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Abstract. Multivariate time series data often have a very high dimensionality. 
Classifying such high dimensional data poses a challenge because a vast 
number of features can be extracted. Furthermore, the meaning of the normally 
intuitive term "similar to" needs to be precisely defined. Representing the time 
series data effectively is an essential task for decision-making activities such as 
prediction, clustering and classification. In this paper we propose a feature-
based classification approach to classify real-world multivariate time series 
generated by drilling rig sensors in the oil and gas industry. Our approach 
encompasses two main phases: representation and classification.  
For the representation phase, we propose a novel representation of time series 
which combines trend-based and value-based approximations (we abbreviate it 
as TVA). It produces a compact representation of the time series which consists 
of symbolic strings that represent the trends and the values of each variable in 
the series. The TVA representation improves both the accuracy and the running 
time of the classification process by extracting a set of informative features 
suitable for common classifiers.  
For the classification phase, we propose a memory-based classifier which takes 
into account the antecedent results of the classification process. The inputs of 
the proposed classifier are the TVA features computed from the current 
segment, as well as the predicted class of the previous segment.  
Our experimental results on real-world multivariate time series show that our 
approach enables highly accurate and fast classification of multivariate time 
series.  

Keywords: Time Series Classification, Time Series Representation, Symbolic 
Aggregate Approximation, Event Detection. 



1   Introduction 

Multivariate time series data are ubiquitous and broadly available in many fields 
including finance, medicine, oil and gas industry and other business domains. The 
problem of time series classification has been the subject of active research for 
decades [1, 7]. 
The general time series can be defined as follow: A time series T is a series of ordered 
observations made sequentially through time. We denote the observations by: 

x��t�; �i 	 1,… , n; t 	 1,… ,m� where: 

• � is the index of the different measurements made at each time point t, 
• � is the number of variables being observed, and 
• � is the number of observations made.  

If the time series has only one variable (� 	 1) then this time series is referred to as 
univariate, if it has two variables or more (� � 1) then it is referred to as multivariate.  
One example of multivariate time series is drilling rig data; where many mechanical 
parameters such as torque, hook load and block position, are continuously measured 
by rig sensors and stored in real time in the databases. Fig. 1 shows drilling 
multivariate time series consisting of eight variables.  

 

Fig. 1. A multivariate time series of drilling data. This time series consists of eight variables 
representing eight mechanical parameters measured at the rig. 



 
Multivariate time series classification is a supervised learning problem aimed for 
labeling multivariate series of variable length. Time series classification can be 
divided into two types. In the first type (simple classification) each time series is 
classified into only one class label, whereas in the second type (strong classification) 
each time series is classified into a sequence of classes. 
 
This work focuses on the second type of classification. Our approach aims to classify 
multivariate time series (like the one shown in Fig. 1) into a sequence of operations or 
classes op��st�, et��, … , op��st�, et��	where	st� and	et�	represent the start time and 
end time of the operations respectively. Fig. 2 shows the result of such a classification 
process.  

 

Fig. 2. A sequence of 10 operations with different durations. 
 
The main contributions of this work are: 

• An approach to represent time series by combining value-based and trend-
based approximations (TVA). It extends Symbolic Aggregate 
Approximation (SAX) [2] by adding new string symbols (U, D and S) to 
represent the directions of the time series. 

• A memory-based classifier for multivariate time series classification. The 
classifier is trained with the TVA features extracted from our representation. 
In addition, it uses the previous predicated class as an additional feature to 
predicate the class of the current segment.  

The remainder of the paper is organized as follows: Section 2 introduces the state-of-
art techniques for time series representation. Section 3 presents the general framework 
of our approach. Section 4 explains the details of TVA representation. Section 5 
discusses the time series classification. Finally, section 6 presents the experimental 
results of the proposed approach using real-world data from the drilling industry, and 
Section 7 concludes the work. 

