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Abstract: Tungsten mineralization in hydrothermal quartz veins from the Nyakabingo, 

Gifurwe and Bugarama deposits in central Rwanda occurs as the iron-rich endmember of 

the wolframite solid solution series (ferberite) and in the particular form of reinite, which 

represents a pseudomorph of ferberite after scheelite. Primary ferberite, reinite and late 

secondary ferberite are characterized by their trace element chemistry and rare earth 

element patterns. The replacement of scheelite by ferberite is also documented in the trace 

element composition. Primary ferberite shows high Mg, Zn, Sc, V, Nb, In and Sn 

concentrations, but very low Ca, Pb, Sr and Ba contents. Reinite and late secondary 

ferberite display an uncommon trace element composition containing high concentrations 

of Ca, Pb, Sr, Ba, As and Ga, but very low levels in Sn, Zr, Hf, In, Ti, Sc, Nb, Ta, Mg and 

Zn. Late secondary ferberite replacing primary ferberite is characterized by additional 

enrichments in Bi, Pb, As and Sb. The rare earth element patterns of reinite and secondary 

ferberite are also similar to hydrothermal scheelite. The formation of the tungsten deposits 

in central Rwanda is interpreted to be epigenetic in origin, and the hydrothermal 

mineralizing fluids are related to the intrusion of the G4-granites. 
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1. Introduction 

Tungsten is a metal of high economic importance with unique properties. Major applications for 

tungsten are in cutting tools in the form of tungsten carbide, in the production of high speed steel, as an 

alloying component and as filaments in light bulbs. The most important tungsten minerals are the 

wolframite solid solution series [(Fe,Mn)WO4] and scheelite (CaWO4). In general, the formation of 

tungsten deposits is related to late-stage, highly evolved, granitic intrusions in orogenic belts. Tungsten 

is enriched by fractional crystallization in the residual melts and is subsequently concentrated in 

hydrothermal fluids. Tungsten deposits are generally formed by these fundamental processes, although 

there are several subdivisions of ore deposit types (including skarn, greisen and hydrothermal veins). 

Wolframite represents the dominant tungsten mineral in Central Africa (Democratic Republic of the 

Congo (DRC), Rwanda, Uganda and Burundi) and is generally found in hydrothermal quartz  

vein deposits. 

Along the “tungsten belt” in central Rwanda, tungsten mineralization is hosted by quartz veins and 

is often present in the particular form of reinite, which represents a pseudomorph of ferberite after 

scheelite [1–5]. There is still debate on the genesis of these tungsten deposits. Formerly, the tungsten 

deposits of Rwanda and Uganda were interpreted to be syngenetic in origin. Previous authors stated 

that tungsten was absorbed by the carbonaceous organic matter of the black shale, followed by 

formation of metamorphic fluids and remobilization into vein-type deposits [6–9]. Today, most authors 

support an epigenetic granite-related hydrothermal deposition of the tungsten minerals in the quartz 

veins [2,3,5,10–13], and the anomalous high tungsten content of the carbonaceous shale represents the 

geochemical haloes around the ore bodies [2,11]. 

The occurrence of reinite is only reported from a few localities worldwide, for example, from the 

Cu-W-bearing tourmaline breccia pipe of Ilkwang (Korea) [14], Kimbosan and Sannotake deposits 

(Japan) [15], Mount Misobo (DRC) [1], Rutsiro area (Rwanda) [1] and several tungsten deposits in the 

Kigezi district in southwest Uganda (e.g., Ruhizha, Nyamalilo, Kirwa), which belong to the same 

“tungsten belt” and show very similar geological characteristics to the Rwandan deposits [6–8]. 

The aim of this study is the investigation of the paragenetic sequence and origin of vein-hosted 

tungsten deposits along the “tungsten belt” in central Rwanda. It is also demonstrated that ferberite in 

the form of reinite inherited its unusual trace element composition from the former scheelite. The first 

results on the trace element analysis of wolframite using the laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS) method are reported here. 

2. Geologic Setting of Tungsten Mineralization 

The Kibara belt (or Kibaran belt) of Central Africa is generally portrayed as a single, continuous 

orogenic belt that trends northeast over approximately 1300 km from the Katanga region in the DRC 

up to the Ankole region in southwest Uganda. Recent work (see [16] and references therein) illustrated 
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that there is a discontinuity in the traditionally defined Kibara belt [17] by the northwest-trending 

extension of the Palaeoproterozoic Ubende belt of southwest Tanzania across Lake Tanganyika into 

the Kivu-Maniema region of the DRC, where it has been mapped as the Palaeoproterozoic “Rusizian” 

basement [18–20]. The northern segment or the Karagwe-Ankole belt (KAB: Rwanda, Burundi, Maniema 

and Kivu Provinces in the DRC, southern Uganda and western Tanzania) and the southern segment or 

Kibara belt (KIB: Katanga Province in the DRC) are treated as two separate, but coeval belts [16]. 

The Palaeo- and Mesoproterozoic metasedimentary rocks of the KAB consist mainly of 

monotonous siliciclastic pelitic and psammitic sequences, interpreted as shallow-water deposits. The 

lithostratigraphy of the Akanyaru supergroup in central Rwanda is subdivided into four successive 

units: from bottom to top, the Gikoro, Pindura, Cyohoha and Rugezi groups (Figure 1; [10,21,22]). The 

rocks of the KAB were intruded by several generations of S-type granites (e.g., [17]). In the KAB, the 

main granite generation G1–G3 intruded the Palaeo- and Mesoproterozoic rocks between 1383 ± 17 Ma 

and 1371 ± 7 Ma (U-Pb sensitive high resolution ion microprobe (SHRIMP) on zircon; [16]). This 

magmatic event was followed by the intrusion of the G4-granites (or “tin granites”) at 986 ± 10 Ma  

(U-Pb SHRIMP on zircon; [16]). Cassiterite, columbite-tantalite (coltan) and wolframite mineralizations 

are related to this G4-granite generation, either forming pegmatites (Sn-Ta-Nb) or hydrothermal quartz 

veins (W-Sn) [23]. The present study focuses on the mineralogy, paragenesis and mineral chemistry of 

tungsten mineralization that occurs in the particular form of reinite in central Rwanda along the  

so-called north-northwest to south-southeast trending “tungsten belt”, more specifically, in the 

Nyakabingo, Gifurwe and Bugarama mines (Figure 1). The geology and tectonics at the Nyakabingo, 

Gifurwe and Bugarama deposits were investigated in detail by previous studies [2,3,5,10]. 

