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Abstract. We consider the effect of perturbations of A on the solution to the following semi-linear parabolic
stochastic partial differential equation:{

dU (t) = AU (t) dt + F(t, U (t)) dt + G(t, U (t)) dWH (t), t > 0;
U (0) = x0.

(SDE)

Here, A is the generator of an analytic C0-semigroup on a UMD Banach space X, H is a Hilbert space, WH
is an H -cylindrical Brownian motion, G : [0, T ]× X → L(H, X A

θG
), and F : [0, T ]× X → X A

θF
for some

θG > − 1
2 , θF > − 3

2 + 1
τ , where τ ∈ [1, 2] denotes the type of the Banach space and X A

θF
denotes the

fractional domain space or extrapolation space corresponding to A. We assume F and G to satisfy certain
global Lipschitz and linear growth conditions.
Let A0 denote the perturbed operator and U0 the solution to (SDE) with A substituted by A0. We provide
estimates for ‖U − U0‖L p(Ω;C([0,T ];X)) in terms of Dδ(A, A0) := ‖R(λ : A) − R(λ : A0)‖L(X A

δ−1,X)
.

Here, δ ∈ [0, 1] is assumed to satisfy 0 ≤ δ < min{ 3
2 − 1

τ + θF , 1
2 − 1

p + θG }.
The work is inspired by the desire to prove convergence of space approximations of (SDE). In this article,
we prove convergence rates for the case that A is approximated by its Yosida approximation.

1. Introduction

In this article, we consider the effect of perturbations of A on the solution to the
following stochastic partial differential equation:{

dU (t) = AU (t) dt + F(t, U (t)) dt + G(t, U (t)) dWH (t), t > 0;
U (0) = x0.

(SDE)

Here, A is the generator of an analytic C0-semigroup S on a UMD Banach space
X, H is a Hilbert space, WH is an H -cylindrical Brownian motion, G : [0, T ]× X →
L(H, X A

θG
), and F : [0, T ] × X → X A

θF
for some θG > − 1

2 , θF > − 3
2 + 1

τ
, where

τ ∈ [1, 2] denotes the type of the Banach space and X A
θF

denotes the fractional domain

space D((−A)θF ). We assume F and G to satisfy certain global Lipschitz and linear
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growth conditions, see Sect. 4.1 below. The framework in which we consider (SDE) is
precisely the one for which existence and uniqueness of a solution have been proven
in the work of Van Neerven, Veraar and Weis [19].

An important example of stochastic partial differential equations that fit into the
framework described above are second-order parabolic partial differential equations
with multiplicative infinite dimensional noise—in particular, if there is only one spatial
dimension, one may consider space-time white noise. For details and more examples,
we refer to [19, Section 10].

The main motivation to study the effect of perturbations of A on solutions to equa-
tion (SDE) is the desire to prove convergence of certain numerical schemes for approx-
imations in the space dimension. In [4], we demonstrate how the perturbation result
proven in this article can be used to obtain pathwise convergence of certain Galer-
kin and finite element methods for (SDE) in the case that X is Hilbertian. Here, we
focus on the theoretical aspects and demonstrate how our perturbation result can be
used to prove convergence of the solution processes if A is replaced by its Yosida
approximation.

With applications to numerical approximations in mind, we assume the perturbed
equation to be set in a (possibly finite dimensional) closed subspace X0 of X . We
assume that there exists a bounded projection P0 : X → X0 such that P0(X) = X0.
Let iX0 be the canonical embedding of X0 in X , and let A0 be a generator of an analytic
C0-semigroup S0 on X0. In the setting of numerical approximations, A0 would be a
suitable restriction of A to the space X0.

The perturbed equation we consider is the following stochastic partial differential
equation: ⎧⎪⎪⎨

⎪⎪⎩
dU (0)(t) = A0U (0)(t) dt + P0 F(t, U (0)(t)) dt

+ P0G(t, U (0)(t)) dWH (t), t > 0;
U (0)(0) = P0x0.

(SDE0)

Our main result, Theorem 4.3 below, states the following: suppose for some δ ≥ 0
satisfying

δ < min{ 3
2 − 1

τ
+ θF , 1

2 + θG}

we have, for some λ0 with �e(λ0) sufficiently large, that

Dδ(A, A0) := ‖R(λ0 : A) − iX0 R(λ0 : A0)P0‖L(X A
δ−1,X) < ∞. (1)

Then, provided x0 ∈ L p(Ω;F0; X A
δ ) for p ∈ (2,∞) such that 1

p ≤ 1
2 + θG − δ,

there exists a solution to (SDE0) in L p(Ω; C([0, T ]; X0)), and moreover, there exists
a constant C > 0 such that

‖U − iX0U (0)‖L p(Ω;C([0,T ];X)) ≤ C Dδ(A, A0)(1 + ‖x0‖L p(Ω;X A
δ )).
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As a corollary of Theorem 4.3, we obtain an estimate in the Hölder norm provided
we compensate for the initial values (see Corollary 4.6). In short, there exists a constant
C > 0 such that

‖U − Sx0 − iX0(U
(0) − S0 P0 y0)‖L p(Ω;Cλ([0,T ];X))

≤ C‖x0 − y0‖L p(Ω,X) + Dδ(A, A0)(1 + ‖x0‖L p(Ω;X A
δ )),

where 0 ≤ λ < min{ 3
2 − 1

τ
− (δ − θF )+, 1

2 − 1
p − (δ − θG)+}; x+ := max{x, 0} for

x ∈ R.
Our results imply that if (An)n∈N is a family of generators of analytic C0-semi-

groups such that the resolvent of An converges in L(X A
δ−1, X) to the resolvent of

A for some δ ∈ [0, 1] (and (An)n∈N is uniformly analytic), then the corresponding
solution processes Un converge to the actual solution U in L p(Ω; C([0, T ]; X)), and
the convergence rate is given by Dδ(A, An).

In particular, we apply Theorem 4.3 to the Yosida approximation of A which is
given by An = n AR(n : A). In this case, it is necessary to assume that θF and θG are
nonnegative. Let U (n) denote the solution to (SDE) where A is substituted by An . By
applying Theorem 4.3, we obtain that for η > 0 and p ∈ (2,∞) such that

η < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG}

we have assuming x0 ∈ L p(Ω,F0; X A
η ) (see also Theorem 5.1) that there exists a

constant C > 0 such that

‖U − U (n)‖L p(Ω;C([0,T ];X)) ≤ Cn− min{η,1}(1 + ‖x0‖L p(Ω;X A
η )).

To the best of our knowledge, our perturbation results are not yet available even for
SDEs in a Hilbert space (i.e., the setting considered in the monograph of Da Prato
and Zabczyk [7]). We chose to consider the slightly more complicated UMD space
setting because of recent work providing examples of SPDEs for which the UMD
space setting seems most suitable, see e.g., aforementioned [19], and the work of
Schnaubelt and Veraar [23].

However, it was proven by Kunze and Van Neerven in [14] that if (An)n∈N is a
family of generators of analytic C0-semigroups such that the resolvent of An converges
to the resolvent of A in the strong operator topology, then the corresponding solution
processes Un converge to the actual solution in L p(Ω; C([0, T ]; X)). The approach
taken in that article does not provide convergence rates and requires θF , θG ≥ 0.

Another article in which approximations of solutions to (SDE) are considered in
the context of perturbations on A is the work of Brzezniak [1]. In that article, it is
assumed that X is a UMD space with martingale type 2. In Sect. 5 of that article, the
author considers approximations of A, F, G, and of the noise. Translated to our setting,
the author assumes the perturbed operator A0 to satisfy X A0

θF
= X A

θF
and X A0

θG
= X A

θG

(in particular, X0 and X must be of the same dimension and if A0 is bounded, then A
must also be bounded).



798 S. G. Cox and E. Hausenblas J. Evol. Equ.

A natural question to ask is how the type of perturbation studied here relates to the
perturbations known in the literature. In [8,11], and [22] (see also the monograph by
Engel and Nagel [9, Chapter III.3]), conditions are derived for perturbations of A
that lead to an estimate of the type ‖S(t) − S0(t)‖L(X) = O(t) as t ↓ 0. These results
are comparable to the results we obtain in that Proposition 4.4 below. In particular, [9,
Theorem III.3.9] gives precisely the same results as Proposition 4.4, but then for the
case that, in the setting of Proposition 4.4, we have δ = −1 and θ = 0.

The proof of our perturbation result (Theorem 4.3) requires regularity results for sto-
chastic convolutions. As the convolution under consideration concerns the difference
between two semigroups instead of a single semigroup, the celebrated factorization
method of Da Prato, Kwapień and Zabczyk [6] cannot be applied. Therefore,
we prove a new result on the regularity of stochastic convolutions, see Lemma 3.2
below. This lemma in combination with some randomized boundedness results on
S − S0 P0 forms the key ingredient of the proof Theorem 4.3.

The setup of this article is as follows: Sect. 2 contains the preliminaries; that is, the
relevant results on analytic C0-semigroups, vector-valued stochastic integration the-
ory, and γ -boundedness. In Sect. 3, we present the novel regularity result for stochastic
convolutions. We begin Sect. 4 by providing the setting in which our perturbation result
is proven, including the precise assumptions on the coefficients in the SDE. We then
continue to state and prove our main result, Theorem 4.3. Finally, in Sect. 5, we dem-
onstrate how our main result can be applied by proving convergence for the Yosida
approximations.

Notation

Throughout this article N := {1, 2, . . .}. We write A � B to express that there exists
a constant C > 0 such that A ≤ C B, and we write A � B if A � B and B � A.
For X and Y Banach spaces, we write X 
 Y if X and Y are isomorphic as Banach
spaces.

For x, y ∈ R, we set x ∨ y := max{x, y}, x ∧ y := min{x, y}, x+ := x ∨ 0, and,
for x ≥ 0, x� := inf{n ∈ N ∪ {0} : n ≥ x}.

Let Y be a Banach space. For T > 0 and β ∈ (0, 1), we take the following definition
for the Hölder norm of Y -valued functions:

‖ f ‖Cβ([0,T ];Y ) := ‖ f (0)‖Y + sup0≤s<t≤T
‖ f (t)− f (s)‖Y

(t−s)β
.

For the definition of the space V α,p
c ([a, b] × Ω; Y ), we refer to Definition 2.6.

For X, Y Banach spaces, we let L(X, Y ) be the Banach space of all bounded linear
operators from X to Y endowed with the operator norm. For brevity, we set L(X) :=
L(X, X). For A : D(A) ⊂ X → X a linear operator on X , we denote the resolvent
set of A by �(A), i.e., �(A) ⊂ C is the set of all the complex numbers λ ∈ C for
which λI − A is boundedly invertible on (the complexification of) X . For λ ∈ �(A),
we denote the resolvent of A in λ by R(λ : A), i.e., R(λ : A) = (λI − A)−1. The
spectrum of A, i.e., the complement of �(A) in C, is denoted by σ(A). Finally, X A

θ
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denotes the fractional domain space of the operator A for θ > 0, and the fractional
extrapolation space for θ < 0. See also Sect. 2.1.

2. Preliminaries

Throughout this section, X denotes a Banach spaces and H denotes a Hilbert space.

2.1. Analytic semigroups

For δ ∈ [0, π ], we define

�δ := {z ∈ C \ {0} : | arg(z)| < δ}.

DEFINITION 2.1. Let X be a Banach space, let δ ∈ (0, π ], and let (S(t))t∈[0,∞) ⊂
L(X) be a C0-semigroup on X . We say that S is analytic on �δ if t �→ S(t) extends
to �δ analytically and for all x ∈ X one has

lim
z∈�δ,z→0

S(z)x = x .

We say that S is an analytic C0-semigroup if there exists a δ ∈ (0, π ] such that S is
analytic on �δ .