2   State of the Art 

Time series datasets are typically very large. The high dimensionality, high feature 
correlation, and the large amount of noise that can be present in time series, pose a 
challenge to time series data mining tasks [2]. The high dimensionality of such time 
series increases both the access time to the data and computation time needed by the 



data mining algorithms used [8]. Additionally, visualization techniques need to 
employ data reduction and aggregation techniques to cope with the high volume of data 
that cannot be plotted in details at once. Furthermore, the very meanings of terms such 
as “similar to” and “cluster forming” become unclear in high dimensional space [1].  
The aforementioned reasons make applying machine learning techniques directly on 
raw time series data cumbersome. To overcome this problem, the original “raw” data 
need to be replaced by a higher-level representation that allows efficient computation 
on the data, and extracts higher order features [2, 3 and 4].  
Several representation techniques, known as dimensionality reduction techniques, 
have been proposed. This includes the Discrete Fourier Transform (DFT), the 
Discrete Wavelet Transform (DWT), Piecewise Linear Approximation (PLA), 
Piecewise Aggregate Approximation (PAA), Adaptive Piecewise Constant 
Approximation (APCA), Singular Value Decomposition (SVD) and Symbolic 
Aggregate Approximation (SAX). Choosing the appropriate representation depends 
on the data at hand and on the problem to be solved. Furthermore, it affects the ease 
and efficiency of time series data mining [1]. 
 
Trend-based and value-based approximations have been used extensively in the last 
decade. Kontaki et al. [10] propose using PLA to transform the time series to a vector 
of symbols (U and D) denoting the trend of the series. Keogh and Pazzani [8] suggest 
a representation that consists of piecewise linear segments to represent a shape; and a 
weight vector that contains the relative importance of each individual linear segment.  
SAX, proposed by Lin et al. [2], is a symbolic approximation of time series. It 
employs a discretization technique that transforms the numerical values of the time 
series into a sequence of symbols from a discrete alphabet. The discretization process 
allows researchers to apply algorithms from text processing and bioinformatics 
disciplines [2]. SAX has become an important tool in the time series data mining, and 
has been used for several applications such as time series classification, events 
detection [5, 6], and anomaly detection [11]. It enables using the Euclidian distance of 
the discretized subsequences [9], and allows both dimensionality reduction and lower 
bounding of �� norms [11].  
Although the above mentioned advantages, SAX suffers from some limitations. It 
does not pay enough attention to the directions of the time subsequences and may 
produce similar strings for completely different time series. To overcome this 
problem we propose the TVA representation which extends SAX by adding new 
string symbols in order to represent the trends of time series.  

3   Our Approach 

The general framework of the proposed approach is shown in Fig. 3. The given 
multivariate time series is first divided into a sequence of smaller segments by sliding 
a window incrementally across the time series. Then, the processing is performed in 
two phases: representation and classification 



• In the representation phase each segment �� is represented by a pair of 
characters	��,  �. The first character � represents the linguistic value of the 
time series and takes one of these values: (a = low), (b = normal), (c = high), 
etc. The second character   describes the local trend of the time series and 
takes one of these values: (U = up), (D = down) or (S = straight). 

• In the classification phase, a memory-based classifier is trained and used to 
assign a class label to each segment. 

 

Fig. 3. The general framework of the proposed approach 

4   TVA Representation 

In the classification phase, we are not interested in the exact numerical values of each 
data point in the given time series. What we are interested in are the trends, shapes 
and patterns existing in the data. To recognize these patterns first it is required to 
discover the simple local trends such as “increase in the hookload” and “decrease in 
the torque” and to divide the numerical values of the time series into discrete levels 
such as “high hookload” and “low pressure”.  
 
The TVA representation transforms the numerical values of each variable in the given 
time series into a sequence of ! �"#$%,  &%�' � pairs. The multivariate time series ( 
is hence transformed as follows: 
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where 5 is the matrix that contains the < �"#$%,  &%�' > pairs, 7 denotes the number 
of the segments, ��8 represents the discrete level of the time series variable � in 
segment 9, and  �8 represents the trend (direction) of this variable in the segment.  

4.1 Value-Based Approximation: 

In our TVA representation we use the SAX technique to approximate the values of 
the time series. Two steps should be followed: 

• Transforming the given time series T into PAA segments. 
• Discretization of the time series based on predefined breakpoints. 