Most tungsten deposits in the “tungsten belt” are located on the flanks of the large Bumbogo 

anticline [21]. This anticline is composed of Mesoproterozoic rocks, which belong to the Gikoro and 

Pindura groups of the Akanyaru supergroup (Figure 1; [21,22]). The core of the anticline has  

been intruded by granites. All metasedimentary rocks have been submitted to a regional low  

grade metamorphism. 

Tungsten mineralization in these deposits is generally related to quartz veins, but minor quantities 

also occur in the surrounding host rock. Ferberite (iron-rich endmember of the wolframite series) is the 

major tungsten ore mineral in the quartz veins, which are mainly hosted by alternating sandstones, 

quartzites and carbonaceous black shales. These rocks form part of the Bumbogo and Shyorongi 

Formations, which in turn are followed by the prominent quartzite of the Nduba Formation. All these 

formations belong to the Gikoro group (Figure 1; [5,10,21,24]). 

The site of the tungsten vein-type deposits in the “tungsten belt” of Rwanda is controlled both 

structurally and lithologically. Structurally, the ore bodies are located in the core and along the flanks 

of large secondary anticlines, which contain numerous higher order folds. All the different fold 

directions interfere and give the mine areas a complex domal structure [1–3,5]. The anticlinal 

structures and domes acted as preferred intrusion sites for granites and as fluid traps [1–3]. The core 

and the flanks of the folds have been crosscut by numerous faults. Some of these fault zones might 

have acted as pathways along which the mineralizing fluids ascended. Lithologically, the tungsten 

mineralization is related to carbonaceous shale, which serves as a reactive horizon causing 

precipitation of tungsten minerals in this zone. The mineralizing hydrothermal fluids reacted with the 

pelitic metasedimentary rocks of the Shyorongi Formation [10]. 
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Figure 1. Geological map of Rwanda showing the tungsten deposits of Nyakabingo, 

Gifurwe and Bugarama (modified after [24]). 

 

Three types of quartz veins have been observed [5]: (1) small folded bedding-parallel veins, which 

do not contain tungsten mineralization, (2) thick bedding-parallel quartz veins, which are mineralized 

in tungsten and (3) crosscutting quartz veins, which also contain tungsten. The width of the veins is 

generally 10 to 30 cm, but in places, these veins reach 1 m or more [2,25]. The small folded  

bedding-parallel quartz veins are always hosted by the carbonaceous shales. They are interpreted to 

have been formed by a crack-seal mechanism, at the onset of a compressional deformation event. 

Afterwards, these veins have been intensely buckled [5]. The thick W-mineralized bedding-parallel 

quartz veins are also typically hosted by the carbonaceous shales, where they formed along  

bedding-parallel parting planes. These veins are interpreted to be related to the intrusion of the  

G4-granites, which were emplaced in the context of post-collisional relaxation [5,22,23]. Both types of 

bedding-parallel veins are often crosscut by subvertical veins, which are at a high angle to bedding. 

The crosscutting W-mineralized veins are interpreted to have formed in a late stage of a deformation 
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event, possibly overlapping in time with the formation of the W-mineralized bedding-parallel veins. 

The crosscutting quartz veins formed by the opening of pre-existing planar structures (cleavage planes, 

axial planes, joints), some of which were connected to form important pathways for the mineralizing 

fluids [5]. After their formation, all quartz veins have been crosscut by numerous faults. 

Another characteristic feature of some Central African tungsten deposits along the “tungsten belt” is 

the presence of tungsten-bearing nodular concretions embedded in the carbonaceous shale [11], which 

is reported from the Gifurwe [2] deposit in Rwanda and the Ruhizha [6] and the Nyamalilo [7,8] 

deposits in southwest Uganda. At Gifurwe, such nodules are mainly composed of clay minerals, 

sericite, quartz, graphite and iron oxides (limonite, hematite) [2]. Sometimes, cavities after pyrite occur 

inside the concretions, which have often been filled by quartz and tourmaline. These quartz infillings are 

connected by fractures that crosscut the host rock [2]. Tungsten concentrations range from about  

200 ppm to more than 2000 ppm, with an average of approximately 1100 ppm [2]. The concretions are 

spherical to lenticular in shape, and their diameter ranges from about 1 mm to 4 cm [7], even up to  

10 cm [2,6,8]. 

3. Samples and Methods 

3.1. Samples 

In this study, ore concentrates from Nyakabingo and Gifurwe mines were investigated. In total, ten 

ore concentrates from the different tunnels of the Nyakabingo mine and two concentrates from the 

Gifurwe mine were taken. Ore concentrates represent the saleable product from mining by the 

upgrading of ore minerals during the beneficiation processes. Individual grains of these concentrates 

were analyzed for the trace element composition using LA-ICP-MS. A detailed study was performed 

on two samples of tungsten ore from the Bugarama mine (Bug10SD01 = polished section 1 and 

Bug10SD02 = polished section 2). These two specimens were analyzed using electron microprobe 

analysis and LA-ICP-MS. Polished sections were prepared from the concentrates and the ore samples. 

In a first step, the sample material is mounted in epoxy resin. After hardening of the resin, the 

specimen is ground and polished with abrasives of successively smaller grain sizes, until a uniformly 

flat, scratch-free and highly reflective surface is generated. 

3.2. Microscopy 

A polarizing microscope was used for examination of mineralogical features of reinite/ferberite in 

polished sections under reflected light. 

3.3. Electron Microprobe Analysis 

An SX-100 microprobe (Cameca, Gennevilliers, France) was used for non-destructive elemental 

analyses with a high spatial resolution (about 1 µm) and element mapping of solid samples with 

polished surfaces. The measurement conditions were set to an acceleration voltage of 20 kV at a beam 

current of 40 nA. The following elements were analyzed: Mg (Kα), Al (Kα), Si (Kα), Ca (Kα), Mn 

(Kα), Fe (Kα) and W (Lα). Chromite for Mg, synthetic Y-Al-garnet for Al, rhodonite for Si and Mn, 

apatite for Ca, magnetite for Fe and tungsten metal for W were used as standards. The detection limits 
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ranged from 65 to 1300 ppm, depending on the lines selected and on the measurement time of  

single elements. 

3.4. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

LA-ICP-MS analyses were performed on an ELEMENT-XR (Thermo Fisher Scientific, Dreieich, 

Germany) high-resolution sector field inductively coupled plasma-mass spectrometer coupled to an 

UP193-FX (ESI New Wave Research, Huntingdon, UK) laser ablation system with an ATLEX-300-SI 

(ATL Lasertechnik, Wermelskirchen, Germany) excimer laser. 

