young’s modulus
AE Strain energy change due to crack propagation
Egop Global energy
f Configurational force
fy, fy x and y component of the vector f
£/ Nodal configurational force of node j
fip Crack tip configurational force
f1|i|p, ftJi_p Parallel and perpendicular component of the crack tip configurational force f;,
G Evaluated energy release rate
G, Critical energy release rate
H, hy, h, Height
k Geometry change vector
n, Number of virtual cracks
Ry Number of elements per element row
ey Number of circular element rows
P/ Arbitrary FEM node
p’/ Position vector of node P/
v, p§ x and y component of the vector p/
p/ Rotated position vector of P/
Rg Radius of the evaluation region
t Crack propagation vector
t Thickness of the plate
u Vertical displacement
Au Displacement increment
u; Displacement for step i
W, wy, w, Width
Xes Ve x and y coordinates of the local coordinate system
a Angle of the starting crack
v Poisson’s ratio
@ Crack angle of the virtual crack
@ Crack correction angle
Perr Permitted angle error
@y Crack propagation angle
@ Rotation angle of the virtual crack
Q Volume
Qrac Volume for the TAC concept

use only the information of the current crack to predict crack growth are commonly referred to as explicit concepts. Alternatively,
the information of introduced virtual cracks can be used to predict crack growth in implicit concepts. This means that the crack is
extended by a virtual crack increment in the model, and the results of this virtual crack are used to evaluate energy release rates
and crack propagation directions. Hellen [10] found the direction of MERR by introducing various virtual crack extensions (implicit
concept). Ma and Korsunsky [8] used the vector J-Integral in an explicit concept to find the direction of MERR. In recent decades,
the configurational forces concept has been used to predict crack propagation [11]. Configurational forces are suitable for predicting
crack paths because of their definition as an energy gradient because of a geometry change and are generally applicable due to their
material-independent formulation. The configurational force vector at the crack tip of the current crack is used in explicit concepts
for computing the crack propagation direction and energy release rate [12-14], which also works for elastic—plastic materials [15-
17]. Implicit concepts use the configurational force vector of the crack tip of virtual cracks [13,18,19], where hyperelastic and
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Fig. 1. Correction of the direction of the virtual crack increment, whereby the virtual crack consists of the current crack that is propagated by a crack increment
Aa.

viscoelastic material behaviour can also be considered. A comparison between explicit and implicit concepts is given by Brouzoulis
et al. [13], where the implicit configurational force-based concept converges towards the solution of the MERR determined by
Hellen [10]. The explicit configurational force-based concept is very efficient, but it lacks in accuracy compared with the solution
for using MERR for large crack increments. Implicit concepts are more accurate, but they lack in efficiency because of the number
of computations necessary for one crack propagation. No work has been found by the authors so far aims at keeping the accuracy
of the implicit concepts while improving the efficiency of crack path prediction.

In the current paper, the configurational forces occurring at an introduced virtual crack are used to estimate the direction error
of the virtual crack increment for repeated direction correction, which we refer to the Targeted Angle Correction (TAC) concept.
To compute the direction error from configurational forces, the change in strain energy is derived for a rotation of the virtual crack
increment. The direction of the virtual crack increment is iteratively corrected to determine the crack propagation direction for
MERR. The TAC concept is used in a simplified and three-point bending model. In the simplified model, a single crack propagation
is investigated, where the TAC response is examined and compared with other explicit and implicit propagation concepts for a wide
range of crack angles. The crack paths are examined in the three-point bending model. The crack path results of the TAC concept
are compared with other explicit and implicit crack propagation concepts and are validated through experimental results.

2. Methods

To predict a crack path, it is necessary to evaluate the crack propagation direction at every crack tip position of a growing
crack. In this section, some existing concepts for predicting the crack propagation direction are explained, which are used for
comparison purposes in the current work, and a new concept is presented. In the new TAC concept, the current crack is propagated
by a crack increment Aa to give the virtual crack, which is similar to an iterative concept. The virtual crack direction can then be
corrected to fulfil the crack propagation criterion of MERR using the concept of configurational forces (see Fig. 1). The TAC concept
is implemented in FEM, where the concept is examined and evaluated in two FEM models.

2.1. Crack propagation concepts

To predict the crack propagation direction for an existing crack, various concepts from the literature can be used. These concepts
can be divided into two groups: (a) explicit concepts that use information of the current crack and (b) implicit concepts where the
crack is virtually propagated (virtual crack); this information is used to predict the crack propagation direction. Implicit concepts
find the crack propagation direction either by testing a set of predefined propagation directions or through repeated correction of
the crack propagation direction. The TAC concept proposed in the current work is one of the latter.