It is not difficult to check that if the C0-semigroup S is analytic on a sector �δ , then
it satisfies the semigroup property on that sector. The theorem below is obtained from
[20, Theorem 2.5.2] by straightforward adaptations and gives some characterizations
of analytic C0-semigroups that we need.

THEOREM 2.2. Let A be the generator of a C0-semigroup (S(t))t≥0 on X. Let
ω ∈ R be such that (e−ωt S(t))t≥0 is bounded. The following statements are equivalent:

(i) S is an analytic C0-semigroup on �δ for some δ ∈ (0, π
2 ].

(ii) There exists a θ ∈ (0, π
2 ] such that ω + �π

2 +θ ⊂ �(A), and there exists a
constant Kθ > 0 such that

|λ − ω|‖R(λ : A)‖L(X) ≤ Kθ , for all λ ∈ ω + �π
2 +θ .

(iii) S is differentiable for t > 0 (in the uniform operator topology), S′ = AS, and
there exists a constant C such that

t‖AS(t)‖L(X) ≤ Ceωt , for all t > 0.

Moreover, we have δsup = θsup, where δsup is the supremum over all δ such that (i)
holds and θsup the supremum over all θ such that (ii) holds.

The theorem above justifies the following definition:
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DEFINITION 2.3. Let A be the generator of an analytic C0-semigroup on X . We
say that A is of type (ω, θ, K ), where ω ∈ R, θ ∈ (0, π

2 ] and K > 0, if ω + �π
2 +θ ⊆

�(A), (eωt S(t))t≥0 is bounded, and

|λ − ω|‖R(λ : A)‖L(X) ≤ K for all λ ∈ ω + �π
2 +θ .

REMARK 2.4. Let A be of type (ω, θ, K ) for some ω ∈ R, θ ∈ (0, π
2 ] and K > 0.

It follows from the aforementioned proof in [20] that one may take C = K
π cos θ

in
part (iii) of Theorem 2.2, and that for every θ ′ ∈ [0, θ), there exists a constant Cθ ′
depending only on θ and K such that

‖e−ωz S(z)‖L(X) ≤ Cθ ′ , for all z ∈ �θ ′ .

If A is the generator of an analytic C0-semigroup of type (ω, θ, K ) and

λ ∈ 2|ω|(cos θ)−1 + �π
2 +θ ,

then |λ| > 2|ω| and hence, |λ − ω| > ||λ| − |ω|| ≥ 1
2 |λ|, whence

‖AR(λ : A)‖L(X) = ‖λR(λ : A) − I‖L(X) ≤ 1 + 2K . (2)

Let A be a generator of an analytic C0-semigroup of type (ω, θ, K ) on X . We define
the extrapolation spaces of A as in [20, Section 2.6]; that is, for δ > 0 and λ ∈ C such
that �e(λ) > ω we define X A−δ to be the completion of X under the norm

‖x‖X A−δ
:= ‖(λI − A)−δx‖X .

We also define the fractional domain spaces of A, i.e., for δ > 0 we define X A
δ =

D((λI − A)δ) and

‖x‖X A
δ

:= ‖(λI − A)δx‖X .

One may check that regardless of the choice of λ the extrapolation spaces and the
fractional domain spaces are uniquely determined up to isomorphisms: for δ > 0 and
λ,μ ∈ C such that �e(λ),�e(μ) > ω one has (λI − A)δ(μI − A)−δ ∈ L(X) and

‖(λI − A)δ(μI − A)−δ‖L(X) ≤ C(ω, θ, K , λ, μ),

where C(ω, θ, K , λ, μ) denotes a constant depending only on ω, θ, K , λ, and μ.
Moreover, for δ, β ∈ R one has (λI − A)δ(λI − A)β = (λI − A)δ+β on X A

γ , where
γ = max{β, δ + β} (see [20, Theorem 2.6.8]).

Statement (iii) in Theorem 2.2 can be extended; from the proof of [20, Theorem
2.6.13], we obtain that for an analytic C0-semigroup S of type (ω, θ, K ) generated by
A one has, for δ > 0 and ω′ > ω, that

‖(ω′ I − A)δ S(t)‖L(X,X A
δ ) ≤ 2

( K
π cos θ

)δ�
t−δeωt (3)

for all t > 0. Finally, [20, Theorem 2.6.10] states the following interpolation result
for x ∈ D(A) and δ ∈ (0, 1):

‖(λI − A)δx‖L(X) ≤ 2(1 + K )‖x‖1−δ
X ‖(λI − A)x‖δ

X . (4)
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2.2. Stochastic integration in Banach spaces

Let (Ω, (Ft )t≥0, P) denote a probability space endowed with a filtration (Ft )t≥0.
We recall the basics concerning stochastic integration in UMD Banach spaces as pre-
sented in the work of Van Neerven, Veraar and Weis [18].

Recall that the UMD property is a geometric Banach space property that is sat-
isfied by all Hilbert spaces and by the ‘classical’ reflexive function spaces, e.g., the
L p-spaces and Sobolev spaces W k,p for k ∈ N and p ∈ (1,∞). For the precise def-
inition of the UMD property and for a more elaborate treatment of spaces satisfying
this property, we refer to [2]. For this article, it is relevant that the UMD property is
maintained under Banach space isomorphisms.

Fix T > 0. An H-cylindrical Brownian motion over (Ω, (Ft )t≥0, P) is a linear
mapping WH : L2(0, T ; H) → L2(Ω) with the following properties:

(i) for all h ∈ L2(0, T ; H) the random variable WH (h) is Gaussian;
(ii) for all h1, h2 ∈ L2(0, T ; H) we have EWH (h1)WH (h2) = 〈h1, h2〉;

(iii) for all h ∈ H and all t ∈ [0, T ] we have that WH (1[0,t] ⊗ h) is Ft -measurable;
(iv) for all h ∈ H and all s, t ∈ [0, T ], s ≤ t we have that WH (1[s,t] ⊗ h) is

independent of Fs .

Formally, an H -cylindrical Brownian motion can be thought of as a standard Brownian
motion in the Hilbert space H .

Let 0 ≤ t1 ≤ t2 ≤ T, B ∈ Ft1 , x ∈ X , and h ∈ H . By x ⊗ h, we denote
the element of L(H, X) defined by (x ⊗ h)g = 〈h, g〉 x, g ∈ H . For a process
Φ : [0, T ] × Ω → L(H, X) of the form

Φ(t, ω) := 1B(ω)1[t1,t2)(t)(x ⊗ h) (5)

we define the stochastic integral of Φ against WH by

∫ T

0
ΦdWH := 1B WH (1[t1,t2) ⊗ h)x .

By linearity, we can extend the definition of a stochastic integral to any process con-
structed by a finite sum of elements of the type (5). We refer to such a process as an
adapted elementary process.

Let H be a Hilbert space (we take H = L2(0, T ; H) below). The Banach space
γ (H, X) is defined as the completion of H ⊗ X with respect to the norm

∥∥∥ N∑
n=1

hn ⊗ xn

∥∥∥2

γ (H,X)
:= E

∥∥∥ N∑
n=1

γn xn

∥∥∥2

X
.

Here, we assume that (hn)
N
n=1 is an orthonormal sequence in H, (xn)N

n=1 is a sequence
in X , and (γn)N

n=1 is a standard Gaussian sequence on some probability space. The
space γ (H, X) embeds continuously into L(H, X), and its elements are referred to
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as the γ -radonifying operators from H to X . For properties of this norm and further
details, we refer to the survey paper by Van Neerven [16].

Let −∞ < a < b < ∞, then γ (a, b; H, X) and γ (a, b; X) are used as short-hand
notation for γ (L2(a, b; H), X) and γ (L2(a, b), X), respectively. More generally, for
(R,R, μ) a σ -finite measure space the notation γ (R; H, X) and γ (R; X) is used for
γ (L2(R; H), X) and γ (L2(R), X). If X is a Hilbert space, and (R,R, μ) is a σ -finite
measure space, then γ (R; H, X) 
 L2(R;L2(H, X)) where L2(H, X) denotes the
space of Hilbert–Schmidt operators from H to X .

A process Φ : [0,∞) × Ω → L(H, X) is called H -strongly measurable if for
every h ∈ H the process Φh is strongly measurable. The process is called adapted if
Φh is adapted for each h ∈ H . Concerning stochastic integrability of such processes,
we cite [18, Theorem 3.6]:

THEOREM 2.5. (L p-stochastic integrability) Let p ∈ (1,∞) and T > 0 be fixed.
For an H-strongly measurable adapted process Φ : (0, T ) × Ω → L(H, X) such
that Φ∗x∗ ∈ L p(Ω; L2(0, T ; H)) for all x∗ ∈ X∗ the following are equivalent:

(i) There exists a sequence of elementary adapted processes (Φn)n∈N such that
x∗(Φnh) → x∗(Φh) in measure on (0, T ) × Ω as n → ∞, and there exists a
random variable η ∈ L p(Ω, X) such that

η = lim
n→∞

∫ T

0
ΦndWH in L p(Ω, X);

(ii) there exists a (necessarily unique) RΦ ∈ L p(Ω; γ (0, T ; H, X)) such that for
all x∗ ∈ X∗ we have R∗

Φ x∗ = Φ∗x∗ in L p(�; L2(0, T ; H)).

In the situation that the equivalent statements above hold we say that Φ is L p-sto-
chastically integrable and we set

∫ T
0 ΦdWH (t) := η.

If Φ : (0, T ) × Ω → L(H, X) is L p-stochastically integrable then the following
estimate holds:

E sup
0≤t≤T

∥∥∥ ∫ t

0
Φ dWH

∥∥∥p

X
�p,X E ‖RΦ‖p

γ (0,T ;H,X)
, (6)

the implied constants depending only on the Banach space X and on p.

From now on, if Φ is L p-stochastically integrable for some p ∈ (1,∞), we simply
use Φ to denote both a process and the (unique) RΦ ∈ L p(Ω; γ (0, T ; H, X)) that
satisfies R∗

Φ x∗ = Φ∗x∗ in L p(�; L2(0, T ; H)) for all x∗ ∈ X∗.

In [19], existence and uniqueness of a solution to a semi-linear stochastic partial
differential equation are given in a space of continuous, ‘weighted’ L p-stochastically
integrable processes. The precise definition of this space, which is also used in this
article, is provided below.
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DEFINITION 2.6. Forα ∈ [0, 1
2 ), 1 ≤ p < ∞ and 0 ≤ a ≤ b < ∞, we denote by

V α,p
c ([a, b]×Ω; X) the space of adapted, continuous processes Φ : [a, b]×Ω → X

for which the following norm is finite:

‖Φ‖V α,p
c ([a,b]×Ω;X) =‖Φ‖L p(Ω;C([a,b];X))+ sup

a≤t≤b
‖s �→(t − s)−αΦ(s)‖L p(Ω;γ (a,t;X)).

One easily checks that for 0 ≤ β ≤ α < 1
2 and Φ ∈ V α,p

c ([a, b] × Ω; X) one has

‖Φ‖
V β,p

c ([a,b]×Ω;X)
≤ (b − a)α−β‖Φ‖V α,p

c ([a,b]×Ω;X). (7)

Note also that we have V α,p
c ([0, T ] × Ω; X) ⊂ L p(Ω; C([0, T ]; X)). On the other

hand, the lemma below provides an embedding in the opposite direction. This embed-
ding depends on the type τ ∈ [1, 2] of the Banach space X . We refer to [15] for
a precise definition of type (and co-type) and further details. In what follows, it is
relevant that every Banach space has type τ for some τ ∈ [1, 2], and that if a Banach
space has type τ0 ∈ [1, 2], then it has type τ for all τ ∈ [0, τ0]. Moreover, we use that
the type of a Banach space is preserved under Banach space isomorphisms.

For a proof of the following lemma, see [19, Lemma 3.3].