At each sampling point, eight passes of 50 × 130 µm lines are ablated at 10 Hz with a speed of  

5 µm/s. The laser energy is fixed to 65% of 4 mJ for ablation of wolframite and 80% of 4 mJ for the 

ablation of the reference material, NIST 610. Prior to every analysis, a pre-ablation scan is run to 

remove any contamination from the sample surface (one pass, 75 × 155 µm, 10 Hz, 15 µm/s). The 

wash out time after every ablation process takes 80 s. Line scan ablation is favored over spot ablation, 

resulting in lower detection limits and a more constant signal response at higher intensity levels. Data 

acquisition by the mass spectrometer takes 358 s. During the first 140 s, the laser beam path is blocked 

by a shutter to analyze the background signal. The mass spectrometer performs 25 passes over the 

whole mass range in low (LR) and medium (MR) resolution and is constantly switching between these 

two resolutions with a switch delay of 1 s. 

The following isotopes have been analyzed: 69Ga, 75As, 89Y, 95Mo, 107Ag, 111Cd, 115In, 118Sn, 121Sb, 
137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 
177Hf, 201Hg, 204Pb, 205Tl, 206Pb, 207Pb, 208Pb, 209Bi and 238U in LR and 12C, 24Mg, 27Al, 29Si, 31P, 32S, 
44Ca, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 88Sr, 90Zr, 93Nb, 181Ta, 182W and 232Th in 

MR. For all elements, both secondary electron multiplier (SEM) and Faraday detector are used, 

depending on the count rate. 

Since matrix matched mineral standards with certified element concentrations are not available for 

wolframite, an external calibration using a non-matrix matched reference material with internal 

standardization has been applied. The glass NIST SRM 610 (National Institute of Standards and 

Technology, Gaithersburg, MD, USA) is used as a reference material for which numerous trace 

element concentrations in the range of 500 ppm are certified [26]. The NIST glasses are often used as 

calibration materials for micro-analytical trace element measurements, because the concentrations of 

all trace elements are high enough for precise primary calibration [27]. 

The NIST SRM 610 reference material is measured repeatedly during a sequence. Tungsten was 

used as the internal standard. The tungsten concentration of the samples was calculated from the 

known stoichiometry of wolframite (Fe0.5Mn0.5)WO4 (60.63 wt % W). Due to the small difference in 

atomic mass between Fe and Mn, only a small error occurs if other members of the wolframite solid 

solution series are analyzed using this stoichiometry. The concentrations for each element are 

calculated using the equation given by Longerich et al. [28], and an ablation yield correction is applied 

using the internal standardization to correct the differences in mass of the different ablated materials [29]. 

This procedure has proven to provide acceptable analyses for many elements in many sample matrices 

without matrix matching [30]. Detection limits are calculated for each element on the basis of three 

times the standard deviation of the background measurement [31]. 
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Data reduction was handled with a software tool, which was implemented in JAVA using the 

libraries JFreeChart, commons Math and POI [32]. The signals for background and sample 

measurements are time-resolved, and therefore, selected time intervals are integrated for the blank and 

sample signals. The net intensities are calculated by subtracting the background intensity from the 

signal intensity. The median values of the time-resolved signals are used to reduce the effect of 

outliers. Higher signal intensities caused by mineral inclusions are identified by examination of the 

time-resolved signal, and these measurements are discarded. 

4. Results 

4.1. Microscopy and Mineralogy 

Tungsten mineralization along the “tungsten belt” in Rwanda is present in bedding-parallel and 

crosscutting quartz veins. These veins display the same mineralogy, and different stages have been 

observed during the evolution of the mineralized quartz veins. First, the contact zone between the veins 

and the surrounding host rock has been altered by sericitization and tourmalinization, subsequently 

followed by the formation of large muscovite crystals bordering the veins. Then, the bulk of the quartz 

veins formed during the main vein stage, together with scheelite, massive ferberite, pyrite, molybdenite 

and euhedral arsenopyrite. Massive, pristine ferberite occurs as large aggregates in massive quartz 

veins; in a few cases, euhedral tabular-prismatic crystals are developed, showing shiny cleavage planes 

with distinct metallic luster (Figure 2a; also termed type-1 in the following sections). Occasionally, 

massive ferberite occurs next to scheelite crystals. In that case, ferberite contains a large amount of 

aligned scheelite inclusions. In the absence of large scheelite crystals, only a few small scheelite 

inclusions sporadically occur in massive ferberite. Massive ferberite also contains small pyrite 

inclusions, and veins of scheelite have been observed crosscutting large ferberite crystals. 

Next, the scheelite crystals were replaced by ferberite, forming pseudomorphs called reinite. Reinite 

represents a variety of polycrystalline ferberite, which is commonly present as euhedral aggregates still 

displaying the typical bipyramidal-tetragonal habit of scheelite [2,4]. Because of the porous character 

of this second type of ferberite, the bipyramidal aggregates are never intact, but the complete imprint 

of the bipyramid can still be seen on the surrounding quartz crystals. Microscopically, the ferberite 

aggregates are composed of individual small or even tiny fibrous crystals with dull-metallic luster (also 

termed type-2 in the following chapters). The polycrystalline ferberite occurs in various textures, 

including needle-like bundles, tabular prisms oriented almost perpendicular to each other or randomly 

oriented fibers (Figure 2b; [2,5]). In most cases, the ferberite is more massive at the contact with the 

surrounding quartz crystals or host rock and becomes more porous towards the center. The alignment 

of the pores results in a prominent boxwork texture. 

Cubic cavities are found in the quartz veins and in the surrounding host rocks. These cavities are 

now partly filled with Fe-oxides, such as goethite, limonite and secondary hematite [2,12,13]. 

Sometimes pristine, massive ferberite (type-1) is replaced by skeletal or fibrous ferberite (type-3) 

crystals with many pores and cavities (Figures 2c,d; also termed type-3 in the following chapters). This 

kind of ferberite is sometimes accompanied by quartz veins containing xenotime inclusions. Pores are 

sometimes present in the pristine ferberite, but the development of these pores is not accompanied by 
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the growth of fibrous ferberite. No minerals are present in these pores. The reinite has been fractured 

and is also filled by an assemblage of quartz, muscovite and xenotime. In addition, a sulfide stage 

occurred, which is intergrown with quartz. The sulfide minerals include chalcopyrite, galena, which is 

intergrown with cosalite, and, finally, native bismuth and bismuthinite. Siderite veinlets crosscut the 

early arsenopyrite and pyrite crystals, but it is unclear if this occurred during the sulfide stage. 