2.1.1. Explicit crack propagation

Explicit crack propagation concepts use the current crack to evaluate the crack propagation direction. The configurational force
at the crack tip, f;,, is used as the crack-driving force that determines the crack propagation direction, as in Guo and Li [14].
Fig. 2(a) and (c) illustrate the concept of configurational force-based explicit crack propagation based on f;;, of the current crack.
The crack is propagated in the opposite direction of f;;,. The crack propagation angle ¢, as defined in Fig. 2(c), is given by

f.
@, = arctan < ,“p'y ) ) (€8}

tip.x
where f;;,, and f;;, , are the components of fi;;, in the x and y directions, respectively. The configurational force f states that moving

the evaluated region in the opposite direction of f gives the highest energy dissipation. However, the geometry resulting from moving
the evaluation region does not properly model a propagating crack, as shown in Fig. 2(b). Using f for the crack propagation in the
explicit concept, as illustrated in Fig. 2(c), then implies that the physical meaning of configurational forces is captured only in an
approximated way. To avoid this issue, the TAC concept is introduced in Section 2.2.
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Fig. 2. (a) Crack tip with the configurational force f, and (c) crack propagation in the opposite direction of the configurational

force f;,.

ip> (b) physical meaning of the f,

ip?

strain energy
change AE

»
»

?p ®

Fig. 3. Range of virtual cracks with the crack angle ¢ and their associated strain energy change AE. The minimum of interpolated AE is marked by x and
yields the predicted angle of crack propagation.

2.1.2. Implicit crack propagation

With explicit crack propagation concepts the current crack is used to evaluate the crack propagation direction, implicit concepts
use virtual cracks for an evaluation of the crack propagation direction. In this section, two existing approaches are presented. The
crack propagation criterion of MERR follows the principle of maximum energy dissipation [20,21]. This thermodynamics-based
criterion means that the crack propagates in the direction in which the strain energy change due to crack growth, AE, has a
minimum [10] (see Fig. 3). The strain energy change AE is given by

__ pvirt 0
AE = Eglob - Eglub’ (€))

where E‘g’lob is the strain energy of the whole model before crack propagation and E"li(');J is the strain energy of the whole model after
virtual crack propagation. In this work, it is assumed that only one minimum of AE exists. The crack propagation direction can
be found by introducing a range of virtual cracks and evaluating AE for them. The crack propagation direction is determined by
selecting the most suitable virtual crack or by performing an interpolation of the AE values for different angles of the virtual crack
increment, as shown in Fig. 3. In the current work, the propagation direction for MERR is found by introducing n, virtual cracks
in a range of equidistant angles of the virtual crack increment ¢;. For each virtual crack, the AE; is computed and interpolated
using a quadratic polynomial to find the minimum value that gives the crack propagation direction ¢,. The polynomial is fitted
using the least squares method. Additionally, instead of minimising AE, the absolute value of the perpendicular component of the
configurational force of the crack tip, |f$p| can be minimised. A vanishing |f$p| yields pure mode-I loading at the crack tip [13].

Alternatively, the crack propagation direction can be found by an iterative approach, where starting from a current crack, a
virtual crack is introduced. The initial virtual crack direction is evaluated from the configurational force at the current crack tip. The
angle of this virtual crack is iteratively corrected by the crack correction angle ¢, as shown in Fig. 4. The information of previous
virtual cracks or introduced additional virtual cracks are used to determine ¢.. With each iteration, the direction of the virtual
crack increment approaches the crack propagation direction ¢, based on the crack propagation concept, and the correction angle
@, decreases. The crack propagation direction ¢, is found if ¢ becomes zero and the current crack is updated by the virtual crack.
Due to the numerical effects caused by using FEM, ¢ cannot become completely zero, so a permitted angle error ¢, is introduced.
Ozeng et al. [19] presented such an iterative approach, where additional virtual cracks are introduced in each increment to form
a gradient that is used in an Newton-Raphson approach to find the crack propagation direction. A more efficient way to compute
the crack correction angle is introduced in the next section.

2.2. Targeted angle correction (TAC) concept

In this section, the iterative implicit TAC crack propagation concept is introduced, where the crack correction angle ¢, is
computed in a more efficient way. By using a constant length of the virtual crack increment Aa, ¢, can be computed from
configurational forces without the need to introduce additional virtual cracks to form a gradient. The crack correction angle ¢,
can be used to assess the latest virtual crack propagation direction and to quantitatively correct the angle of the virtual crack
increment (see Fig. 4).

To determine the crack correction angle ¢, from configurational forces, the physical meaning of a configurational force is
considered. The configurational force evaluated in a circular region around the crack tip is shown in Fig. 5(a). The configurational
force can be understood as an energy gradient due to a geometry change. For a decrease in the strain energy, the geometry enclosed
by the region has to move in the opposite direction of the configurational force (see Fig. 5(b)). As mentioned before, the resulting
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current crack virtual crack o updated
current crack

correction

Fig. 4. Flowchart of the algorithm for an increment of crack growth with iterative crack correction. Starting from the current crack with the crack driving force
fip» @ virtual crack is introduced. For the virtual crack, the correction angle ¢, is computed. If the absolute of ¢, is larger than the permitted angle error ¢,
the crack propagation direction is corrected and a new virtual crack is introduced. Otherwise, the virtual crack is regarded as the updated current crack.