LEMMA 2.7. Let X be a Banach space with type τ . Then for all T > 0, ε > 0
and α ∈ [0, 1

2 ) one has

L p(�; C
1
τ
− 1

2 +ε([0, T ]; X)) ↪→ V α,p
c ([0, T ] × �; X). (8)

2.3. γ -Boundedness

For vector-valued stochastic integrals, the concept of γ -boundedness plays the role
that uniform boundedness does for ordinary integrals: the Kalton–Weis multiplier the-
orem (Proposition 2.10 below) allows one to estimate terms out of a stochastic integral,
provided they are γ -bounded.

Throughout this section, let X and Y denote Banach spaces. A family B ⊂ L(X, Y )

is called γ -bounded if there exists a constant C such that for all N ≥ 1, all x1, . . . , xN ∈
X , and all B1, . . . , BN ∈ B we have

E

∥∥∥ N∑
n=1

γn Bn xn

∥∥∥2

Y
≤ C2

E

∥∥∥ N∑
n=1

γn xn

∥∥∥2

X
.

The least admissible constant C is called the γ -bound of B, notation: γ[X,Y ](B).
Note that any γ -bounded set of operators is automatically uniformly bounded, and the
reverse holds if X is a Hilbert space.

The following lemma is a direct consequence of the Kahane contraction principle:

LEMMA 2.8. If B ⊂ L(X, Y ) is γ -bounded and M > 0 then MB := {aB : a ∈
[−M, M], B ∈ B} is γ -bounded with γ[X,Y ](MB) ≤ Mγ[X,Y ](B).
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The following proposition, which is a variation of a result of Weis [24, Proposition
2.5], gives a sufficient condition for γ -boundedness.

PROPOSITION 2.9. Let f : [0, T ] → L(X, Y ) be a function such that for all
x ∈ X the function t �→ f (t)x is continuously differentiable on (0, T ). Suppose
g ∈ L1(0, T ) is such that for all t ∈ (0, T )

‖ f ′(t)x‖Y ≤ g(t)‖x‖X , for all x ∈ X.

Then the set R := { f (t) : t ∈ (0, T )} is γ -bounded in L (X, Y ) and

γ[X,Y ](R) ≤ ‖ f (0)‖L(X,Y ) + ‖g‖L1(0,T ).

The following γ -multiplier result, due to Kalton and Weis [12] (see also [16]),
establishes a relation between stochastic integrability and γ -boundedness.

PROPOSITION 2.10. (γ -Multiplier theorem) Suppose X does not contain a
closed subspace isomorphic to c0. Suppose M : (0, T ) → L(X, Y ) is an X-
strongly measurable function with γ -bounded range M = {M(t) : t ∈ (0, T )}.
If Φ ∈ γ (0, T ; H, X) then MΦ ∈ γ (0, T ; H, Y ) and

‖MΦ‖γ (0,T ;H,Y ) ≤ γ[X,Y ](M) ‖Φ‖γ (0,T ;H,X).

In all applications in this paper, X is a UMD space and therefore does not contain
a copy of c0. We refer to [16] for details.

Finally, we recall the following γ -boundedness estimate for analytic C0-semigroups
(see e.g., [19, Lemma 4.1]).

LEMMA 2.11. Let X be a Banach space and let A be the generator of an analytic
C0-semigroup S of type (ω, θ, K ) on X. Then for all 0 ≤ β < α and T > 0 there
exists a constant C depending on S only in terms of ω, θ , and K , such that for all
t ∈ (0, T ] the set Sα,t = {sα S(s) : s ∈ [0, t]} is γ -bounded in L(X, X A

β ) and we
have

γ[X,X A
β ](Sα,t ) ≤ Ctα−β, t ∈ (0, T ].

Note that the constant C in the lemma above may depend on T .

3. Estimates for (stochastic) convolutions

In this section, we provide the estimates for (stochastic) convolutions needed to
derive the perturbation result given in Theorem 4.3. In order to avoid confusion fur-
ther on, we use Y1 and Y2 to denote UMD Banach spaces in this section. Moreover, we
adopt the notation introduced in Sect. 2.2; that is, H denotes a Hilbert space, and WH

denotes a H -cylindrical Brownian motion over a probability space (Ω, (Ft )t≥0, P).
The following lemma is proven in [5]. It is an adaptation of [19, Proposition 4.5].
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LEMMA 3.1. Let (R,R, μ) be a finite measure space and (S,S, ν) a σ -finite
measure space. Let Φ1 : [0, T ] × Ω → L(H, Y1), let Φ2 ∈ L1(R;L(Y1, Y2)),
and let f ∈ L∞(R × [0, T ]; L2(S)). If Φ1 is L p-stochastically integrable for some
p ∈ (1,∞), then∥∥∥s �→

∫ T

0

∫
R

f (r, u)(s)Φ2(r)Φ1(u) dμ(r) dWH (u)

∥∥∥
L p(Ω;γ (S;Y2))

� ess sup
(r,u)∈R×[0,T ]

‖ f (r, u)‖L2(S)‖Φ2‖L1(R,L(Y1,Y2))
‖Φ1‖L p(Ω;γ (0,T ;H,Y1)),

with implied constant depending only on p, Y1, and Y2, provided the right-hand side
is finite.

To our knowledge, most regularity results for stochastic convolutions are based on
the factorization method introduced in [6]. The result below is based on the regularity
of the convolving functions.

LEMMA 3.2. Let T > 0, p ∈ (1,∞) and η ∈ (0, 1). Suppose the process Φ ∈
L p(Ω; γ (0, T ; H, Y1)) is adapted to (Ft )t≥0 and satisfies

sup
0≤t≤T

‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)) < ∞. (9)

Let Ψ : [0, T ] → L(Y1, Y2) be such that Ψ x is continuously differentiable on
(0, T ) for all x ∈ Y1. Suppose moreover that there exists a function g ∈ L1(0, T ) and
a constant 0 < θ < η such that for all v ∈ (0, T ) we have

vθ‖Ψ ′(v)x‖Y2 + θvθ−1‖Ψ (v)x‖Y2 ≤ g(v)‖x‖Y1 , for all x ∈ Y1. (10)

Then the stochastic convolution process t �→ ∫ t
0 Ψ (t −s)Φ(s) dWH (s) is well-defined

and ∥∥∥t �→
∫ t

0
Ψ (t − s)Φ(s) dWH (s)

∥∥∥
Cη−θ ([0,T ];L p(Ω;Y2))

≤ 2C̄ p‖g‖L1(0,T ) sup
0≤t≤T

‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)),

where C̄ p is the constant in the upper estimate of equation (6) for the pth moment, for
the space Y1.

REMARK 3.3. By a straightforward adaptation of the proof of Lemma 3.2 provided
below, one may check that if one takes θ = 0 in the setting of Lemma 3.2, it holds that∥∥∥t �→

∫ t

0
Ψ (t − s)Φ(s) dWH (s)

∥∥∥
Cη([0,T ];L p(Ω;Y2))

≤ (2C̄ p‖g‖L1(0,T )+‖Ψ (0)‖L(Y1,Y2))) sup
0≤t≤T

‖s �→(t−s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)).

Moreover, in the setting of Lemma 3.2, one may also take g ∈ Lq ′
(0, T ) and Φ

such that
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∫ T

0

∥∥s �→ (t − s)−ηΦ(s)
∥∥q

L p(Ω;γ (0,t;H,Y1))
dt < ∞,

where q ∈ [1,∞]; 1
q + 1

q ′ = 1. In that case, one obtains an estimate with respect to
these norms. For details, see [3, Lemma A.9].

Before proving the Lemma 3.2, we note that the corollary below follows directly
from Kolmogorov’s continuity criterion (see e.g., [21, Theorem I.2.1]).

COROLLARY 3.4. Let the setting be as in Lemma 3.2 and assume in addition
that there exists a β > 0 such that β < η − θ − 1

p . Then there exists a modification of

the stochastic convolution process t �→ ∫ t
0 Ψ (t − s)Φ(s) dWH (s), which we denote

by Ψ � Φ, and a constant C̃ depending only on η, β and p and C̄ p, such that

‖Ψ � Φ‖L p(Ω;Cβ([0,T ];Y2))

≤ C̃‖g‖L1(0,T ) sup
0≤t≤T

‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)).

Proof of Lemma 3.2. By Proposition 2.9 and assumption (10), it follows that

{sθΨ (s) : s ∈ [0, T ]}
is γ -bounded. Thus, by the Kalton–Weis multiplier Theorem (see Proposition 2.10)
and the fact that

sup
0≤t≤T

‖s �→ (t − s)−θΦ(s)‖L p(Ω;γ (0,t;H,Y1))

≤ T η−θ sup
0≤t≤T

‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)) < ∞,

it follows that s �→ Ψ (t − s)Φ(s)1[0,t](s) ∈ L p(Ω; γ (0, t; H, Y2)) for all t ∈ [0, T ].
By Theorem 2.5, this process is L p-stochastically integrable on (0, t).

Fix s, t ∈ [0, T ]. By the triangle inequality, we have

∥∥∥ ∫ t

0
Ψ (t − u)Φ(u) dWH (u) −

∫ s

0
Ψ (s − u)Φ(u) dWH (u)

∥∥∥
L p(Ω;Y2)

≤
∥∥∥ ∫ s

0
[Ψ (t − u) − Ψ (s − u)]Φ(u) dWH (u)

∥∥∥
L p(Ω;Y2)

+
∥∥∥ ∫ t

s
Ψ (t − u)Φ(u) dWH (u)

∥∥∥
L p(Ω;Y2)

=
∥∥∥ ∫ s

0

∫ t−u

s−u
Ψ ′(v)Φ(u) dv dWH (u)

∥∥∥
L p(Ω;Y2)

+
∥∥∥ ∫ t

s
(t − u)−θ

∫ t−u

0
[vθΨ (v)]′Φ(u) dv dWH (u)

∥∥∥
L p(Ω;Y2)

. (11)

We now wish to apply the stochastic Fubini theorem (see [3, Lemma 2.9], [17]). Define
ϒ : [0, s] × [0, t] × Ω → L(H, Y ) by ϒ(u, v, ω) = 1[s−u,t−u](v)Ψ ′(v)Φ(u, ω).
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As Ψ ′ is strongly continuous and Φ is H -strongly measurable, we have that ϒ is
H -strongly measurable. Moreover, as Φ is adapted, it follows that ϒv := ϒ(·, v) is
adapted for almost all v ∈ [0, t]. Finally, by assumptions (9) and (10) we have, for all
v ∈ [0, t] almost surely:

‖ϒ(·, v)‖γ (0,s;H,Y2) ≤ vη−θ g(v)‖u �→ (s − u)−ηΦ(u)‖γ (0,s;H,Y1),

where we use that v ≥ s −u on supp(ϒ). It follows that ϒ ∈ L1(0, t; γ (0, s; H, Y2)).
The stochastic Fubini theorem in combination with estimate (10) now gives the

following:∥∥∥ ∫ s

0

∫ t−u

s−u
Ψ ′(v)Φ(u) dv dWH (u)

∥∥∥
L p(Ω;Y2)

=
∥∥∥ ∫ t

0

∫ (t−v)∧s

(s−v)+
Ψ ′(v)Φ(u) dWH (u) dv

∥∥∥
L p(Ω;Y2)

≤
∫ t

0
v−θ g(v)

∥∥∥ ∫ (t−v)∧s

(s−v)+
Φ(u) dWH (u)

∥∥∥
L p(Ω;Y1)

dv

≤ C̄ p

∫ t

0
v−θ g(v)

∥∥u �→ 1[(s−v)+,(t−v)∧s](u)Φ(u)
∥∥

L p(Ω;γ (0,t;H,Y1))
dv

≤ C̄ p

∫ t

0
v−θ g(v)[(t − s) ∧ v]η

×∥∥u �→ [((t − v) ∧ s) − u]−ηΦ(u)
∥∥

L p(Ω;γ (0,((t−v)∧s);H,Y1))
dv

≤ C̄ p(t − s)η−θ

∫ t

0
g(v) dv sup

t∈[0,T ]
∥∥u �→ (t − u)−ηΦ(u)

∥∥
L p(Ω;γ (0,t,H ;Y1))

.