Remaining scheelite crystals inside the reinite were altered together with some ferberite crystals to 

different secondary tungstates, like ferritungstite, anthoinite, alumotungstite, cerotungstite, meymacite, 

raspite and different Fe-oxides [4,8,33–38]. Nevertheless, some primary scheelite is still present as 

small grains enclosed in quartz and in massive ferberite [2,3,5]. Fe-oxides, such as hematite and 

goethite, precipitated in fractures throughout the veins. The paragenetic sequence of the mineralized 

quartz veins is illustrated in Figure 3. 

Figure 2. Photomicrographs in plane polarized reflected light showing the different ore 

textures of ferberite and reinite. (a) Large primary ferberite crystal (type-1) showing simple 

twinning; (b) Reinite (type-2) composed of randomly oriented fibrous ferberite crystals 

forming a porous aggregate; (c) Replacement of primary ferberite (type-1) by porous 

secondary ferberite (type-3); The rimmed box indicates the area of view in (d);  

(d) Secondary ferberite (type-3) is characterized by skeletal growth texture surrounded by 

empty cavities. The area of this view is indicated by a rimmed box in (c). 
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Figure 3. Paragenetic sequence of the W-mineralized quartz veins from tungsten deposits 

along the “tungsten belt” in central Rwanda (modified after [5]). Clear temporal relationships 

are marked by solid lines. Uncertain assignments are marked with dashed lines. 

 

4.2. Trace Elements 

In our study, single grains of ferberite/reinite (about 50 single grains per ore concentrate) from 

Nyakabingo (ten ore concentrates taken from different adits in the mine) and Gifurwe (two ore 

concentrates taken from the processing plant) were analyzed for their trace element composition using 

LA-ICP-MS (Tables 1 and 2). In the literature, mostly only the major element compositions of 

wolframite are reported. There is little information dealing with trace elements in wolframite using 

electron microprobe analysis, e.g., [39–44], or atomic absorption spectroscopy [45]. In comparison to 

typical hydrothermal wolframite from deposits distributed all over the world (unpublished data [46]), 

ferberite/reinite from Nyakabingo and Gifurwe show enrichments in Ca, Pb, Sr, Ba, Al, Ga, As, Bi, Sb 

and Mo (Figure 4). On the contrary, other elements are at comparatively low concentration levels (e.g., 

Sn, Zr, Hf, In, Ti, Sc, Nb, Ta, V, Mg, Zn and U). These trace element compositions and rare earth 

element (REE) patterns differ significantly compared to other wolframite deposits worldwide (Figure 4, 

unpublished data [46]). 
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A detailed study on the pseudomorphism of ferberite after scheelite was performed on two polished 

sections (polished section 1 and section 2) from Bugarama using electron microprobe and LA-ICP-MS 

(20 LA-ICP-MS analyses per polished section; Figure 5). Three different petrographic types of 

ferberite can be distinguished based on their trace element composition and REE patterns. Type-1 

ferberite (XFe ~94%) is characterized by comparatively high concentrations in Mg, Sc, Ti, V and Zn 

with moderate Nb, In and Sn and low Ga, As, Y, Mo, Ag, Ba, La, Ca, Sr, Th and Pb contents. Type-3 

ferberite (XFe ~90%) shows the opposite trend in its trace element distribution compared to type-1 

with high concentrations in Ga, As, Y, Ba, La, Lu, Ca, Sr, Th and Pb, moderate Mo, Sc, Ti, V and Nb 

and low Mg, Zn, In and Sn contents. Type-2 ferberite (XFe ~97%) displays an intermediate trace 

element composition between type-1 and type-3 ferberites with a characteristic assemblage of Mo, Ga, 

As, Y, Ba, Ca, Zn, Sr, Th and Pb (Figures 6 and 7). 

Table 1. Trace element composition of ferberite/reinite from the Gifurwe and Nyakabingo 

deposits given as the 25th percentile, median, 75th percentile and 90th percentile of  

75 analyses on individual grains in ore concentrates from Gifurwe and 500 analyses on 

individual grains in ore concentrates from Nyakabingo. Additionally, the median values for 

the analyses of the different ferberite types (type-1, type-2, type-3) from two polished 

sections (polished section 1 and 2) from the Bugarama deposit are also given. If values are 

below the detection limit, the detection limit are given as the 80th percentile of all 

detection limits from the individual analysis per single sample. 

Element 
Gifurwe (n = 75) Nyakabingo (n = 500) 

Bugarama (n = 40) 

type-1  
(n = 14) 

type-2 
(n = 20)

type-3 
(n = 6) 

p0.25 median p0.75 p0.90 p0.25 median p0.75 p0.90 median median median

Ga (ppm) 1.41 3.81 7.27 11.45 6.12 10.69 21.81 44.03 <0.46 3.10 27.34 
As (ppm) 28.3 59.2 98.9 131.2 22.4 37.5 79.6 157.1 <0.64 23.4 86.7 
Mo (ppm) 4.1 5.1 6.9 9.7 6.3 7.8 9.3 11.4 <1.1 8.7 1.4 
Ag (ppm) <0.06 0.11 0.21 0.47 <0.16 0.09 0.23 0.38 <0.18 <0.13 <0.14 
Cd (ppm) <0.28 <0.28 <0.28 0.14 <0.38 <0.38 0.18 0.47 <0.48 <0.28 <0.36 
In (ppm) <0.03 <0.03 <0.03 0.04 <0.03 <0.03 <0.03 0.05 2.64 <0.03 <0.04 
Sn (ppm) <1.72 <1.72 <1.72 0.90 <0.60 <0.60 <0.60 <0.60 1.29 <0.21 <0.30 
Sb (ppm) <0.12 0.24 0.42 1.01 <0.16 0.15 0.41 1.12 <0.16 <0.16 1.20 
Ba (ppm) 11.0 22.2 49.1 73.2 46.3 78.6 155.8 297.5 <1.06 14.6 178.6 
Hf (ppm) <0.03 <0.03 0.01 0.04 <0.06 <0.06 0.04 0.10 <0.07 <0.04 0.06 
Tl (ppm) 0.02 0.04 0.06 0.11 0.01 0.03 0.08 0.18 <0.03 0.02 <0.02 
Bi (ppm) <0.03 0.03 0.28 1.53 <0.06 0.15 0.63 1.83 <0.07 0.08 2.35 
U (ppm) 0.07 0.14 0.33 0.77 0.13 0.29 0.74 1.94 0.03 0.01 0.21 

Mg (ppm) 10 17 23 32 <7 11 23 31 1757 12 10 
Al (ppm) 18 81 293 975 36 97 280 619 <11 49 595 
Ca (ppm) 156 230 304 387 168 240 346 507 <104 275 685 
Sc (ppm) <0.6 <0.6 <0.6 0.5 <0.6 0.5 1.4 3.5 15.5 <0.6 2.1 
Ti (ppm) <0.9 <0.9 <0.9 2.4 <4.8 0.8 3.9 10.7 64.7 <1.7 31.0 
V (ppm) <0.22 <0.22 0.19 0.49 <0.34 0.33 0.84 1.56 2.6 <0.34 1.18 
Cr (ppm) <0.13 <0.13 0.52 1.01 <0.23 0.43 1.24 2.73 0.24 0.48 1.63 
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Table 1. Cont. 