Fig. 5. (a) Crack tip with the configurational force f;,, (b) physical meaning of the f;;;,, and (c) crack correction because of the crack correction angle ¢..

ip>

geometry does not make sense for a propagating crack. To avoid this issue, a crack correction is introduced (see Fig. 5(c)). This
evaluation approach based on configurational forces is introduced below, where the crack correction angle ¢, is derived.
This work uses nodal configurational forces, which are evaluated in an FEM mesh. The configurational force f is given by

f=—divC, 3)

where C is the Eshelby stress tensor [9]. The nodal configurational forces are determined as described in Section 2.3.1. Because
of the formulation used, a nodal configurational force vector is computed at all nodes, not only at the crack tip. Nonzero nodal
configurational forces also occur at the nodes of the crack faces (see Fig. 7), which appear as reaction forces because of the
constrained boundary in the reference configuration. As a consequence of the law of conservation, the nodal configurational forces
inside a homogeneous material are zero, except for discretisation effects.

Fig. 6 shows a virtual crack with its local coordinate system (x., y.). The origin of this coordinate system lies at the current
crack tip, and the x, axis is orientated in the direction of the virtual crack increment, where t is the crack propagation vector from
the current crack tip to the virtual crack tip. For one arbitrary node P/ with its position vector p/, the nodal configurational force
vector f/ is drawn in Fig. 6. For a sufficiently fine mesh, the change of strain energy AE can be approximated as a sum of the nodal
contributions in the volume Q

AE=Y ()", )
JEQ
where k/ is the geometry change vector. The volume Q includes all geometries that are changed (region of the virtual crack
increment) and excludes all geometries that remain constant (such as the current crack flanks).
To compute the crack correction angle ¢, AE is written as a function of the change of the angle of the virtual crack increment
@. The rotated position vector p’ is defined as p’ rotated by ¢. Therefore, the geometry change vector k/ = p/ — p/ for a constant
crack increment Aq is given by

W= [Cf)Sip —smfp] pop = [cos-ql— 1 —sing | ®)
sing  cos@ sin ¢ cosp — 1
To find the minimum of AE, Eq. (5) is inserted in Eq. (4) and derived by ¢:
J0AE AT |—sing —cos@|
—_— = £/ .
29 Z ( ) [ cos @ —sin(i;] P ®)
ieQ
When Eq. (6) is set to zero, @ equals the crack correction angle ¢:
zg:z—p)’(f){ sin g — p) £ cos @, +py 1] cos g, —py f] singp. =0, )
je
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Fig. 6. Virtual crack increment (blue lines) with a length of Aa. The origin of the coordinate system is defined at the start of the virtual crack increment, and
x. is defined in the direction of the virtual crack increment. For one arbitrary FEM node P/, the nodal configurational force f/ is drawn. The vector k/ defines
the change of the node point position because of a rotation of the virtual crack increment by an angle ¢ in the local coordinate system. The volume Q only
includes the geometry changed by the rotation.

where the subscripts x and y mark the components of the vectors p’ and f’, respectively. Because ¢, is constant over the whole
volume Q, Eq. (7) can be rearranged as follows:

sy Zwr [l e

sing, _ jeo _JeQ (8)
cos @, J £ i i\T ¢
P Y plt]+p)t] > ()
JEQ JEQ
The crack correction angle ¢, results from Eq. (8) as
Z (pj)T 0 1 fj
h -1 0
JEQ
@, = arctan| ————— ©

> @)

jeQ

To speed up the convergence of the TAC concept, the results of previous virtual cracks can also be used. In the following, the
regula falsi method is used if a previous virtual crack was introduced. The new angle of the virtual crack increment is then given by

Pi — Pi-1
Pis1 =@i = ——— Pci» 10
i+ 1 (pci_(ﬂci,1 cl

where i + 1 is the new virtual crack, i is the current virtual crack, and i — 1 is the previous virtual crack.
2.3. FEM implementation

The above concepts are employed in combination with FEM simulations. Thus, the configurational forces are evaluated in a
discrete FEM mesh in order to compute the configurational force of the crack tip as a volume integral and the crack correction
angle using the TAC concept. To predict a crack path, the incremental crack propagation method is used in conjunction with the
respective crack propagation concept. The incremental crack propagation is implemented as a Python script that controls the whole
procedure. FEM models are prepared in Abaqus using Python, and nodal configurational forces are evaluated using C code.