(12)

In the penultimate estimate above, we use that for all u ∈ [(s − v)+, ((t − v) ∧ s) one
has ((t − v) ∧ s) − u ≤ ((t − s) ∧ v). In the final estimate, we use that

sup
s∈[0,T ]

sup
v∈[0,t]

∥∥u → [((t − v) ∧ s) − u]−ηΦ(u)
∥∥

L p(Ω;γ (0,((t−v)∧s);H,Y1))

≤ sup
t∈[0,T ]

∥∥u → (t − u)−ηΦ(u)
∥∥

L p(Ω;γ (0,t);H,Y1))
.

For the final term in (11), one may also check that the conditions of the stochastic
Fubini hold and thus∥∥∥ ∫ t

s
(t − u)−θ

∫ t−u

0
[vθΨ (v)]′Φ(u) dv dWH (u)

∥∥∥
L p(Ω;Y2)

≤
∫ t−s

0
g(v)

∥∥∥ ∫ t−v

s
(t − u)−θΦ(u) dWH (u)

∥∥∥
L p(Ω;Y1)

dv

≤ C̄ p

∫ t−s

0
g(v)

∥∥u �→ 1[s,t−v](u)(t − u)−θΦ(u)
∥∥

L p(Ω;γ (0,t;H,Y1))
dv

≤ C̄ p(t − s)η−θ‖g‖L1(0,T ) sup
t∈[0,T ]

∥∥u �→ (t − u)−ηΦ(u)
∥∥

L p(Ω;γ (0,t;H,Y1))
.



808 S. G. Cox and E. Hausenblas J. Evol. Equ.

By inserting the two estimates above in equation (11), we obtain that∥∥∥ ∫ t

0
Ψ (t − u)Φ(u) dWH (u) −

∫ s

0
Ψ (s − u)Φ(u) dWH (u)

∥∥∥
L p(Ω;Y2)

≤ 2C̄ p(t − s)η−θ‖g‖L1(0,T ) sup
t∈[0,T ]

∥∥u �→ (t − u)−ηΦ(u)
∥∥

L p(Ω;γ (0,t;H,Y1))
,

which completes the proof as 0 ≤ s < t ≤ T where chosen arbitrarily. �

Based on the lemma and the corollary above, we obtain the following result for
stochastic convolutions in the V α,p

c -norm:

PROPOSITION 3.5. Let the setting be as in Lemma 3.2 and assume in addition
that 1

p < η− θ . Let α ∈ [0, 1
2 ). Then Ψ �Φ ∈ V α,p

c ([0, T ]×Ω; Y2). Moreover, there
exists a constant C such that for all T0 ∈ [0, T ] we have

‖Ψ � Φ‖V α,p
c ([0,T0]×Ω;Y2)

≤ C‖g‖L1(0,T ) sup
0≤t≤T0

‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)).

Proof. For the norm estimate in L p(Ω; C([0, T0]; Y2)), we apply Corollary 3.4 with
β > 0 such that β+θ < η− 1

p . For the estimate in the weighted γ -norm fix t ∈ [0, T0].
We apply Lemma 3.1 with Φ1(u) = (t −u)−ηΦ(u)1[0,t)(u),Φ2(r) = [r θΨ (r)]′, R =
[0, t] and

f (r, u)(s) = (t − s)−α(s − u)−θ (t − u)η1[0,s−u)(r)1[0,s)(u)1[0,t)(s).

From Lemma 3.1, it follows that∥∥∥s �→ (t − s)−α

∫ s

0
Ψ (s − u)Φ(u) dWH (u)

∥∥∥
L p(Ω;γ (0,t;Y2))

� t
1
2 +η−α−θ‖g‖L1(0,T )‖s �→ (t − s)−ηΦ(s)‖L p(Ω;γ (0,t;H,Y1)).

Taking the supremum over t ∈ [0, T0] and using that η−θ > 0 (whence T
1
2 +η−α−θ

0 ≤
T

1
2 +η−α−θ ), we arrive at the desired result. �

Let us denote the deterministic convolution of two mappings Ψ and Φ by Ψ ∗ Φ.
Then, we have the following:

PROPOSITION 3.6. Suppose Φ ∈ L p(Ω; L∞(0, T ; Y1)) for some p ∈ [1,∞).
Let Ψ : [0, T ] → L(Y1, Y2) be such that Ψ x is continuously differentiable on (0, T )

for all x ∈ Y1. Suppose moreover there exists a function g ∈ L1(0, T ) and a constant
θ ∈ (0, 1) such that for all v ∈ (0, T ) we have

vθ‖Ψ ′(v)x‖Y2 + θvθ−1‖Ψ (v)x‖Y2 ≤ g(v)‖x‖Y1 , for all x ∈ Y1.

Then there exists a constant C such that for all T0 ∈ [0, T ] we have, almost surely

‖Ψ ∗ Φ‖C1−θ ([0,T0];Y2)
≤ C‖g‖L1(0,T0)‖Φ‖L∞(0,T0;Y1).
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The following corollary is obtained from Lemma 2.7 and the Proposition above by
taking ε = 3

2 − 1
τ

− θ in Lemma 2.7.

COROLLARY 3.7. Let the setting be as in Proposition 3.6. Assume in addition
that Y2 has type τ , and let 0 ≤ θ < 3

2 − 1
τ

. Then for α ∈ [0, 1
2 ) and p ∈ [1,∞) there

exists a constant C such that for T0 ∈ [0, T ] one has

‖Ψ ∗ Φ‖V α,p
c ([0,T0]×Ω;Y2)

≤ C‖g‖L1(0,T0)‖Φ‖L p(Ω;L∞(0,T0;Y1)).

Proof of Proposition 3.6. Observe that we have, for 0 ≤ s < t ≤ T0, almost surely,∥∥∥ ∫ t

0
Ψ (t − u)Φ(u, ω) du −

∫ s

0
Ψ (s − u)Φ(u, ω) du

∥∥∥
Y2

≤
∥∥∥ ∫ s

0

∫ t−u

s−u
Ψ ′(v)Φ(u, ω) dv du

∥∥∥
Y2

+
∥∥∥ ∫ t

s
(t − u)−θ

∫ t−u

0
[vθΨ (v)]′Φ(u, ω) dv du

∥∥∥
Y2

. (13)

Now ∥∥∥ ∫ s

0

∫ t−u

s−u
Ψ ′(v)Φ(u, ω) dv du

∥∥∥
Y2

≤
∫ s

0

∫ t−u

s−u
v−θ g(v)‖Φ(ω)‖Y1 dv du

≤ ‖Φ(ω)‖L∞(0,t;Y1)

∫ s

0

∫ t−u

s−u
(s − u)−θ g(v) dv du

= ‖Φ(ω)‖L∞(0,t;Y1)

∫ t

0

∫ (t−v)∧s

(s−v)+
(s − u)−θ du g(v) dv a.s.

As θ ∈ (0, 1) we have a1−θ − b1−θ ≤ (a − b)1−θ for a ≥ b ≥ 0 and thus also∫ (t−v)∧s

(s−v)+
(s − u)−θ du = (1 − θ)−1[(v ∧ s)1−θ − ((s + v − t)+)1−θ ]

≤ (1 − θ)−1[(v ∧ s) − (s + v − t)+]1−θ ≤ [(t − s) ∧ v]1−θ .

Combining the two equations above we obtain, almost surely:∥∥∥ ∫ s

0

∫ t−u

s−u
Ψ ′(v)Φ(u, ω) dv du

∥∥∥
Y2

≤ (t − s)1−θ‖Φ(ω)‖L∞(0,t;Y1)

∫ t

0
g(v) dv,

Furthermore, almost surely we have∥∥∥ ∫ t

s
(t − u)−θ

∫ t−u

0
[vθΨ (v)]′Φ(u, ω) dv du

∥∥∥
Y2

≤ (1 − θ)−1(t − s)1−θ

∫ t

0
g(v) dv‖Φ(ω)‖L∞(0,T ;Y1).

Inserting these two estimates in (13) completes the proof. �
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4. A perturbation result

In this section, we state and prove the perturbation theorem announced in the intro-
duction, Theorem 4.3 below. In the next subsection, we state the setting and the main
result.

4.1. Setting and main result

Let X be a Banach space. Let H be a Hilbert space and let WH be an H -cylindri-
cal Brownian motion on a probability space (Ω, (Ft )t≥0, P). Consider the following
stochastic differential equation set in X :{

dU (t)= AU (t) dt + F(t, U (t)) dt + G(t, U (t)) dWH (t); t ∈ [0, T ],
U (0)= x0,

(SDE)

where T > 0, x0 ∈ L0(Ω,F0; X), and X, A, F and G are assumed to satisfy condi-
tions (X), (A), (F), and (G) below.

(X) X is a UMD Banach space.
(A) A generates an analytic C0-semigroup S on X .
(F) For some θF > −1 + ( 1

τ
− 1

2 ), where τ ∈ [1, 2] is the type of X , the function
F : [0, T ] × X → X A

θF
is measurable in the sense that for all x ∈ X the mapping

F(·, x) : [0, T ] → X A
θF

is strongly measurable.
Moreover, F is uniformly Lipschitz continuous and uniformly of linear growth on

X . That is to say, there exist constants C0 and C1 such that for all t ∈ [0, T ] and all
x, y ∈ X we have

‖F(t, x) − F(t, y)‖X A
θF

≤ C0‖x − y‖X ,

‖F(t, x)‖X A
θF

≤ C1(1 + ‖x‖X ).

(G) For some θG > − 1
2 , the function G : [0, T ] × X → L(H, X A

θG
) is measurable

in the sense that for all h ∈ H and all x ∈ X the mapping G(·, x)h : [0, T ] → X A
θG

is strongly measurable.
Moreover, G is uniformly L2

γ -Lipschitz continuous and uniformly of linear growth

on X . That is to say, there exist constants C0 and C1 such that for all α ∈ [0, 1
2 ), all

t ∈ [0, T ], and all simple functions φ1, φ2, φ : [0, T ] → X one has

‖s �→ (t − s)−α[G(s, φ1(s)) − G(s, φ2(s))]‖γ (0,t;H,X A
θG

)

≤ C0‖s �→ (t − s)−α[φ1 − φ2]‖L2(0,t;X) ∩ γ (0,t;X);
‖s �→ (t − s)−αG(s, φ(s))‖γ (0,t;H,X A

θG
)

≤ C1
(
1 + ‖s �→ (t − s)−αφ(s)‖L2(0,t;X) ∩ γ (0,t;X)

)
.

If Y2 is a type 2 space and G : [0, T ] × Y1 → γ (H, Y2) is Lipschitz continuous,
uniformly in [0, T ], then G is L2

γ -Lipschitz continuous (see [19, Lemma 5.2]). More
examples of L2

γ -Lipschitz continuous operators can be found in [19].
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The following existence and uniqueness result for solutions to equation (SDE) are
presented in [19, Theorem 6.2].

THEOREM 4.1. (Van Neerven, Veraar and Weis, 2008) Consider the stochastic
differential equation (SDE) in a Banach space X, under the assumptions (X), (A),
(F), and (G). Let x0 ∈ L p(Ω,F0; X A

η ) for p ∈ (2,∞) and η ≥ 0 satisfying

η < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG}.