Element 
Gifurwe (n = 75) Nyakabingo (n = 500) 

Bugarama (n = 40) 

type-1  
(n = 14) 

type-2 
(n = 20)

type-3 
(n = 6) 

p0.25 median p0.75 p0.90 p0.25 median p0.75 p0.90 median median median 

Mn (wt %) 0.52 0.88 1.32 1.81 0.83 0.98 1.18 1.44 1.12 0.51 2.02 
Fe (wt %) 16.82 17.59 18.45 19.84 18.39 19.06 19.97 20.72 19.5 19.04 19.3 
Co (ppm) <0.21 0.70 4.53 24.14 <0.34 8.51 36.76 68.90 <0.43 <0.28 <0.50 
Cu (ppm) <3.1 <3.1 1.0 7.1 <6.6 <6.6 7.4 15.6 <9.6 <5.2 <8.0 
Zn (ppm) 9 12 26 127 13 32 327 477 39 10 3 
Sr (ppm) 2.7 4.3 6.1 8.5 4.1 6.9 10.6 17.7 <0.9 7.8 30.2 
Zr (ppm) <0.20 <0.20 0.35 1.48 <0.49 0.60 2.22 5.89 1.06 0.35 1.35 
Nb (ppm) 17 32 58 78 37 59 90 122 183 5 188 
Ta (ppm) 0.22 0.40 0.73 0.88 0.50 0.80 1.18 1.76 1.91 0.13 1.67 
Th (ppm) 0.04 0.15 0.36 0.85 0.07 0.29 0.91 2.50 0 0.47 3.78 
Pb (ppm) 40 56 84 98 58 77 104 134 <0.42 37 86 

Table 2. Rare earth element composition of ferberite/reinite from the Gifurwe and 

Nyakabingo deposits given as the 25th percentile, median, 75th percentile and 90th 

percentile of 75 analyses on individual grains in ore concentrates from Gifurwe and  

500 analyses on individual grains in ore concentrates from Nyakabingo. Additionally, the 

median values for the analyses of the different ferberite types (type-1, type-2, type-3) from 

two polished sections (polished sections 1 and 2) from the Bugarama deposit are also 

given. If values are below the detection limit, the detection limit are given as the 80th 

percentile of all detection limits from the individual analysis per single sample. 

Element 
Gifurwe (n = 75) Nyakabingo (n = 500) 

Bugarama (n = 40) 

type-1  
(n = 14) 

type-2 
(n = 20)

type-3 
(n = 6)

p0.25 median p0.75 p0.90 p0.25 median p0.75 p0.90 median median median

La (ppm) 1.68 3.63 5.21 6.95 3.00 4.37 7.00 9.77 <0.02 3.34 11.32 
Ce (ppm) 4.83 9.84 14.74 17.65 10.39 14.34 19.98 28.27 <0.01 5.14 12.46 
Pr (ppm) 0.79 1.49 2.28 3.08 2.00 2.72 3.92 5.24 <0.01 7.68 15.50 
Nd (ppm) 4.11 7.59 12.52 17.75 10.00 15.47 22.69 31.09 <0.05 12.51 22.61 
Sm (ppm) 1.08 2.22 4.01 5.43 2.74 4.96 7.77 11.46 <0.05 18.57 89.67 
Eu (ppm) 0.65 1.35 1.96 2.94 1.36 2.48 3.98 5.54 <0.04 19.46 22.92 
Gd (ppm) 1.09 2.57 4.65 7.53 2.63 6.05 10.70 17.74 <0.17 16.32 170.08 
Tb (ppm) 0.26 0.72 1.11 1.77 0.59 1.41 2.46 4.00 1.48 22.19 204.61 
Dy (ppm) 1.96 6.21 11.66 16.99 4.90 11.26 22.21 34.58 3.50 27.35 202.82 
Y (ppm) 11.22 30.39 69.81 128.08 26.59 71.37 154.04 241.76 4.32 21.55 126.23 

Ho (ppm) 0.57 1.93 3.27 5.43 1.30 3.14 6.16 9.90 6.97 35.51 201.95 
Er (ppm) 3.12 7.43 13.84 21.36 5.86 13.33 24.48 37.86 16.37 48.13 222.91 
Tm (ppm) 0.93 1.88 3.22 4.17 1.41 3.02 5.21 7.41 41.95 53.35 256.07 
Yb (ppm) 12.65 20.65 28.91 40.64 15.83 27.79 43.83 60.09 98.21 57.14 264.05 
Lu (ppm) 2.37 3.94 5.44 6.91 3.01 5.11 6.97 9.81 135.70 69.15 208.57 
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Figure 4. Spider diagram showing trace element composition of primary wolframite 

(worldwide occurrences) and ferberite from the Rwandan reinite deposits (Gifurwe, 

Nyakabingo, Bugarama). The data of ferberite from the Rwandan reinite deposits are given 

as median values of single analyses for each sample locality (Gifurwe, Nyakabingo, 

Bugarama: type-1, type-2, type-3). The data for primary wolframite are given as the median 

value of single analyses (n = 1094) for 23 sample localities worldwide. Data points below the 

detection limit are omitted. Please note that the trace element concentrations are displayed on 

the logarithmic scale. Gifurwe = yellow line and diamonds, Nyakabingo = black line and 

crosses, Bugarama: type-1 = red line and squares, type-2 = green line and triangles,  

type-3 = blue line and circles and primary wolframite from different deposits  

worldwide = gray line and asterisks. 

 

Figure 5. Backscatter electron images of the two polished sections 1 and 2 from the 

Bugarama deposit with laser ablation pits (red outlines). (a) Ablation pits 1–5 and 12–20 

represent type-1 ferberite, whereas ablation pits 6–11 represent type-3 ferberite (yellow 

outline) in polished section 1. The two red-rimmed boxes indicate the areas of element 

mapping using electron microprobe (Figure 8). (b) Ablation pits 1–20 represent analyses of 

type-2 ferberite in polished section 2. 
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Figure 5. Cont. 