2.3.1. Configurational forces in FEM

This section describes how the configurational forces are evaluated in FEM. The key step in this evaluation is transferring
continuous formulations into the discrete formulations of FEM. Nodal configurational forces are evaluated in a postprocessing
procedure according to Mueller and Maugin [22] and Mueller et al. [23] by transforming Eq. (3) into a weak, discretised formulation,
in which the volume integral is numerically solved in the associated nodal volume. This is implemented in the C programming
language based on the shape functions of the element types used. These routines are called from the main Python script.

The nodal configurational forces, f/, in a FEM mesh in the region of a crack tip are shown in Fig. 7. Per definition, configurational
forces occur at outer surfaces, material inhomogeneities, cracks, dislocations, vacancies, and voids. Because of the discretisation in
FEM, however, nonzero nodal configurational forces f/ also appear at some nodes apart from the crack tip. Because those f/ influence
the crack driving force, a region Q is used to obtain the configurational force of the crack tip f;;,. Region Q is defined by the number
of element rings around the crack tip. The nodal configurational forces f/ of all the nodes belonging to the element rows are summed

up to give f;;, as
fip = O 1. an
jeQ
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Fig. 7. Mesh of the region of the virtual crack increment with nodal configurational forces f/. The volume around the crack tip is divided into circular volumes
(in this case four element rings).

This f,
by

ip is used in all crack propagation concepts. The predicted change in strain energy because of the crack propagation is computed

—¢T
AE =1t 12)

where t is the crack propagation vector with the direction and length of the crack propagation, as shown in Fig. 6.

The evaluation region with the most accurate results of the configurational force of the crack tip fy;;, is not known beforehand.
For a crack correction in the developed TAC concept (see Section 2.2), the evaluation region Qp,c can be defined beforehand. This
can be explained by the fact that Qp,c must include all nodes affected by a crack angle correction and exclude all others. Thus, in
the current work, the region Qp,¢ is thus defined as a circle around the crack tip with a radius equal to the crack increment Aa. In
Fig. 7, this region is highlighted by a red background colour. To compute ¢, Eq. (9) is evaluated for Q. as

) (p")T[O1 (1)] f’
JE€QTAC 3
@, = arctan , 13)

Z (pj)Tf/

JEQTAC

In analogy to the proposed TAC concept, other criteria for correcting the crack angle may be used as well. One possible
criterion is to assume crack propagation in the direction of the pure model loading of the crack tip [8,13]. This corresponds to
the configurational force of the crack tip, f;;,, which points in the direction of the virtual crack increment. This f;;, can be divided
into a parallel component flllp and a perpendicular component ftJi_p with respect to the direction of the virtual crack increment. For
pure model loading, f- becomes zero [8,13]. To obtain the correction angle, f,
This single f,

ip for the virtual crack is computed using Eq. (11).

ip describes the loading at the crack tip. The use of one single vector changes Eq. (9) to

fi

@, = arctan ft% , a4
tip

which corresponds to Eq. (1) of the explicit concept. Guo and Li [14] used a similar equation (Eq. (1)) in the global coordinate

system to determine the crack propagation direction in the explicit concept, whereas Eq. (14) in the present paper is defined in the

local coordinate system and yields the crack correction angle in the TAC concept.

2.3.2. Incremental crack propagation

To predict a crack path with a crack propagation concept, a criterion to determine whether a crack propagates or not is also
necessary. In the current work, the deformation-based incremental crack propagation method is used, which is based on the critical
energy release rate G, [24].

The algorithm of incremental crack propagation using the TAC concept is illustrated as a flowchart in Fig. 8 starting from an
initial FEM model. With each iteration, either the displacement u; is increased or the crack is propagated according to the TAC
concept. The crack propagates if the evaluated energy release rate G is bigger than or equal to the critical energy release rate G..
Otherwise, the applied displacement is increased by the displacement increment Au. The energy release rate is given by

—AE
G = s 15
Aat (15)
where ¢ is the thickness of the plate, which is set to + = 1 mm in the 2D case. As an alternative to the TAC concept, other crack

propagation concepts can be used in this incremental procedure as well.

2.4. FEM models

In modelling incremental crack propagation, the crack path arises from the change of the crack angle @, in each increment.
Along the crack path, this ¢, varies because of the local loading and is determined by the crack propagation concept. To evaluate
the crack propagation concepts themselves, a simplified FEM model is developed. A second FEM model of a three-point bending
beam containing holes is introduced, in which crack paths are studied.
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Fig. 8. Flowchart of a deformation-based incremental crack propagation method using the Targeted Angle Correction (TAC) concept explained in Section 2.2.

tut ¢
= f//a(ﬁ\“

7777 7777
(a) (b) ()

7

Fig. 9. (a) Sketch of the simplified model with height H and width W. The bottom is fixed in the vertical direction, and a vertical displacement « is applied at
the top. The plate contains a starting crack of length 2a of an angle « with respect to the horizontal axis. (b) Starting crack tip with crack angle a. (c¢) Virtual
crack increment of length Aa and angle ¢ for a starting crack with angle a.