Then for any T > 0 and any α ∈ [0, 1
2 ) there exists a unique U ∈ V α,p

c ([0, T ] ×
Ω; X A

η ) such that s �→ S(t − s)G(s, U (s))1[0,t)(s) is L p-stochastically integrable
for all t ∈ [0, T ], and U satisfies

U (t) = S(t)x0 +
∫ t

0
S(t − s)F(s, U (s)) ds +

∫ t

0
S(t − s)G(s, U (s)) dWH (s) (14)

almost surely for all t ∈ [0, T ]. Moreover

‖U‖V α,p
c ([0,T ]×Ω;X A

η ) � 1 + ‖x0‖L p(Ω;X A
η ). (15)

REMARK 4.2. In [19], the authors assume θF ≤ 0 and θG ≤ 0 (and refer to these
constants as −θF and −θB). However, one may check that the theorem remains valid
for θF , θG ≥ 0, which leads to extra space regularity of the solution (i.e., greater values
for η in (15)). Moreover, in [19], the authors assume α > 1

p − θG . This assumption
can be omitted (see [3, Appendix A.3]).

Keeping in mind possible applications in approximations of solutions to stochas-
tic partial differential equations, we now introduce a space X0, and an operator A0

satisfying the following conditions:

(X0) X0 is a (possibly finite dimensional) closed subspace of X , and there exists a
bounded projection P0 : X → X0 such that P0(X) = X0.
(A0) A0 is the generator of an analytic C0-semigroup S0 on X0, and ω ≥ 0, θ ∈ (0, π

2 ]
and K > 0 are such that A and A0 are both of type (ω, θ, K ).

Let iX0 represent the canonical embedding of X0 into X (we omit iX0 when its use
is clear from the context). For t ≥ 0, define S̃0(t) ∈ L(X) by S̃0(t) := iX0 S0(t)P0,

this defines a degenerate C0-semigroup, i.e., S̃0 satisfies the semigroup property but
S̃0(0) = iX0 P0 (which is clearly not the identity unless X0 = X ).

In order to avoid technical difficulties later on, we from now on define the spaces
X A

β , β ∈ R, in terms of ((ω + 1)I − A)β . Once this is fixed, it makes sense to define
Lip(F) and M(F) to be the least constants C0 and C1 for which the Lipschitz and linear
growth conditions of (F) hold. Similarly, we define Lipγ (G) and M(G) to be the least
constants C0 and C1 for which the Lipschitz and linear growth conditions of (G) hold.

THEOREM 4.3. Consider the stochastic differential equation (SDE) in a Banach
space X, under the assumptions (X), (A), (F), and (G). Let X0 and A0 satisfy (X0)
and (A0). Suppose there exist δ ∈ [0, 1] and p ∈ (2,∞) satisfying
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0 ≤ δ < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG} (16)

such that for some λ0 ∈ C such that �e(λ0) ≥ ω we have

Dδ(A, A0) := ‖R(λ0 : A) − iX0 R(λ0 : A0)P0‖L(X A
δ−1,X) < ∞. (17)

Suppose x0 ∈ L p(Ω,F0; X A
δ ) and y0 ∈ L p(Ω,F0; X).

Then for any α ∈ [0, 1
2 ) there exists a unique process U (0) ∈ V α,p

c ([0, T ]×Ω; X0)

such that s �→ 1[0,t](s)S0(t − s)P0G(s, U (0)(s)) is L p-stochastically integrable for
all t ∈ [0, T ], and for all t ∈ [0, T ] we have

U (0)(t) = S0(t − s)P0 y0 +
∫ T

0
S0(t − s)P0 F(s, U (0)(s)) ds

+
∫ t

0
S0(t − s)P0G(s, U (0)(s)) dWH (s), a.s. (18)

Moreover,

‖U − iX0U (0)‖V α,p
c ([0,T ]×Ω;X)

� ‖x0 − y0‖L p(Ω;X) + Dδ(A, A0)(1 + ‖x0‖L p(Ω;X A
δ )). (19)

The implied constant depends on X0 only in terms of ‖P0‖L(X,X0), on A and A0 only
in terms of 1∨ Dδ(A, A0), ω, θ and K , and on F and G only in terms of their Lipschitz
and linear growth constants Lip(F), Lipγ (G), M(F) and Mγ (G).

4.2. Proof of main result

To prove Theorem 4.3, we need a proposition concerning the γ -boundedness of
S − S̃0. The proof of this proposition is postponed to the end of this Section.

PROPOSITION 4.4. Let A, A0 be as introduced above, i.e., A generates an ana-
lytic C0-semigroup on X and A0 generates an analytic C0-semigroup on X0, and
ω ≥ 0, θ ∈ (0, π

2 ] and K > 0 are such that A and A0 are of type (ω, θ, K ). Suppose
there exists a λ0 ∈ C,�e(λ0) > ω, and δ ∈ R such that Dδ(A, A0) < ∞, where
Dδ(A, A0) is as defined in (17). Set

ω′ = (ω + 1)(cos θ)−1.

Then for all β ∈ R such that β ∈ [δ − 1, δ] one has

sup
t∈[0,∞)

tδ−βe−ω′t‖S(t) − S̃0(t)‖L(X A
β ,X) � Dδ(A, A0), (20)

and

sup
t∈(0,∞)

tδ−β+1e−ω′t‖S′(t) − S̃′
0(t)‖L(X A

β ,X) � Dδ(A, A0), (21)

with implied constants depending only on ‖P0‖L(X,X0), ω, θ, K , and δ − β.
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Moreover, for all α > δ − β we have, for t ∈ [0, T ],
γ[X A

β ,X ]
({

sα[S(s) − S̃0(s)]; 0 ≤ s ≤ t
})

� tα+β−δ Dδ(A, A0),

with implied constant depending only on ‖P0‖L(X,X0), ω, θ, K , δ − β, α, and T .

Proof of Theorem 4.3. We split the proof into several parts.

Part 1.

In order to prove existence and uniqueness of U (0) ∈ V α,p
c ([0, T ] × Ω; X0) sat-

isfying (18) it suffices, by Theorem 4.1, to prove that there exist ηF > − 3
2 + 1

τ
and

ηG > − 1
2 + 1

p such that P0 F : [0, T ] × X → X A0
0,ηF

is Lipschitz continuous and

of linear growth and P0G : [0, T ] × X → γ (H, X A0
0,ηG

) is L2
γ -Lipschitz continuous

and of linear growth. If θF ≥ 0, then clearly we may take ηF = 0, and we have
Lip(P0 F) ≤ ‖P0‖L(X,X0)Lip(F), M(P0 F) ≤ ‖P0‖L(X,X0)M(F). The same goes for
θG ≥ 0.

Now, suppose θF < 0. Let ω̄ > ω′, where ω′ is as in Proposition 4.4. From the
representation of negative fractional powers of an operator A generating an analytic
C0-semigroup S of type (ω, θ, K ) (see [20, Chapter 2.6]) and Proposition 4.4, it fol-
lows that for β ∈ [δ − 1, δ], η < β − δ, and x ∈ X we have

‖P0x‖
X

A0
0,η

� ‖(ω̄I − A0)
η P0x‖X =

∥∥∥ 1
Γ (−η)

∫ ∞

0
t−η−1e−ω̄t S̃0(t)xdt

∥∥∥
X

≤ 1
Γ (−η)

∫ ∞

0
t−η−1e−ω̄t‖(S(t)− S̃0(t))x‖X dt+ 1

Γ (−η)

∥∥∥ ∫ ∞

0
t−η−1e−ω̄t S(t)xdt

∥∥∥
X

� Dδ(A, A0)

∫ ∞

0
t−η−1+β−δe−(ω̄−ω′)t dt‖x‖X A

β
+ ‖(ω̄I − A)ηx‖X ,

with implied constants depending on X0 only in terms of ‖P0‖L(X,X0) and on A and
A0 only in terms of ω, θ, and K . Thus, for β ∈ [δ − 1, δ], η < β − δ we have

‖P0x‖
X

A0
0,η

� ‖(ω̄I − A0)
η P0x‖X

� (1 + Dδ(A, A0))‖(ω̄I − A)β x‖X � (1 + Dδ(A, A0))‖x‖X A
β
,

(22)

with implied constants depending on X0 only in terms of ‖P0‖L(X,X0) and on A and
A0 only in terms of ω, θ, and K .

By assumption (16), we have θF > − 3
2 + 1

τ
+ δ ≥ δ − 1. Hence, one can pick ηF

such that

− 3
2 + 1

τ
< ηF < θF − δ.

On the other hand, we have θF < 0 ≤ δ. Thus, by (22) with β = θF and η = ηF it
follows that P0 F : [0, T ] × X → X A0

0,ηF
is Lipschitz continuous and

Lip(P0 F) � (1 + Dδ(A, A0))Lip(F); M(P0 F) � (1 + Dδ(A, A0))M(F), (23)
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with implied constant depending on X0 only in terms of ‖P0‖L(X,X0) and on A and
A0 only in terms of ω, θ, and K .

Similarly, if θG < 0 there exists a ηG such that

− 1
2 + 1

p < ηG < θG − δ

such that P0G : [0, T ] × X → γ (H, X A0
0,ηG

) is L2
γ -Lipschitz continuous and

Lipγ (P0G) � (1+Dδ(A, A0))Lipγ (G); Mγ (P0G)�(1+Dδ(A, A0))Mγ (G),

(24)

with implied constant depending on X0 only in terms of ‖P0‖L(X,X0) and on A and
A0 only in terms of ω, θ, and K .

In conclusion, we are now in the position to apply Theorem 4.1 with θF and θG in
that theorem chosen to be ηF and ηG , and thus obtain existence of a unique process
U (0) ∈ V α,p

c ([0, T0] × Ω; X0), α ∈ [0, 1
2 ), satisfying (18). Note that we have chosen

ηF and ηG such that they are non-positive.

Part 2.

Define Ũ (0) = iX0U (0) and observe that if U (0) satisfies (18), then Ũ (0) satisfies

Ũ (0)(t) = S̃0(t − s)y0 +
∫ T

0
S̃0(t − s)F(s, Ũ (0)(s)) ds

+
∫ t

0
S̃0(t − s)G(s, Ũ (0)(s)) dWH (s), a.s.

Let T0 ∈ [0, T ] be fixed. By the above we have

‖U − Ũ (0)‖V α,p
c ([0,T0]×Ω;X)

≤ ‖(S − S̃0)x0‖V α,p
c ([0,T0]×Ω;X) + ‖S̃0(x0 − y0)‖V α,p

c ([0,T0]×Ω;X)

+
∥∥∥t �→

∫ t

0
S̃0(t − s)[F(s, U (s)) − F(s, Ũ (0)(s))] ds

∥∥∥
V α,p

c ([0,T0]×Ω;X)

+
∥∥∥t �→

∫ t

0
[S(t − s) − S̃0(t − s)]F(s, U (s)) ds

∥∥∥
V α,p

c ([0,T0]×Ω;X)

+
∥∥∥t �→

∫ t

0
S̃0(t − s)[G(s, U (s)) − G(s, Ũ (0)(s))] dWH (s)

∥∥∥
V α,p

c ([0,T0]×Ω;X)

+
∥∥∥t �→

∫ t

0
[S(t − s) − S̃0(t − s)]G(s, U (s)) dWH (s)

∥∥∥
V α,p

c ([0,T0]×Ω;X)
.

(25)

Let ηF and ηG be as defined in part 1. Let ε > 0 be such that

ε ≤ 1 − 2α;
ε < min{ 3

2 − 1
τ

+ ηF , 1
2 − 1

p + ηG}.
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It follows that ε + δ < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG}. By inequality (7) we may

assume, without loss of generality, that α = 1
2 − ε/2.

We estimate each of the six terms on the right-hand side of (25) in parts 2a–2f
below. In part 2c and 2e, we keep track of the dependence on T0, for the other parts
this is not necessary.

Part 2a.