 

Figure 6. Binary plot of Ca and Sr concentrations showing positive correlation. Please note 

that the element concentrations are displayed on the logarithmic scale. Gifurwe = yellow 

diamonds, Nyakabingo = black crosses, Bugarama: type-2 = green triangles and type-3 = blue 

circles; concentrations of type-1 are below the detection limits of both elements. 

 

Detailed investigation of the contact zone between type-1 and type-3 ferberite was performed by 

element mapping using electron microprobe analysis on polished section 1 (Figures 5a and 8). The 

sharp contact is clearly visualized by mapping of the Mg concentration, which is distributed rather 

homogenously, but at significantly different concentration levels in the two types, with high 

concentrations in the pristine ferberite (Figure 8c,f). Interestingly, Mn (and as a consequence, Fe 

showing the opposite trend) displays inhomogeneous distribution in both types. In type-1 ferberite, the 

highest Mn concentrations, and Mn-rich domains are restricted to the contact zone between the two 

ferberite types. Type-3 ferberite shows zoning in the Mn concentration and irregular schlieren-like 

replacement textures with high and low Mn concentration levels. This zoning and the replacement 

pattern are only visible by element mapping of the Mn distribution (Figure 8b,e). 
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Figure 7. Binary plot of Y and Mg concentrations showing type-1 ferberite is differing 

significantly from the other groups characterized by high Mg concentration at 

comparatively low Y levels. Please note that the element concentrations are displayed on 

the logarithmic scale. Gifurwe = yellow diamonds, Nyakabingo = black crosses, 

Bugarama: type-1 = red squares, type-2 = green triangles and type-3 = blue circles. 

 

Figure 8. Contact zone between type-1 and type-3 ferberite (yellow outline) by backscatter 

electron images (a,d) and element mapping (b,c,e,f) of the two areas on polished section 1 

from Bugarama deposit (marked in Figure 5a) using electron microprobe. The images (a)–(c) 

are taken from the left square, and (d)–(f) are taken from the right box on Figure 5a. 

Element mapping shows the distribution of the Mn (b,e) and Mg (c,f) concentrations. 
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Figure 8. Cont. 

 

4.3. Rare Earth Elements 

In type-1 ferberite, the light rare earth elements (LREE) are generally below the detection limit, and 

the REE patterns (normalized to C1-chondrite [47]) are inclining steeply from Tb onwards to Lu 

(Figure 9). Variable normalized Y concentrations appear, but a significant Y anomaly does not exist 
(0.75 < Y* < 1.40; Y* calculated after normalization to C1-chondrite following Y∗ = Y Dy × Ho⁄ ). 

REE patterns of type-2 ferberite (Figure 9) show a slight, but steady incline from LREE to the heavy 

rare earth elements (HREE) with variable normalized Eu concentrations, but without significant  

Eu anomalies (0.73 < Eu* < 1.73; Eu* calculated after normalization to chondrite following  Eu∗ = Eu √Sm × Gd⁄ ). Frequently weak negative Y anomalies appear (0.48 < Y* < 1.06). The REE 

patterns of type-3 ferberite (Figure 9) incline relatively steeply from the LREE towards the middle rare 

earth elements (MREE), including strong negative Eu anomalies (0.15 < Eu* < 0.31). The REE 

patterns form a plateau from the MREE towards HREE with weak negative Y anomalies  

(0.57 < Y* < 0.80). 
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Figure 9. Chondrite-normalized rare earth elements (REE) patterns of 40 analyses of 

ferberite (type-1 = red, type-2 = green, type-3 = blue) from two polished sections (polished 

section 1 and 2) from the Bugarama deposit and the distribution of chondrite-normalized 

REE patterns for the 25th and 75th percentile of ferberite analyses in ore concentrates from 

the Gifurwe (purple) and Nyakabingo (yellow) deposits. For comparison, chondrite-normalized 

REE patterns of hydrothermal scheelite (grey) are generalized from the data given for 

hydrothermal scheelite in the literature [48,49]. Please note that the chondrite-normalized 

data are displayed on the logarithmic scale. The composition of C1 carbonaceous chondrite 

is taken from McDonough and Sun [47]. 

 

5. Discussion 

5.1. Mineralogy 

Iron-rich, dark brown to black wolframite, so-called ferberite, is the main tungsten-bearing mineral 

in quartz veins. Three kinds of ferberite occur: a massive type with metallic luster (type-1), which is 

composed of large equant crystals, and two porous types, which are composed of small fibrous  

(type-2) or skeletal crystals (type-3), respectively. The massive ferberite crystals contain scheelite 

inclusions, but also are crosscut by scheelite veins or occur next to scheelite crystals. These massive 

ferberite crystals are therefore interpreted to be primary and formed contemporaneously with scheelite. 

Wolframite crystallizes in the monoclinic crystal structure and commonly forms tabular crystals, 

whereas scheelite has tetragonal symmetry and often occurs as bipyramidal crystals. Based on their 

crystal structure, it can be postulated that the bipyramidal fibrous ferberite aggregates are 

pseudomorphic after scheelite, so-called reinite [1,4,8,35,37]. Pseudomorphism of ferberite after 

scheelite is a common feature in Central Africa. It has, for instance, also been observed in the Rutsiro 

area in western Rwanda, in Maniema (DRC) and in southwestern Uganda [1,4,6,33,34,36]. Scheelite 
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has been replaced by fibrous ferberite, a relationship that can be expressed through the following 

chemical reaction (1) [50]: CaWO + FeCl ↔ FeWO + CaCl + n −m Cl  (1)

This reaction could have been induced by different mechanisms: the Ca/Fe ratio of the fluids in 

contact with the ore minerals, a change in the chloride concentration of the fluid, a lowering of the 

temperature and a change in pressure; whereas the pH value has a limited effect on the relative 

stabilities of scheelite and ferberite [50]. During the stage of pseudomorphism of ferberite after 

scheelite, pyrite crystals in the quartz veins and the surrounding host rock have been altered leaving 

cubic cavities behind [5]. This process of pyrite alteration could be the source of iron for the 

replacement reaction (1) causing increased Fe concentration in the fluid and the lowering of the Ca/Fe 

ratio. The cubic cavities are now partly filled with Fe-oxides [2,12,13]. 