Table 1
Parameters of the simplified model.
Parameter name Symbol Value Unit
Width w 50 mm
Height H 50 mm
Half crack length a 15 mm
Crack increment Aa 1 mm
Radius of the evaluation region around the crack tip R, Aa mm
Number of circular element rows Ny 10 1
Number of elements per element row Mg 16 1
Permitted angle error Perr 0.05 °
Young’s modulus E 3100 MPa
Poisson’s ratio v 0.35 1
Vertical displacement u 0.5 mm

2.4.1. Simplified model

Before using the TAC concept to predict a crack path, one crack propagation increment is studied in a simplified model. In
this model, the orientation of the starting crack is varied. Thus, the TAC concept can be evaluated for selected load situations of a
growing crack.

The setup of the simplified model is shown in Fig. 9(a). The geometry consists of a rectangular plate that contains a starting
crack. The corresponding model parameters are listed in Table 1. The bottom of the plate is fixed in the vertical direction, where
the centre point is additionally fixed in the horizontal direction. A vertical displacement u is applied at the top. The straight crack at
the centre of the plate has a length of 24 and an angle of a« with respect to the horizontal axis. The plate consists of PMMA, which is
modelled linear-elastically using a Young’s modulus of 3100 MPa according to the material property chart of Ingraffea and Grigoriu
[1] and an assumed Poisson’s ratio of 0.35. It is assumed that the crack is always open, so no contact is modelled between the crack
flanks. The 2D model uses fully integrated eight-noded second-order plane-strain elements and the nonlinear implicit solver of the
commercial FEM code Abaqus [25], including the consideration of large deformations.
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Fig. 10. Sketch of the crack tip mesh, where the element sides next to the crack tip are collapsed. The number of circular element rows n, and the number

of elements per element row n,, are assigned.
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Fig. 11. Sketch of the three-point bending model with its geometric parameters. Three holes and a starting crack (the tip of the crack is marked with a red
cross) are included. The model is fixed in the vertical direction at two points at the bottom, and a displacement u is applied at the top in the middle.

The crack in the model contains two crack tips. For the starting crack and virtual crack, circular partitioned regions with a radius
of Aa are made around both crack tips. Both regions are meshed identically. Because of the point symmetry, only the region around
the right crack tip is considered as the evaluation region. The crack is propagated point symmetrically at the second crack tip. The
evaluation region around the crack tip for a starting crack and a virtual crack is shown in Fig. 9(b) and (c), respectively.

Mesh generation is carried out with different mesh sizes for the different regions in the model. In the evaluation region, the
elements are arranged as rings around the crack tip, where n,, is defined as the number of rings in the radial direction and g,
defines the number of elements per ring (see Fig. 10). For the innermost ring of elements, the side next to the crack tip is collapsed
onto the crack tip node. Along the crack outside the evaluation region, a mesh seed of Aa divided by n,, is used. The global mesh
size is used for the remaining regions of the model, which is determined after studying the mesh size.

The model is used to evaluate the necessary global mesh size and the performance of the TAC concept. A comparison of the
crack propagation concepts presented in Section 2.1 is carried out, where a wide range of starting crack angles is studied. As the
reference propagation direction, the direction for MERR is used, as shown in Section 2.1.2. Alternatively, singular elements, where
the midside node position is moved to one fourth of the element’s edge length, can be used around the crack tip to capture the
crack tip singularity. The effect of using singular elements was evaluated based on the simplified model and was found to not have
any significant influence. Compared with the regular mesh using the TAC concept, the average and maximum deviations for ¢, are
0.02% and 0.05%, respectively. For the strain energy of the whole model and predicted energy release rate using configurational
forces, small deviations of 0.04% and 0.05%, respectively, are obtained. Therefore, the results presented below are based on the
regular crack tip mesh.

2.4.2. Three-point bending model

To study the prediction of full crack paths, the three-point bending model is used. Crack paths are predicted with the TAC concept
using the incremental crack propagation method presented in Section 2.3.2 for various starting crack positions. The predicted TAC
crack paths are evaluated using corresponding results of the explicit crack propagation concept and the experimental results.