By Proposition 4.4 with β = δ and α = ε/2 there exists an M > 0 depending on
X0 only in terms of ‖P0‖L(X,X0), and on A and A0 only in terms om ω, θ and K , such
that

sup
t∈[0,T0]

‖S(t) − S̃0(t)‖L(X A
δ ,X) ≤ MDδ(A, A0);

γ[X A
δ ,X ]{tε/2(S(t) − S̃0(t)) : t ∈ [0, T0]} ≤ MDδ(A, A0).

Thus, by Proposition 2.10, we have

‖(S − S̃0)x0‖V α,p
c ([0,T0]×Ω;X)

≤ MDδ(A, A0)
[

sup
t∈[0,T0]

‖s �→(t−s)−αs−ε/2x0‖L p(Ω;γ (0,t;X A
δ )) + ‖x0‖L p(Ω;X A

δ )

]
.

For f ∈ L2(0, t) and x ∈ L p(Ω; X A
δ ) we have

‖ f ⊗ x‖L p(Ω;γ (0,t;X A
δ )) = ‖ f ‖L2(0,t)‖x‖L p(Ω;X A

δ ).

Thus, recalling that α = 1
2 − ε/2, we have

sup
t∈[0,T0]

‖s �→ (t − s)−αs−ε/2x0‖L p(Ω;γ (0,t;X A
δ ))

≤ T
1
2 −α−ε/2‖s �→ (1 − s)−αs−ε/2‖L2(0,1)‖x0‖L p(Ω;X A

δ )

≤ CεT
1
2 −α−ε/2‖x0‖L p(Ω;X A

δ ),

where Cε is a constant depending only on ε. Hence

‖(S − S̃0)x0‖V α,p
c ([0,T0]×Ω;X) ≤ MDδ(A, A0)(1 + CεT

1
2 −α−ε/2)‖x0‖L p(Ω;X A

δ ).

(26)

Part 2b.

By assumption (see Remark 2.4) there exists an M depending only on
‖P0‖L(X,X0), ω, θ, and K and T such that we have that supt∈[0,T ] ‖S̃0(t)‖L(X,X0) ≤
M. Moreover, by Lemma 2.11 we may pick M such that in addition we have that
γ[X,X ]{tε/2 S̃0(t) : t ∈ [0, T0]} ≤ M. Thus, by the same argument as in part 2a, we
have

‖S̃0(x0 − y0)‖V α,p
c ([0,T0]×Ω;X) ≤ M(1 + CεT

1
2 −α−ε/2)‖x0 − y0‖L p(Ω;X). (27)
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Part 2c.

Recall that in part 1, we chose ηF such that ηF ≤ 0. By inequality (3), there exists
an M depending only on ω, θ, K and T such that for all t ∈ [0, T ] we have

t−ηF +ε‖S′
0(t)‖L(X

A0
0,ηF

,X0)
+ (ε − ηF )t−ηF +ε−1‖S0(t)‖L(X

A0
0,ηF

,X0)
≤ Mt−1+ε.

By Corollary 3.7 with Y1 = X A0
0,ηF

, Y2 = X ,

Φ(s) = P0[F(s, U (s)) − F(s, Ũ (0)(s))],
Ψ (s) = S0(s), θ = −ηF + ε and g(v) = Mv−1+ε, it follows that∥∥∥t �→

∫ t

0
S̃0(t − s)[F(s, U (s)) − F(s, Ũ (0)(s))] ds

∥∥∥
V α,p

c ([0,T0]×Ω;X)

� T ε
0 ‖P0[F(·, U ) − F(·, Ũ (0))]‖

L p(Ω;L∞(0,T0;X
A0
0,ηF

))

≤ T ε
0 Lip(P0 F)‖U − Ũ (0)‖L p(Ω;L∞(0,T0;X))

� T ε
0 (1 + Dδ(A, A0))Lip(F)‖U − Ũ (0)‖L p(Ω;L∞(0,T0;X)), (28)

where the second last estimate follows by Lipschitz continuity of P0 F , and the final
estimate follows by (23). Note that the implied constants are independent of T0 and
depend on X0 only in terms of ‖P0‖L(X,X0) and on A0 only in terms of ω, θ , and K .

Part 2d.

For brevity set ζ = (δ−θF )+ +ε. By assumption (16), we have θF ∧δ ∈ [δ−1, δ],
and thus, we may apply Proposition 4.4 with β = θF ∧ δ to obtain that there exists a
constant M depending only on ‖P0‖L(X,X0), ω, θ, K , (δ − θF )+ and T such that for
all t ∈ [0, T ] we have

tζ ‖S′(t) − S̃′
0(t)‖L(X A

θF ∧δ,X) + ζ tζ−1‖S(t) − S̃0(t)‖L(X A
θF ∧δ,X)

≤ MDδ(A, A0)t
−1+ε.

Thus by Corollary 3.7 with Y1 = X A
θF ∧δ, Y2 = X, Φ(s) = F(s, U (s)), Ψ (s) =

S(s) − S̃0(s), θ = ζ = (δ − θF )+ + ε, g(v) = MDδ(A, A0)v
−1+ε, we obtain∥∥∥t �→

∫ t

0
[S(t − s) − S̃0(t − s)]F(s, U (s)) ds

∥∥∥
V α,p

c ([0,T0]×Ω;X)

� Dδ(A, A0)‖F(·, U )‖L p(Ω;L∞(0,T0;X A
θF ∧δ))

≤ Dδ(A, A0)M(F)‖U‖L p(Ω;L∞(0,T0;X))

� Dδ(A, A0)M(F)(1 + ‖x0‖L p(Ω;X)), (29)

where the penultimate estimate follows by the linear growth condition on F and the
final estimate by (15). Note that the implied constants are independent of T0, and
depend on X0 only in terms of ‖P0‖L(X,X0), and on A and A0 only in terms of ω, θ

and K .
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Part 2e.

Observe that if G : [0, T ] × X → L(H, XθG ) satisfies (G) and Φ1, Φ2 ∈
V α,p

c ([0, T ] × Ω; X) for some p ≥ 2, then

sup0≤t≤T ‖s �→ (t − s)−α[G(s, Φ1(s)) − G(s, Φ2(s))]‖L p(Ω;γ (0,t;H,X A
θG

))

≤ (1 + (1 − 2α)− 1
2 T

1
2 −α)Lipγ (G)‖Φ1 − Φ2‖V α,p

c ([0,T ]×Ω;X). (30)

Recall that in part 1, we chose ηG such that ηG ≤ 0. By equation (3), there exists
an M depending only on ω, θ , K , and T such that for all t ∈ [0, T ] we have

t−ηG+ε/2‖S′
0(t)‖L(X A

0,−ηG
,X0) + (ε/2 − ηG)t−ηG+ε/2−1‖S0(t)‖L(X A

0,−ηG
,X0)

≤ Mt−1+ε/2.

By applying Proposition 3.5 with Y1 = X A0
0,ηG

, Y2 = X , Ψ (s) = S0(s), η = α,

θ = −ηG + ε/2, g(v) = Mv−1+ε/2 and Φ(s) = P0[G(s, U (s))− G(s, Ũ (0)(s))] we
obtain

∥∥∥t �→
∫ t

0
S̃0(t − s)[G(s, U (s)) − G(s, Ũ (0)(s))] dWH (s)

∥∥∥
V α,p

c ([0,T0]×Ω;X)

� T
1
2 ε

0 sup
0≤t≤T0

‖s �→ (t − s)−α P0[G(s, U (s))−G(s, Ũ (0)(s))]‖
L p(Ω;γ (0,t,H ;X

A0
0,ηG

))

� T
1
2 ε

0 (1 + Dδ(A, A0))Lipγ (G)‖U − Ũ (0)‖V α,p
c ([0,T0]×Ω;X), (31)

where the final estimate follows from estimates (30) and (24). Note that the implied
constants are independent of T0 and depend on X0 only in terms of ‖P0‖L(X,X0), and
on A and A0 only in terms of ω, θ , and K .

Part 2f.

Observe that, for Φ ∈ V α,p
c ([0, T ] × Ω; X), we have

sup0≤t≤T ‖s �→ (t − s)−αG(s, Φ(s))‖L p(Ω;γ (0,t;H,X A
θG

))

≤ (1 + (1 − 2α)− 1
2 T

1
2 −α)Mγ (G)

(
1 + ‖Φ‖V α,p

c ([0,T ]×Ω;X)

)
. (32)

For brevity set ζ = (δ−θG)++ε/2. By Proposition 4.4 with β = θG ∧δ ∈ [δ−1, δ],
we have that there exists a constant M depending only on ‖P0‖L(X,X0), ω, θ, K ,
(δ − θG)+ and T such that for all t ∈ [0, T ] we have

tζ ‖S′(t) − S̃′
0(t)‖L(X A

θG ∧δ,X) + ζ tζ−1‖S(t) − S̃0(t)‖L(X A
θG ∧δ,X)

≤ MDδ(A, A0)t
−1+ε/2.
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Thus, by Proposition 3.5 with Y1 = X A
θG∧δ , Y2 = X , Φ(s) = G(s, U (s)), Ψ (s) =

S(s) − S̃0(s), η = α, θ = ζ = (δ − θG)+ + ε/2 and g(v) = MDδ(A, A0)v
−1+ε/2,

we obtain

∥∥∥t �→
∫ t

0
[S(t − s) − S̃0(t − s)]G(s, U (s)) dWH (s)

∥∥∥
V α,p

c ([0,T0]×Ω;X)

� Dδ(A, A0) sup
0≤t≤T0

‖s �→ (t − s)−αG(s, U (s))‖L p(Ω;γ (0,t;H,X A
θG ∧δ))

≤ Dδ(A, A0)Mγ (G)‖U‖V α,p
c ([0,T0]×Ω;X)

� Dδ(A, A0)Mγ (G)
(
1 + ‖x0‖L p(Ω;X)

)
, (33)

where the penultimate line follows by estimate (32). Note that the implied constants
are independent of T0 and depend on X0 only in terms of ‖P0‖L(X,X0) and on A and
A0 only in terms of ω, θ , and K .

Part 2g.

Inserting (26)-(33) in (25), we obtain that there exists a constant C > 0 independent
of x0 and y0, depending on X0 only in terms of ‖P0‖L(X,X0), on A and A0 only in
terms of 1 + Dδ(A, A0), ω, θ , and K , and on F and G only in terms of their Lipschitz
and linear growth constants Lip(F), Lipγ (G), M(F), and Mγ (G), such that for all
T0 ∈ [0, T ] one has

‖U − Ũ (0)‖V α,p
c ([0,T0]×Ω;X) ≤ CT

1
2 ε

0 ‖U − Ũ (0)‖V α,p
c ([0,T0]×Ω;X)

+ C
(
‖x0 − y0‖L p(Ω;X) + Dδ(A, A0)

(
1 + ‖x0‖L p(Ω;X A

δ )

))
.

Setting T0 = [2C]−2/ε we obtain

‖U − Ũ (0)‖V α,p
c ([0,T0]×Ω;X)

≤ 2C
(
‖x0 − y0‖L p(Ω;X) + Dδ(A, A0)

(
1 + ‖x0‖L p(Ω;X A

δ )

))
. (34)

Part 3.

Let t0 ≥ 0, z ∈ L p(Ω,Ft0; X), T > 0 and α ∈ [0, 1
2 ). By U (z, t0, ·), we denote

the (unique) process in V α,p
c ([t0, t0 + T ] × Ω; X) satisfying, for s ∈ [t0, t0 + T ],

U (z, t0, s) = S(t − t0)z +
∫ t

t0
S(t − t0 − s)F

(
U (z, t0, s)

)
ds

+
∫ t

t0
S(t − t0 − s)G

(
U (z, t0, s)

)
dWH (s) a.s.