Transforming Step 

In this step, PAA is used to transform the given time series ( of length m into a time 
series of length 7 by dividing the original time series into equal-sized segments, and 
then computing the mean value �� for each segment � as follows: 

�� = 7
� : ,;

/
6 �

;</
6 (�=�)>�

 

The time series T is represented by a vector of mean values ? = {�� , … , �6} 

Discretization Step 

In this step, a further transformation is applied to obtain a discrete representation by 
producing symbols with equiprobability. The inventors of SAX mentioned that in 
empirical tests on more than 50 datasets, the normalized subsequences have a highly 
Gaussian distribution [2]. This enables determining the “breakpoints” that produce 
equal-sized areas under a Gaussian probability density function. After determining the 
breakpoints, the time series ( is discretized in the following manner: All PAA 
coefficients that are below the smallest breakpoint are mapped to the symbol “a”, all 
coefficients greater than or equal to the smallest breakpoint and less than the second 
smallest breakpoint are mapped to the symbol “b”, and so forth.  
Fig. 4 illustrates how the transformation and discretization phases are applied on the 
data (hook load data). In this example, with m = 100 and s = 10, the given time series 
is mapped to the word hcdacafgfg 



 

Fig. 4. A time series (blue line) is discretized by first obtaining a PAA approximation (gray 
line) and then using predetermined breakpoints to map the PAA coefficients into symbols.  

Indeed, representing the time series, using only the value approximation (SAX), 
causes a high possibility to miss some important patterns in some time series data. 
SAX does not pay enough attention to the shapes of the time subsequences and may 
produce similar strings for completely different time series. Fig. 5 shows an example. 

 

Fig. 5. Two completely different time series that have the same sax string 
 
The above mentioned problem is overcome by adding trend-based approximation 
beside value-based approximation in order to represent the directions of time series.  

4.2 Trend-Based Approximation 

We propose using the trends as basis for classifying time series data because these 
trends form an important characteristic of a time series. In addition, trend-based 
approximation of time series is closer to human intuition [10].  



To generate a trend-based approximation, the least squares method is used to fit a 
straight line through the set of data points. The least squares method assumes that the 
best-fit line is the line that has the minimal sum of the squared deviations (least 
squares error) from a given set of data.  
According to the least squares method, the best fitting line has the property that: 

 ∑ '�- = ∑ �C� D E(,�)�- → "	�����$�1�<�1�<�   

After constructing the lines that fit the data points, the slopes of these lines is 
calculated, and finally the trend characters U, D or S are computed based on the value 
of the slope. Fig. 6 illustrates how the above mentioned steps are applied to construct 
the trend approximation for a part of hook load data.  

 

Fig. 6. Trend-based approximation 

Using both, the trend-based and the value-based approximation (TVA representation), 
the given time series is mapped to the string “hDcDdDaDcUaDfUgDfSgS”. Lower 
case is used to represent SAX values, and upper case is used to represent trends. 

5   Time Series Classification 

The classification phase starts by extracting a set of features from the TVA 
representation of the given time series. A feature-vector of fixed length is created for 
each segment of the time series. The vector has the following form: 

G8 = H< �19,  19 �,! �2
9,  29 �,… ,! ��9,  �9 �J, 

Where ��
8 and  �8 represents the SAX character and trend character respectively, and 

� represents the number of the variables in the given time series. For example, if the 
given time series has 10 variables and is divided into 7 segments, then the extracted 
dataset will have 20 features (columns) and 7 instances (rows) as shown in Table 1. 
After extracting the features, the classifier is trained to assign a class (label) to each 
segment. In this work we propose a memory-based classifier which takes the previous 



output of the classification process into consideration. The inputs of the proposed 
classifier are the feature-vector G8  of the current segment 9	as well as the predicted 
class K8=�of the previous segment. Fig. 7 illustrates the pseudo-code of the 
classification algorithm. 

Table 1. An example of the extracted dataset  

Seg#	 �"#$%�  &%�'� �"#$%-  &%�'- … �"#$%�O  &%�'�O 

1	 ��
�  �

� �-
�  -

� … ��O
�   �O

�  

2	 ��
-  �

- �-
-  -

- … ��O
-   �O

-  

…	 … … … … … … … 

7	 ��
6  �

6 �-
6  -

6 … ��O
6   �O

6  

 

Classification Algorithm 

Input:  
• A multivaite time series ( of length � 

Output:  
• A sequence of labels (classes)  

Do 
• Create an empty sequence of classes SC.  

• Divide the original time series ( into a set ? of smaller equal-sized segments, 
where ? = {��, �-, … , �6} 

• For each segment in ?  
o Represent the current segment �� as mentioned in section 4. 
o Create the feature-vector G� 
o Get the predicted class of the previous segment c�=� 
o Call the prediction method predict (QR, SR=T) which returns the class U� 

of the current segment.  
o Add the predicated class U� to the sequence SC. 