The setup of the three-point bending model, which is taken from Ingraffea and Grigoriu [1], is shown in Fig. 11. The rectangular
plate contains three holes and a vertical crack at the bottom surface. The model parameters are listed in Table 2. To avoid numerical
effects because of boundary conditions applied to one single node, reference points are created at the positions of structural
supports, where the boundary conditions are applied. The reference points are rigidly coupled to nodes within a radius of d., where
all translational degrees of freedom are coupled. The plate is fixed at the two bottom reference points in the vertical direction.
Additionally, the right bottom reference point is fixed in the horizontal direction. A vertical displacement u = 1.5 mm is applied to
the middle reference point of the top edge. The plate consists of PMMA, which is modelled as described in Section 2.4.1. As in the
simplified model, no contact between the crack faces is modelled. Fully integrated eight-noded second-order plane-strain elements
and the nonlinear implicit solver of Abaqus [25] are used, including the consideration of large deformations.

The evaluation region around the crack tip is partitioned and meshed, as described in Section 2.4.1. Different mesh seeds are
chosen: Aa for the crack outside the evaluation region, Aa for the holes and 1 mm for the region around the reference points. The
remaining regions of the model are meshed with a global mesh size of 2 mm.
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Table 2
Parameters of the three-point bending model.
Parameter name Symbol Value Unit
Width w 508 mm
w 25.4 mm
wy 127 mm
Height H 203.2 mm
hy 31.75 mm
h, 50.8 mm
Hole diameter D 12.7 mm
Radius of rigid coupling d, 6.35 mm
Radius of the evaluation region around the crack tip R Aa mm
Number of circular element rows o 10 1
Number of elements per element row [ 16 1
Young’s modulus E 3100 MPa
Poisson’s ratio v 0.35 1
Vertical displacement u 1.5 mm
Table 3
Starting cracks in the three-point bending model.
Crack I [ Unit
A 129.8 38.1 mm
B 126.95 37.5 mm
C 108.1 37.6 mm

The model is used to investigate the crack paths predicted with the incremental crack propagation method (see Section 2.3.2).
The goal is to examine the influence of the crack propagation concepts on the crack path without the influence of the changing
load. Therefore, the critical energy release rate for crack propagation is set to zero for all crack propagation concepts, which results
in continuous crack growth at a constant load. Note that in the experiment, the load can increase during crack propagation. Thus,
nonlinear effects of this load increase are thus not accounted for in the presented model. The influence of the permitted angle error
using the TAC concept is studied. Additionally, a comparison of the explicit crack propagation and the TAC concept for the three
starting cracks listed in Table 3 is performed. The starting crack A is chosen at a position, where the resulting crack path is very
sensitive to the crack propagation concept. For the starting cracks B and C, experimental data are available [1].

3. Results and discussion
3.1. Simplified model

In this section, the necessary mesh size to compute accurate results of the strain energy of the whole model and propagation
angles with the TAC concept are evaluated. The propagation angle based on the criterion of MERR is taken as a reference to assess
explicit and implicit concepts for crack propagation.

Following the criterion of MERR, the crack propagates in the direction of the minimum strain energy of the whole model. The
strain energy of the whole model will be further referred to as the global energy E,. This direction is found as described in
Section 2.1.2 by the minimum of a quadratic polynomial fitted to the global energy for introduced virtual cracks. To identify the
minimum, an accurate computation of the global energy is required. The influence of the global mesh size on E;, is illustrated in
Fig. 12. For the three starting crack angles « of 0°, 30°, and 60°, Egq;, is plotted vs. the angle of the virtual crack increment ¢ for
a varying global mesh size. Appropriate ranges of ¢ are used for the three starting crack angles «. For a decreasing mesh size, the
global energy E,,, generally decreases, reaching a convergence for a mesh size below 0.5 mm. For each crack angle a, the quadratic
polynomial is drawn as a yellow curve, with its minimum marked as a red dot. Using a mesh size of 0.25 mm, propagation angles
of 0°, —4.06°, and —3.87° are found for starting crack angles a of 0°, 30°, and 60°, respectively. Below, a global mesh size of 0.5 mm
is used to compute the global energy of the model.

In the TAC concept, the global mesh size also influences the predicted crack propagation angle ¢, (see Fig. 13). The predicted
@, is plotted vs. a starting crack angle a ranging from 0° to 60° (2° steps) for a permitted angle error ¢, = 0.05°. For a mesh size
below 1 mm, the predicted ¢, is almost independent of the mesh size. The red dots mark the crack propagation angle determined
using the global energy, see Fig. 12. As shown below, to compute @, a global mesh size of 1 mm and ¢, = 0.05° are used with
the TAC concept.

The explicit and the implicit crack propagation concepts presented in Section 2.1 are used to predict the crack propagation
angles in Fig. 14, where the crack propagation angle g;, is plotted vs. a starting crack angle « ranging from 0° to 60° (2° steps). The
reference propagation direction, which is shown as a black curve in both diagrams, is determined by the implicit concept based on
the global energy (see Fig. 12). Virtual cracks are used to evaluate the global energy for the fit. Eight virtual cracks (n, = 8) are
distributed equidistantly in a range of +4° around the propagation direction predicted with the TAC concept.
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The propagation direction ¢, predicted by the explicit crack propagation concept presented in Section 2.1.1 is shown in Fig. 14(a).