The process U (0)(z, t0, ·) is defined analogously.
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From the proof of (34), it follows that for any x ∈ L p(Ω,Ft0; X A
δ ) and y ∈

L p(Ω,Ft0; X) we have

‖U (x, t0, ·) − U (0)(y, t0, ·)‖V α,p
c ([t0,t0+T0]×Ω;X)

≤ 2C
(
‖x − y‖L p(Ω;X) + Dδ(A, A0)[1 + ‖x‖L p(Ω;X A

δ )]
)
, (35)

with C as in (34). The remainder of the proof is entirely analogous to part 4 of the
proof of [5, Theorem 3.1], see also [3, Theorem 6.2]. �

It remains to provide a proof for Proposition 4.4. For that purpose, we first prove
the following lemma. Given the lemma, the proof of Proposition 4.4 basically follows
the lines of known proofs concerning comparison of semigroups, see the monograph
by Engel and Nagel [9, Chapter III.3.b]. For notational simplicity, we define the
pseudo-resolvent

R(λ : Ã0) := iX0 R(λ : A0)P0, λ ∈ ω + �π
2 +θ (36)

(we leave it to the reader to verify the resolvent identity).

LEMMA 4.5. Let the setting be as in Proposition 4.4. Then for all λ ∈ ω′ +�π
2 +θ

we have

‖R(λ : A) − R(λ : Ã0)‖L(X A
β ,X)

≤ Cω,θ,K ,P0,λ0 |λ − ω|δ−β−1‖R(λ0 : A) − R(λ0 : Ã0)‖L(X A
δ−1,X),

where Cω,θ,K ,P0,λ0 is a constant depending only on λ0, ω, θ, K and ‖P0‖L(X,X0).

Proof. Using only the resolvent identity and the definition of R(λ : Ã0) (see (36))
one may verify that the following identity holds:

R(λ : A) − R(λ : Ã0)

= [I + (λ0 − λ)R(λ : Ã0)][R(λ0 : A) − R(λ0 : Ã0)](λ0 − A)R(λ : A). (37)

Moreover, one may check that

ω′ + �π
2 +θ ⊂ (

ω + �π
2 +θ

) ⋂{
λ ∈ C : |λ − ω| ≥ |λ0 − ω|}.

Therefore one has, for λ ∈ ω′ + �π
2 +θ ,

‖I + (λ0 − λ)R(λ : Ã0)‖L(X) ≤ 1 + |λ0−λ|
|λ−ω| K‖P0‖L(X,X0) ≤ 1 + 2K‖P0‖L(X,X0).

From (37), one obtains

‖R(λ : A) − R(λ : Ã0)‖L(X A
β ,X) ≤ (1 + 2K‖P0‖L(X,X0))

×‖R(λ0 : A) − R(λ0 : Ã0)‖L(X A
δ−1,X)‖(λ0 − A)R(λ : A)‖L(X A

β ,X A
δ−1)

. (38)
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Recall from page 811 that X A
β , β ∈ R, is defined in terms of ((ω + 1)I − A)β . Thus

‖(λ0 I − A)R(λ : A)‖L(X A
β ,X A

δ−1)
= ‖((ω + 1)I − A)δ−β−1(λ0 − A)R(λ : A)‖L(X)

≤ (
1 + |ω + 1 − λ0|K

)‖((ω + 1)I − A)δ−β R(λ : A)‖L(X).

By choice of λ, we have |λ − ω| ≥ ||λ| − ω| ≥ |ω + 1 − ω| = 1, whence for
δ − β = 1 we have

‖((ω + 1)I − A)δ−β R(λ : A)‖L(X) = ‖((ω + 1)I − A)R(λ : A)‖L(X)

≤ 1 +
∣∣∣λ − ω − 1

λ − ω

∣∣∣K ≤ 1 + 2K .

If δ − β = 0, then

‖((ω + 1)I − A)δ−β R(λ : A)‖L(X) = ‖R(λ : A)‖L(X) ≤ K |λ − ω|−1.

For δ − β ∈ (0, 1) we have, by estimate (4),

‖((ω + 1)I − A)δ−β R(λ : A)‖L(X)

≤ 2(1 + K )‖R(λ : A)‖1+β−δ

L(X) ‖((ω + 1)I − A)R(λ : A)‖δ−β

L(X)

≤ 2(1 + K )(1 + 2K )δ−β K 1+β−δ|λ − ω|δ−β−1

≤ 2(1 + 2K )2|λ − ω|δ−β−1.

Substituting this into (38) one obtains

‖R(λ : A) − R(λ : Ã0)‖L(X A
β ,X) ≤ 2(1 + 2K )3(1 + |λ0 − ω − 1|K )‖P0‖L(X,X0)

×|λ − ω|δ−β−1‖R(λ0 : A) − R(λ0 : Ã0)‖L(X A
δ−1,X).

�

Proof of Proposition 4.4. Let ω′ be as defined in Lemma 4.5. For brevity set ε = δ−β.
Fix θ ′ ∈ (0, θ). It follows from [20, Theorem 1.7.7], that one has, for all t > 0,

S(t) = 1
2π i

∫
ω′+Γθ ′

eλt R(λ : A)dλ;

where Γθ ′ is the path composed from the two rays rei( π
2 +θ ′) and re−i( π

2 +θ ′), 0 ≤ r <

∞, and is oriented such that �m(λ) increases along Γθ ′ . As ω′ ≥ ω, the integral is
well-defined as L(X)-valued Bochner integral, and for t > 0 one has

S′(t) = 1
2π i

∫
ω′+Γθ ′

λeλt R(λ : A)dλ;

the integral again being well-defined as L(X)-valued Bochner integrals (see also the
proof of [20, Theorem 2.5.2]). Analogous identities hold for S̃0 and R(λ : Ã0).

First, let us assume that ε ∈ (0, 1). Below, we apply Lemma 4.5, observing that for
r ∈ [0,∞), we have
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|ω′ + re±i( π
2 +θ ′) − ω| ≥ Kθr,

where Kθ is a constant depending only on θ . Note that we use the coordinate transform
λ = ω′ + re±i( π

2 +θ ′). For s > 0, we have

‖S(s) − S̃0(s)‖L(X A
β ,X) =

∥∥∥ 1
2π i

∫
ω′+Γθ ′

eλs[R(λ : A) − R(λ : Ã0)]dλ

∥∥∥L(X A
β ,X)

≤ 1
2π

∫ ∞

0

∣∣e(ω′+re−i( π
2 +θ ′)

)s
∣∣

× ∥∥R(ω′ + re−i( π
2 +θ ′) : A) − R(ω′ + re−i( π

2 +θ ′) : Ã0)
∥∥L(X A

β ,X)
dr

+ 1
2π

∫ ∞

0

∣∣e(ω′+rei( π
2 +θ ′)

)s
∣∣

×∥∥R(ω′ + rei( π
2 +θ ′) : A) − R(ω′ + rei( π

2 +θ ′) : Ã0)
∥∥L(X A

β ,X)
dr

≤ 1
π

Cω,θ,K ,P0,λ0 Kθ Dδ(A, A0)e
ω′s

∫ ∞

0
rε−1e−rs sin θ ′

dr

= Γ (ε)
π

[sin θ ′]−εCω,θ,K ,P0,λ0 Dδ(A, A0)s
−εeω′s .

For ε = 0, one may obtain the desired estimate by avoiding the singularity in 0 in
the usual way: for s > 0 given, we integrate over

ω′ + Γθ ′,s = (ω′ + Γ
(1)

θ ′,s) ∪ (ω′ + Γ
(2)

θ ′,s) ∪ (ω′ + Γ
(3)

θ ′,s),

where Γ
(1)

θ ′,s and Γ
(2)

θ ′,s are the rays rei( π
2 +θ ′) and re−i( π

2 +θ ′), s−1 ≤ r < ∞, and

Γ
(3)

θ ′,s = s−1eiφ , φ ∈ [−π
2 − θ ′, π

2 + θ ′] (we leave the details to the reader).
Recalling that ε = δ − β, this proves the uniform boundedness estimate of (20).
In a similar fashion as above, for ε ∈ [0, 1] and s > 0 we have

‖S′(s) − S̃′
0(s)‖L(X A

β ,X) =
∥∥∥ 1

2π i

∫
ω′+Γθ ′

λeλs[R(λ : A) − R(λ : Ã0)] dλ

∥∥∥L(X A
β ,X)

≤ 1
π

Cω,θ,K ,P0,λ0 Kθ Dδ(A, A0)[s sin θ ′]−1−εeω′s
∫ ∞

0
uεe−u du

= εΓ (ε)
π

[sin θ ′]−1−εCω,θ,K ,P0,λ0 Kθ Dδ(A, A0)s
−1−εeω′s .

Recalling that ε = δ − β this proves the uniform boundedness estimate of (21).
Concerning the γ -boundedness estimates, fix α > ε. By Proposition 2.9, one has

γ[X A
β ,X ]

(
{sα[S(s) − S̃0(s)] : s ∈ [0, t]}

)
≤

∫ t

0

∥∥[
sα(S(s) − S̃0(s))

]′∥∥L(X A
β ,X)

ds

≤
∫ t

0
αsα−1

∥∥S(s) − S̃0(s)
∥∥L(X A

β ,X)
ds +

∫ t

0
sα

∥∥S′(s) − S̃′
0(s)

∥∥L(X A
β ,X)

ds.

Substituting (20) and (21) into the above and using that α > ε one obtains that there
exists a constant C depending only on λ0, ω, θ , K , ε = δ − β, α, and ‖P0‖L(X,X0)

such that
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γ[X A
β ,X ]

(
{sα[S(s) − S̃0(s)] : s ∈ [0, t]}

)
≤ C Dδ(A, A0)

∫ t

0
sα−1−εeω′seω̄t ds

≤ Ctα−εe(ω′T )+ Dδ(A, A0).

�

COROLLARY 4.6. Let the setting be as in Theorem 4.3. Let λ ∈ (0, 1
2 ) satisfy

λ < min{1 − (δ − θF )+, 1
2 − 1

p − (δ − θG)+}.

Suppose x0 ∈ L p(Ω,F0; X A
δ ) and y0 ∈ L p(Ω,F0; X), then

‖U − Sx0 − iX0(U
(0) − S0 P0 y0)‖L p(Ω;Cλ([0,T ];X))

� ‖x0 − y0‖L p(Ω,X) + Dδ(A, A0)(1 + ‖x0‖L p(Ω;X A
δ )),

with implied constant depending on X0 only in terms of ‖P0‖L(X,X0), on A and A0

only in terms of 1 ∨ Dδ(A, A0), ω, θ and K , and on F and G only in terms of their
Lipschitz and linear growth constants Lip(F), Lipγ (G), M(F), and Mγ (G).

Proof. As before, we write

‖U − Sx0 − iX0(U
(0) − S0 P0 y0)‖L p(Ω;Cλ([0,T ];X))

=
∥∥∥t �→

∫ t

0
S̃0(t − s)[F(s, U (s)) − F(s, Ũ (0)(s))] ds

∥∥∥
L p(Ω;Cλ([0,T ];X))

+
∥∥∥t �→

∫ t

0
[S(t − s) − S̃0(t − s)]F(s, U (s)) ds

∥∥∥
L p(Ω;Cλ([0,T ];X))

+
∥∥∥t �→

∫ t

0
S̃0(t − s)[G(s, U (s)) − G(s, Ũ (0)(s))] dWH (s)

∥∥∥
L p(Ω;Cλ([0,T ];X))

+
∥∥∥t �→

∫ t

0
[S(t − s) − S̃0(t − s)]G(s, U (s)) dWH (s)

∥∥∥
L p(Ω;Cλ([0,T ];X))

.

(39)

For the first and second term on the right-hand side of (39), we apply Proposi-
tion 3.6. Note that as before we may pick ηF , ηG ≤ 0 such that ηF < θF − δ and
ηG < θG − δ and

λ < min{1 + ηF , 1
2 − 1

p + ηG}.