Since the morphology of the scheelite crystals has been conserved, this replacement reaction 

occurred from the margin of the crystal to the center. The reaction preferentially started along 

crystallographic orientations of the former scheelite [2], resulting in the boxwork network inside the 

pseudomorphs. Given that the molar volume of ferberite (40.38 cm3/mol; [51]) is smaller than that of 

scheelite (47.05 cm3/mol; [51]), this replacement reaction resulted in the development of pores, 

enabling the continuation of the reaction. 

The primary ferberite is sometimes replaced by a second generation of skeletal and fibrous ferberite 

displaying abundant pores and cavities. The skeletal texture of this late ferberite may indicate rapid 

growth from supersaturated and undercooled hydrothermal fluids. This replacement of primary 

ferberite occurred after the pseudomorphism of scheelite, probably during the late sulfide stage. 

The primary ferberite crystals contain few pores, which only occasionally contain secondary 

tungsten minerals. On the contrary, the fibrous ferberite crystals are very porous, and these pores have 

in many cases been filled by secondary tungstates. The tungsten minerals, which are present inside the 

pores, are interpreted as alteration products [2,4,8,37]. Two models are suggested for the formation of 

these secondary tungstates. In a first model, the recrystallization reaction was incomplete, and as a 

result, some scheelite was preserved inside the boxwork texture of reinite. Later, scheelite in these 

pores was altered to secondary tungstates [1,2,8,37]. In a second model, the reaction was complete, 

resulting in empty pores inside the reinite. In this model, the porous character and the small crystal size 

of the fibrous ferberite may account for the strong alteration compared to massive ferberite. In both 

models, alteration may have been caused by hydrothermal [2] or supergene alteration processes [3,8,37]. 

Recent processes might have removed part of the alteration products, leaving some boxwork cavities in 

ferberite devoid of secondary tungstates. 

5.2. Mineral Chemistry 

Wolframite forms a solid solution series between the two endmembers ferberite (Fe2+WO4) and 

hübnerite (Mn2+WO4) by diadochous substitution of Fe and Mn on the A site. Relatively small cations 

with ionic radii of less than 0.9 Å (e.g., Mg2+, Sc3+, Zn2+, Co2+, Y3+, REE3+) are preferentially 

incorporated into the wolframite structure on the A site [52]. Divalent cations with suitable ionic radii, 

Mg2+ (0.72 Å), Zn2+ (0.74 Å), Co2+ (0.745 Å) and Cd2+ (0.95 Å), are readily substituted for Fe2+ (0.78 Å) 
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and Mn2+ (0.83 Å) into the wolframite lattice by simple substitution (all ionic radii in this paper are 

taken from Shannon [53]). Tungsten occurs in the hexavalent state (0.6 Å) and is octahedrally 

coordinated in wolframite; it is frequently substituted by high field strength elements, such as Mo, Nb, 

Ta, Sn and Ti. Especially Mo readily replaces tungsten by simple substitution, because both occur in 

the same valence state and exhibit nearly identical ionic radii (0.59 Å for Mo6+). Pentavalent cations, 

like Nb5+ and Ta5+ (0.64 Å), are commonly incorporated into the wolframite lattice, because 

wolframite and columbite-tantalite have similar crystal structures. Niobium and Ta are substituted for 

W into the wolframite lattice by coupled substitution of trivalent cations (e.g., M = Fe3+, Sc3+, In3+, 

Y3+, REE3+) on the A site (2) [40]: Fe,Mn +W ↔ M + Nb, Ta  (2)

Tetravalent cations with small ionic radii, like Ti4+ (0.605 Å) and Sn4+ (0.69 Å), are substituted for 

tungsten into the wolframite structure by coupled substitution with trivalent cations (3) [40]: 2 Fe,Mn +W ↔ 2M + Ti, Sn  (3)

Substitution is also dependent on the crystal structure. For example, tungstates with the general 

formula AWO4 (like wolframite and scheelite) crystallize in the scheelite structure (A[8]W[4]O4) if the 

radius of the cation on the A site is greater than 0.9 Å; whereas the wolframite structure (A[6]W[6]O4) is 

favored if the radius of the A2+ cation is less than 0.9 Å [54,55]. Generally, large cations, like Ca2+, 

Sr2+, Pb2+ and Ba2+, are incorporated in the scheelite-type structure, whereas small cations, such as 

Mg2+, Zn2+ and Ni2+, are preferentially found in the wolframite-type structure [48,52]. The analyses of 

type-1 ferberite show a trace element composition typical for primary wolframite with enrichments in 

Mg, Nb, Ti, Zn and Sc and elevated values for Ta, In, Sn and V. 

Consequently, incorporation of Ca2+ (1.0 Å), Eu2+ (1.17 Å), Sr2+ (1.18 Å) and Pb2+ (1.19 Å) into the 

wolframite structure seems unlikely, because of the large differences in ionic radius compared to Fe 

and Mn. For example, the substitution of Ca for Fe and Mn is also limited, because experiments show 

solid solution between wolframite and scheelite only occurs at temperatures above 600 °C [56]. 

Another limiting factor in the wolframite-scheelite solid solution series is the contrast in the two 

crystal structure types. When comparing the Ca concentrations from analyses on wolframite (covering 

the whole wolframite solid solution series between ferberite and hübnerite) from all over the  

world (unpublished data [46]), the Ca concentration is generally low (<100 ppm). The highest Ca 

concentrations (averages >200 ppm) are found in ferberite from the Rwandan reinite deposits. 

Ferberite (type-2) from these reinite deposits also shows high concentrations in Ga, As, Pb, Sr, Ba and 

LREE; especially Ca, Pb, Sr, Y, Ba and LREE are generally characterized by relatively large ionic 

radii. On the contrary, elements generally characterized by small ionic radii, like Zr, Hf, Nb, Ta, Sn, 

Ti, Sc and U, show extremely low concentrations. This unusual chemical composition for ferberite is 

probably inherited from the former scheelite and results from the replacement of scheelite by ferberite; 

Pb, Sr and LREE have large ionic radii (>0.9 Å) and are preferentially incorporated into the scheelite 

structure [48,52,54]. 

The type-3 ferberite formed from a solution, which was also enriched in elements typical for 

scheelite, like Ca, Sr and Ba; even in higher concentrations than reinite (type-2). It can be concluded 

that the fluid was generated after pseudomorphism of scheelite. Additionally, type-3 ferberite also 



Minerals 2013, 3 139 

 

 

shows high concentrations in Pb, Bi, As, Ga and Sb. The enrichment in these elements, especially in 

Pb and Bi, indicates that this late generation ferberite was probably formed during the sulfide stage 

contemporaneously with galena and Bi-minerals, like native bismuth and bismuthinite. 