The evaluated propagation angles for various evaluation regions are shown as coloured numbered lines, where the number defines

the element rings used for evaluation. The range of the predicted values of ¢, is shaded in green. Fig. 14(b) shows the propagation
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Fig. 15. Results of the incremental crack propagation based on the TAC concept for various crack angle errors for the starting crack A: (a) shows the crack
paths and (b) illustrates the deviation of the predicted change in strain energy AE computed with configurational forces to the change in strain energy of the
whole model, the curvature of the crack path and the necessary corrections for the given crack angle error vs. the arc length of the crack.

direction ¢, predicted using the implicit crack propagation concepts presented in Section 2.1.2, where crack corrections are
performed. The coloured lines show the predicted ¢, values for the implicit propagation concept of a mode I situation at the crack
tip, which is evaluated for the various evaluation regions defined above. The range of the predicted values of ¢, is shaded in green.
The corresponding ¢, of the TAC concept presented in Section 2.2 is plotted by the red dashed line. As the first virtual crack direction
for the implicit concepts, the explicit propagation direction evaluated for an evaluation region of three element rows around the
crack tip is used.

The crack propagation angle ¢, predicted by the explicit propagation concept show all deviations compared with the reference
propagation angle. The deviation results from a lack of fulfilment of the physical meaning of the configurational forces using the
explicit crack propagation concept, as shown in Section 2.2. The results for the implicit propagation concept for the mode I situation
at the crack tip show less deviations, which depend on the size of the evaluation region chosen. However, the size of the evaluation
region that yields the most accurate results is not known beforehand. The results of the TAC concept, in which the evaluation
area includes the entire geometry affected by a crack correction, agree well with the reference propagation angle because of their
different computation. Two angle corrections (three virtual cracks) are needed using the TAC concept for a permitted angle error
@ =0.05° for all crack angles «, except for 0° and 30°. The number of corrections is influenced by the deviation of the explicit
crack propagation angle from the reference propagation angle because in the implicit concepts, the explicit crack propagation angle
is used as the first virtual crack. For the crack angles a of 0° and 30°, zero and one correction were necessary, respectively. On
average, the TAC concept needs 2.90 virtual cracks for each crack propagation. It should be mentioned that seven virtual cracks had
been introduced for each crack propagation using the implicit concepts in [13]. Therefore, the TAC concept requires 2.4 times less
computational effort if only the model preparation and the FEM solver are considered.

3.2. Three-point bending model

In this section, the influence of the permitted angle error on a crack path using the incremental crack propagation with the TAC
concept is evaluated. This is done by comparing the predicted crack paths of the TAC concept, the explicit concept, and experiments.
Because similar results had been obtained for a finer global mesh, a global mesh size of 2 mm is used in the model for the results
shown here.

The influence of the permitted angle error ¢, is studied using a constant crack increment Ag = 0.5mm and the starting crack
A defined in Table 3. The crack paths for the various values of ¢, are plotted in Fig. 15(a), where the region of interest near the
hole is enlarged. The explicit curve is equivalent to ¢, = oo, where no correction is performed. The deviation of the predicted
change in strain energy AE to the change in strain energy of the whole model because of crack propagation, the curvature of the
crack path, and the necessary number of corrections vs. the arc length of the crack « is shown in Fig. 15(b). The arc length a starts
from the starting crack tip (see Fig. 15(a)).

The predicted AE is computed using Eq. (12) with the configurational force of the crack tip f;, computed for an evaluation region
of three element rings around the crack tip. The deviation in the predicted AE and the number of necessary corrections increases
as the crack path curvature increases. In addition, the number of necessary corrections decreases for higher ¢.,,. The predicted
crack paths are nearly identical for ¢, <0.4°, so the value of ¢, =0.4° is used. For ¢, =0.4°, no correction is necessary at the
beginning, which corresponds to explicit crack propagation. Otherwise, one correction is necessary, except near the hole where it is
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Fig. 16. Crack paths determined with the incremental crack propagation method based on the TAC concept (dashed coloured lines) and the explicit crack
propagation concept (solid coloured lines). For the propagation, various crack increment lengths Aa are used. For the starting cracks B and C, the experimental
results from [1] are shown as black lines.

sometimes possible for two corrections to occur. For smaller values of ¢, the necessary number of corrections increase without a
noticeable effect on the crack path. For ¢, =0.05° and ¢, =0.4°, the TAC concept needs an average of 3.06 and 1.49 virtual cracks
for each crack propagation, respectively. As mentioned before, seven virtual cracks had been introduced for each crack propagation
using the implicit concepts in [13]. Thus, the TAC concept requires less computational effort. For an angle error ¢, =0.4°, 4.7
times less computational effort is required.