• End For 

• For all classes in SC 

o Combine the consecutive equal classes U�, … , UV in one class C.  

o Set the start time of C equal to the start time of the first class U� 
o Set the end time of C equal to the end time of the last class	UV 

• End For All 
• Return WK 

End 
Fig. 7. The classification algorithm 



Although the memory-based classifiers are simple, as we will show, they improve the 
classification accuracy significantly. The experimental results show that the average 
improvement in accuracy is about 8% compared to a traditional classifier. 
 
Many classification techniques can be used to classify the time series. In this work we 
tested Naïve Bayes, Support Vector Machine, Rule Induction, K-Nearest Neighbor 
and Decision Trees. Using all these techniques, the classification accuracy was high 
as we show in the next section. Also, the training time is significantly reduced 
because the number of extracted features is small. 

6   Experimental Results 

To evaluate our approach, we tested it with real-world data. Two time series were 
used in our experiments. Table 2 illustrates these two time series: 

Table 2. Time series parameters 

Time Series Length Frequency #Variables #Classes 
1 376,840 0.1 Hz 12 10 
2 195,808 0.2 Hz 10 9 

For all experiments a sequence of ten classes to the first time series, and a sequence of 
nine classes to the second time series was assigned. Each one of these classes 
represents one particular operation during drilling. The final output of the 
classification task is similar to Fig. 2. The proposed approach to represent the data 
was applied to create the feature space in a first step. Following that, RapidMiner [12] 
and LIBSVM [13] were used to test the classifiers using the cross validation 
technique.  

Table 3: Classification accuracy 

 Time Series #1 Time Series #2 
Window 

Size 
Traditional 

classifier [%] 
Memory-based 
classifier [%] 

Traditional 
classifier [%] 

Memory-based 
classifier [%] 

2 80.40 90.87 92.38 97.88 
3 78.23 89.58 93.10 97.71 
4 76.62 87.23 92.84 97.51 
5 72.87 83.55 93.82 97.67 
6 71.40 82.61 93.54 97.43 
7 71.03 81.85 93.50 97.14 
8 70.25 82.01 92.92 96.70 
9 69.86 81.10 92.64 96.35 
10 69.41 81.28 92.45 96.33 

To measure the improvement that the memory-based classifier provides, two types of 
classifiers were trained and tested with a varying window size. The first classifier was 
trained only with TVA features. The second classifier (memory-based classifier) was 



trained using the extracted features as well as the previously predicted classes as 
input. Table 3 and Fig. 8 show the results of the Naïve Bayes classifier. 

 

Fig. 8. Classification accuracy vs. window size  

Table 4 shows the confusion matrix of one of the experiments in which the Naïve 
Bayes classifier is applied to time series #2 using a window size of 2. 

Table 4. Confusion matrix 
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MoveUP 343 8 30 0 0 0 17 0 2 85.7 

MoveDN 16 442 4 0 0 0 1 1 1 95.0 

MakeCN 12 7 1949 8 0 0 0 20 7 97.3 

CircHL 11 1 0 4636 69 27 22 25 61 95.5 

ReamDN 1 0 1 13 2155 7 24 30 12 96.0 

DrlRot 0 0 0 2 5 19028 1 3 1 99.9 

ReamUP 5 0 0 5 32 54 2298 1 22 95.0 

WashDN 0 6 8 7 19 2 1 920 46 91.1 

WashUP 14 1 5 5 2 1 11 27 1632 96.1 

Recall [%] 85.3 95.0 97.6 99.1 94.4 99.5 96.7 89.5 91.4  

In addition to Naïve Bayes, four classification techniques were tested. These 
techniques are: Support Vector Machine (SVM), Rule Induction (RI), Decision Trees 
(DT) and K-Nearest Neighbor (K-NN). Table 5 summarizes the results. 



Table 5. The classification accuracies of different techniques 

 SVM RI DT K-NN 
Time Series#1 92.9% 91.12% 90.0% 92.8% 
Time Series#2 95.23% 98.24% 94.11% 96.9% 

7   Conclusion and Future Work 

The following conclusion can be drawn from the concepts presented in this paper: 

• Representing multivariate time series by combining both the value-based and 
trend-based approximations leads to reduce the dimensionality of the time 
series largely. 

• The reduced representation can be used as alternative to the time series 
without losing any important characteristics or patterns exist in the original 
time series data. 

• Memory-based classifiers can improve the classification accuracy of the time 
series significantly. 
 

Our aim for future work is to improve this approach and use it for writing reports 
automatically. TVA will be used as an intermediate representation between the 
numerical values of time series and the human language. 
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