As mentioned above, the REE (especially the HREE) readily substitute for Fe and Mn in wolframite 

and show steeply inclining chondrite-normalized patterns, with HREE predominating over LREE. This 

is well documented in the REE patterns of primary type-1 ferberite (Figure 9). Contrasting, type-2 

ferberite (reinite) displays rather flat REE patterns with just a slight increase towards the HREE; a 

weak positive Eu anomaly is present, and the Y anomaly is missing (Figure 9). The LREE (La, Ce, Pr, 

Nd and Eu) are significantly enriched in reinite compared to primary wolframite. The analyses on ore 

concentrates from the Nyakabingo and Gifurwe mines show a similar pattern to type-2 ferberite, and 

thus, the major ore mineral in these deposits is reinite (Figure 9). This distinctive pattern is the result of 

pseudomorphism of ferberite after scheelite, where ferberite partially retains the trace element 

characteristics of the former scheelite. 

The scheelite structure favors large cations with ionic radii greater than 0.9 Å [48,52,54], and the 

ionic radii of the REE become successively smaller with increasing atomic number, ranging from  

1.032 Å for La3+ to 0.861 Å for Lu3+. Europium is a redox-sensitive element, and therefore, Eu 

anomalies are caused by different oxidation states of the dissolved Eu (Eu2+ vs. Eu3+) in the 

hydrothermal fluids [57]. A positive Eu anomaly is related to preferential substitution of Eu2+ for Ca2+ 

in scheelite compared to Eu3+ and the other REE3+. The concentration of Eu2+ will vary independently 

from the REE3+, whereas Eu3+ will accompany similar changes in the REE3+ [48]. 

REE patterns of type-3 ferberite incline relatively steeply from the LREE towards the middle rare earth 

elements (MREE), including strong negative Eu anomalies and weak negative Y anomalies. This pattern is 

very similar to the REE pattern of primary hydrothermal scheelite, which shows bell-shaped REE patterns 

enriched in MREE with either positive or negative Eu anomalies and weak Y anomalies [48,49,57–59]. 

This supports the statement that the replacement of the primary ferberite (type-1) by type-3 ferberite 

occurred after pseudomorphism, and the elemental composition of the fluid was strongly influenced by 

the former scheelite. 

6. Conclusions 

Precipitation of tungsten was caused by the interaction of hydrothermal fluids with the carbonaceous 

shale [13]. The structural setting and the overlap in age between the G4-granites (986 ± 10 Ma; U-Pb 

SHRIMP age from zircon [16]) and the W-mineralized veins (984.6 ± 2.4 Ma; maximum Ar-Ar age 

from muscovite [5]) support a primary magmatic origin of the W-mineralizing fluids [5]. These 

hydrothermal fluids were trapped by the impermeable pelitic sedimentary rocks of the Shyorongi 

Formation [10], and the carbonaceous material served as a reactive horizon, causing mineralization in 

this zone by temperature decrease, addition of volatiles and increase in pH value [5]. Fluid inclusion 

studies show that tungsten precipitated from hydrothermal fluids composed of H2O, CO2, N2, CH4 and 

NaCl, with moderate salinities ranging from 0.6 to 13.8 wt % NaCl equivalent and temperature and 

pressure conditions at 500 to 300 °C and 2000 to 400 bars, respectively [5,10,13,25]. The composition 

of these fluids and stable isotope data indicate that the primary magmatic fluids were strongly modified 

by interaction with the metasedimentary host rock [5,10,13]. 
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Different stages have been observed during the evolution of the W-mineralized quartz veins. During 

the main vein stage, the bulk of the quartz veins were formed. Primary, hydrothermal scheelite and 

primary, massive ferberite formed somewhat later in the evolution of the quartz veins, sometimes in 

fractures that crosscut the quartz veins. 

Next, the primary scheelite crystals recrystallized and were replaced by fine-grained ferberite, 

forming so-called reinite from Fe-rich, weakly acidic fluid [2]. The iron for the pseudomorphism 

derived from the alteration of pyrite in the quartz veins and the surrounding host rocks [25]. The 

different generations of ferberite and the pseudomorphism of scheelite are also well documented in the 

trace element composition and in the rare earth element patterns of the ferberite minerals. Comparing 

the trace element data of reinite and ferberite, it is obvious that reinite inherited its uncommon trace 

element composition to some part from the former primary scheelite. 

Detailed investigation of two ore specimens from the Bugarama deposit shows that the tungsten 

mineralization consists of three generations of ferberite, whereas type-1 represents primary ferberite, 

and the other two types represent different varieties of secondary ferberite. The massive ferberite 

(type-1) formed contemporaneously with scheelite during the primary hydrothermal stage. This 

primary ferberite is characterized by high Mg, Zn, Sc, V, Nb, In and Sn concentrations and steeply 

inclining REE patterns. Typical reinite (type-2) is composed of fine-grained ferberite, which is 

replacing scheelite from a Fe-rich fluid in a successive stage. Reinite also shows enrichments in 

elements typical for scheelite (e.g., Ca, Sr, Ba, etc.) and flat REE patterns. It is also demonstrated that 

the ore concentrates from the Nyakabingo and Gifurwe deposits are mainly composed of reinite or 

type-2 ferberite. Type-3 probably represents secondary ferberite, which was altering and replacing the 

primary ferberite (type-1). The replacement is documented by inhomogeneous Mn distribution and 

schlieren-like replacement textures in type-3 ferberite, resulting from the infiltration of the Fe-rich, 

scheelite-replacing fluid. The type-3 ferberite formed from a solution, which was also enriched in 

elements typical for scheelite (e.g., Ca, Sr, Ba, etc.). Consequently, this solution was enriched in these 

elements after the replacement of scheelite, and these elements were incorporated in this newly 

formed, youngest generation of ferberite. This type-3 ferberite probably formed contemporaneously 

with the late sulfide stage, because this generation of ferberite is also unusually enriched in Bi, Pb, As 

and Sb. There is a distinct correlation in the occurrence of bismuth minerals and galena with the 

uncommon trace element composition in this kind of secondary ferberite. 

In a later stage, the ferberite pseudomorphs have been fractured and filled by an assemblage of quartz, 

muscovite and xenotime and by a sulfide stage, which is intergrown with quartz. The remaining 

scheelite crystals inside reinite together with some ferberite crystals were altered to secondary 

tungstates. Nevertheless, some primary scheelite is still present as small grains enclosed in quartz [2,3]. 

Iron-oxides, such as hematite and goethite, precipitated in fractures throughout the veins. As a result of 

the weathering processes, the secondary tungsten minerals have been leached away, leaving behind a 

porous boxwork texture. 
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