The crack paths of the explicit crack propagation and the TAC concept for ¢, =0.4° and various crack propagation increments
Aa are shown in Fig. 16. The crack paths for the three starting cracks A, B, and C (defined in Table 3) are plotted on the left-hand
side. The region of interest near the hole, where the curvatures of the crack paths increase, is enlarged in the centre of Fig. 16. Good
agreement is found between the explicit and TAC crack paths for the starting cracks B and C. The various crack increments Aa show
no significant difference in the crack paths for the TAC concept, the explicit concept, and the experimental data from [1]. However,
even the TAC concept cannot fully capture the experiment, even for a small Aa. The crack path A is most sensitive to the used
crack propagation concept and Aa, which can be seen in the enlarged area near the hole on the right-hand side of Fig. 16. An early
inaccuracy of the crack propagation angle can lead to a large deviation in the later crack path. The explicit concept underestimates
the change in the crack angle with increasing Aa, because the configurational force of the crack tip of the current crack is used to
predict the propagation angle of the increment (see Fig. 16). The TAC concept also shows a dependence on Ag, in which virtual
cracks are used to determine the crack propagation direction. The size of Aa influences the approximation of a smooth crack path
with straight crack increments. The TAC concept is accurate for one increment of Aa. The size of Aa affects the load redistribution
during crack propagation, yielding a different propagation direction that affects the later crack path. Small Aa values are necessary
to accurately capture large crack curvature. For increasing Aa using the TAC concept, an overestimation of the curvature near
the hole is observed in Fig. 16. Because of the decreasing difference of the crack paths for decreasing Aa, the TAC concept for
Aa = 0.125 mm is assumed to fulfil the criterion of MERR sufficiently, whereas the result of the explicit concept for Aa = 0.25 mm
shows more deviation than the TAC concept for the same Aa.

4. Summary and conclusions

The current work has presented a concept to predict the direction of crack propagation with FEM using configurational forces.
The method can be generally applied to other brittle materials. Classically, the configurational force of the crack tip is already used to
predict the crack propagation direction. In the developed concept, configurational forces are used to iteratively correct the introduced
virtual cracks. The current paper shows how to use the configurational forces concept to predict the crack propagation direction to
fulfil the propagation criterion for maximum energy release rate. The developed concept is called Targeted Angle Correction (TAC)
and is evaluated in terms of accuracy and efficiency:

» The accuracy of the concept is evaluated for a single crack propagation increment in a simplified model, in which the kink
angle for the crack propagation can be set individually. The TAC results agree well with the reference propagation direction,
while the explicit and the implicit concepts based on configurational forces show deviations. The deviations depend on the
chosen evaluation region to predict the crack propagation direction, which is not known beforehand. The explicit concept
shows large deviations because only information of the current crack is used, while the implicit concepts use information from
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propagated virtual cracks. Less computational effort per crack propagation is observed when using the TAC concept compared
with other implicit concepts.

Crack paths are predicted with the incremental crack propagation method in a three-point bending model. Investigating the
influence of the permitted angle error shows that a permitted angle error that is too small results in unnecessary corrections,
which results in a higher computational effort with a negligible influence on the crack path. A suitable permitted angle error
was found for the used model. Also, the number of necessary corrections depends on the curvature of the crack path. For
small curvatures, the TAC concept behaves like the explicit concept. Otherwise, corrections are necessary when using the TAC
concept, while the explicit concept lacks in accuracy.

For the two selected crack paths in the three-point bending model, the explicit and the TAC concept provide similar results
that are also close to the experimental results of the PMMA specimens.

One additional crack path is introduced in the three-point bending model, which is quite sensitive to the used crack propagation
concept and the chosen crack propagation increment length. To fulfil the propagation criterion for maximum energy release
rate, the TAC concept gives more accurate results compared with the explicit concept, even for a larger increment length.
However, the accuracy still depends on the curvature of the crack path and the increment length, which determines the
computational effort. The concept could be improved in the future by updating the crack increment length depending on
the local crack curvature.

In the simplified model, a mesh size at the crack tip of one tenth of the crack increment length Aa has proven to be sufficient. To
accurately compute the crack path, it is crucial that Aq is small enough to appropriately approximate the crack path. Hence,
a smaller value for Aa is generally needed for crack paths with a small curvature radius; however, no general quantifiable
recommendation can be given beforehand about the selection of Aa. When the TAC concept is used for a new application, a
convergence study needs to be performed for Aa.

The developed concept gives more accurate results than the explicit concept in approximately 150% of the computational time.
The TAC concept shows good results for curved crack paths, which is particularly important in modelling crack propagation in
heterogeneous materials. Because of the material-independent formulation of configurational forces, it can be applied to nonlinear
material models. The TAC concept opens up new possibilities in 3D cases, where computational efficiency plays a big role.
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