Our choice of Y1, Y2, Φ, Ψ is the same as in part 2c, respectively 2d, of the proof of
Theorem 4.3, whereas we set η = 1 − λ. This leads to the following estimates:

∥∥∥t �→
∫ t

0
S̃0(t − s)[F(s, U (s)) − F(s, Ũ (0)(s))] ds

∥∥∥
L p(Ω;Cλ([0,T ];X))

� ‖U − Ũ (0)‖L p(Ω;L∞(0,T ;X)) ≤ ‖U − Ũ (0)‖V α,p
c ([0,T ]×Ω;X),
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and ∥∥∥t �→
∫ t

0
[S(t − s) − S̃0(t − s)]F(s, U (s)) ds

∥∥∥
L p(Ω;Cλ([0,T ];X))

� Dδ(A, A0)‖U‖L p(Ω;L∞(0,T ;X)) � Dδ(A, A0)
(
1 + ‖x0‖L p(Ω,X)

)
.

For the third and fourth term on the right-hand side of (39), we apply Corollary 3.4
with θ = λ and α ∈ (0, 1

2 ) such that α > λ + 1
p + ηG . The choice of Y1, Y2, Φ, and

Ψ is as in parts 2e and 2f of the proof of Theorem 4.3. This leads to the following:

∥∥∥t �→
∫ t

0
S̃0(t − s)[G(s, U (s)) − G(s, Ũ (0)(s))] dWH (s)

∥∥∥
L p(Ω;Cλ([0,T ];X))

� ‖U − Ũ (0)‖V α,p
c ([0,T ]×Ω;X),

and ∥∥∥t �→
∫ t

0
[S(t − s) − S̃0(t − s)]G(s, U (s)) dWH (s)

∥∥∥
L p(Ω;Cλ([0,T ];X))

� Dδ(A, A0)‖U‖V α,p
c ([0,T ]×Ω;X) � Dδ(A, A0)

(
1 + ‖x0‖L p(Ω,X)

)
.

Combining these estimates with Theorem 4.3 gives the desired result. It goes without
saying that all the implied constants above depend on X0 only in terms of ‖P0‖L(X,X0),
on A and A0 only in terms of 1 + Dδ(A, A0), ω, θ , and K , and on F and G only
in terms of their Lipschitz and linear growth constants Lip(F), Lipγ (G), M(F), and
Mγ (G). �

5. Yosida approximations

Consider equation (SDE) on a Banach space X under the assumptions (X), (A), (F),
and (G) with the additional assumption that θF , θG ≥ 0. We can also assume, without
loss of generality, that A is of type (ω, K , θ) for some ω ≥ 0, θ ∈ (0, 1

2 ] and K > 0.
We define An := n AR(n : A) to be the nth Yosida approximation of A. Let U denote
the solution to equation (SDE) with operator A and initial data x0 and, for n ∈ N, let
U (n) denote the solution to equation (SDE) with operator An instead of A and initial
data y0 ∈ L p(Ω,F0; X).

THEOREM 5.1. For any η ≥ 0 and p ∈ (2,∞) such that

η < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG}

and any α ∈ [0, 1
2 ) we have, assuming x0 ∈ L p(Ω,F0; X) and y0 ∈ L p(Ω,F0; X A

η ),

‖U − U (n)‖V α,p
c ([0,T ]×Ω;X) � ‖x0 − y0‖L p(Ω;X) + n− min{η,1}(1 + ‖y0‖L p(Ω;X A

η )),

with implied constants independent of n, x0 and y0.
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The following corollary is a direct consequence of the Borel–Cantelli lemma and
the above theorem (see e.g., [13, Lemma 2.1]):

COROLLARY 5.2. Let η > 0 and p ∈ (2,∞) be such that

η + 1
p < min{ 3

2 − 1
τ

+ θF , 1
2 − 1

p + θG , 1}
and assume y0 = x0 ∈ L p(Ω,F0; X A

η ). Then there exists a random variable χ ∈
L p(Ω) such that for all n ∈ N

‖U − U (n)‖C([0,T ];X) ≤ χn−η.

To prove Theorem 5.1 we need the following lemma:

LEMMA 5.3. Let β ∈ [0, 1]. Then there exists a constant K ′ such that for all
n ≥ 2ω and all x ∈ X A

β one has

‖(2ωI − An)β x‖L(X) ≤ K ′‖(2ωI − A)β x‖X .

Proof. Observe that

2ωI − An = [2ωnI − (n + 2ω)A]R(n : A)

= [(n + 2ω)I − 4ω2 R(2ω : A)](2ωI − A)R(n : A). (40)

Thus for x ∈ D(A) and n ≥ 2ω, we have

‖(2ωI − An)x‖X ≤ ‖[(n + 2ω)I − 4ω2 R(2ω : A)]R(n : A)‖L(X)‖(2ωI − A)x‖X

≤ [K n+2ω
n−ω

+ K 2 4ω
n−ω

]‖(2ωI − A)x‖X

≤ 4K (1 + K )‖(2ωI − A)x‖X .

This proves the lemma for β = 1. For β = 0, the lemma is trivial. For β ∈ (0, 1), we
need two extra observations.

First of all, for s > ω and β ∈ (0, 1) we have, by definition (see [20, Section 2.6]):

‖(s I − A)−β x‖X =
∥∥∥∥ sin(πβ)

π

∫ ∞

0
t−β((t + s)I − A)−1xdt

∥∥∥∥
X

≤ K sin(πβ)
π

∫ ∞

0
t−β(t + s − ω)−1dt‖x‖X

≤ K sin(πβ)
πβ(1−β)

(s − ω)−β‖x‖X . (41)

Second, let μ, λ ∈ ω + �π
2 +θ . We have the following:

‖e−(λI−A)R(μ:A)t‖L(X) = e−t‖e(μ−λ)R(μ,A)t‖L(X) ≤ e−t+ |μ−λ|
|μ−ω| K t

.

Now, suppose n ≥ 2ω(1 + 4K ), λ = 2ω, μ = nλ
λ+n = 2ωn

2ω+n . In that case, one may

check that |μ−λ|
|μ−ω| K ≤ 1

2 , and thus that for β ∈ (0, 1), we have

‖[−(2ωI − A)R( 2ωn
2ω+n : A)]−β‖L(X)

=
∥∥∥ 1

Γ (β)

∫ ∞

0
tβ−1e−(2ωI−A)R( 2ωn

2ω+n :A)t dt
∥∥∥L(X)

≤ 2β.



Vol. 13 (2013) Perturbations of SDEs in UMD Banach spaces 825

It follows that there exists a constant M ≥ 2β such that for all n ≥ 2ω we have

‖[−(2ωI − A)R( 2ωn
2ω+n : A)]−β‖L(X) ≤ M. (42)

For β ∈ (0, 1) and x ∈ X A
β we have, by standard theory on functional calculus (see

e.g., the monograph by Haase [10]), equation (40), and the estimates (41) and (42),
that

‖(2ωI − An)β x‖X = ‖(n + 2ω)β( 2ωn
2ω+n I − A)β(nI − A)−β x‖X

≤ (n + 2ω)β
∥∥[ − (2ωI − A)R( 2ωn

2ω+n : A)
]−β∥∥L(X)

×‖(2ωI − A)β x‖X‖(nI − A)−β‖L(X)

≤ 4β sin(πβ)
πβ(1−β)

K M‖(2ωI − A)β x‖X .

�

Proof of Theorem 5.1. In order to apply Theorem 4.3, we must prove that An , n ≥ 2ω,
are of uniform type, i.e., that there exist ω̄ ∈ R, θ̄ ∈ (0, π

2 ] and K̄ > 0 such that An

is of type (ω̄, θ̄ , K̄ ) for all n ≥ 2ω. Fix n ≥ 2ω. One checks that

R(λ : An) = (n + λ)−1(n − A)R( λn
n+λ

: A) (43)

whenever λn
n+λ

∈ ω+�π
2 +θ . By standard theory on Möbius transforms, it follows that

�(An) ⊂ 2ω + �π
2 +θ for n ≥ 2ω.

Using (43) one may check that for λ ∈ 2ω + �π
2 +θ we have the following:

R(λ : A) − R(λ : An) = −(λ + n)−1 A2 R( λn
n+λ

: A)R(λ : A). (44)

Thus by (2) we have, for λ ∈ ω(1 + 2(cos θ)−1) + �π
2 +θ ,

‖R(λ : A) − R(λ : An)‖L(X) ≤ (1 + 2K )2|λ + n|−1 ≤ (1 + 2K )2|λ − ω|−1.

The final estimate follows from the fact that by standard theory on Möbius transforms
we have that |λ−ω|

|λ+n| ≤ 1 for λ ∈ ω + �π
2 +θ and n ≥ 2ω. In conclusion, we have, for

λ ∈ ω(1 + 2(cos θ)−1) + �π
2 +θ ,

‖R(λ : An)‖L(X) ≤ ‖R(λ : A)‖L(X) + ‖R(λ : A) − R(λ : An)‖L(X)

≤ [K + (1 + 2K )2]|λ − ω|−1.

This proves that An is of type (ω(1 + 2(cos θ)−1), θ, K + (1 + 2K )2) for all n ≥ 2ω.
It also follows from (44) that if we take, for example, λ0 = ω(1+2(cos θ)−1), then

we have, for n ≥ 2ω,

‖R(λ0 : A) − R(λ0 : An)‖L(X) ≤ (1 + 2K )2n−1.

In other words, for all n ∈ N condition (17) in Theorem 4.3 is satisfied with X = X0,
δ = 1 and λ0 = ω(1 + 2(cos θ)−1). In particular, we can apply Theorem 4.3 to obtain
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the desired result for the case θF > − 1
2 + 1

τ
, where τ is the type of X , and θG > 1

2 + 1
p .

Concerning the dependence on 1 + D1(A, An) of the implied constant in (19), note
that 1 + D1(A, An) is uniformly bounded in n.

In order to get the desired result for general θF , θG ≥ 0, we consider the difference
R(λ0 : A) − R(λ0 : An) in the L(X An

δ−1, X)-norm. (Note that if A is unbounded then
R(λ0 : A) − R(λ0 : An) /∈ L(X A

δ−1, X) for any δ < 1.) For n ≥ ω(1 + 2(cos θ)−1),
we have, by (2), that ‖(2ωI − An)‖L(X) ≤ 2n(1+ K ). Thus by estimate (4), we have,
for δ ∈ (0, 1),

‖(2ωI − An)1−δx‖ ≤ 2(1 + 2K )‖x‖δ‖An x‖1−δ
X

≤ 22−δ(1 + 2K )2−δn1−δ‖x‖X .

It follows that for δ ∈ [0, 1) we have

‖R(λ0 : A) − R(λ0 : An)‖L(X An
δ−1,X)

≤ 22−δ(1 + 2K )4−δn−δ.

Observe that by Lemma 5.3 we have that F : [0, T ] × X → X An
θF

is Lipschitz
continuous and of linear growth for all n ≥ 2ω with Lipschitz and growth constants
independent of n, and G : [0, T ] × X → γ (H, X An

θG
) is L2

γ -Lipschitz continuous and
of linear growth for all n ≥ 2ω with Lipschitz and growth constants independent of
n. Also, 1 + Dδ(A, An) is uniformly bounded in n.

Fix η ∈ [0, 1] such that η < min{ 3
2 − 1

τ
+ θF , 1

2 − 1
p + θG} and suppose y0 ∈

L p(Ω,F0; X A
η ). It follows from Theorem 4.3 with δ = η, but with An playing the

role of A and A playing the role of A0 that

‖U − U (n)‖V α,p
c ([0,T ]×Ω;X) � ‖x0 − y0‖L p(Ω;X) + n−η(1 + ‖y0‖L p(Ω;X A

η )),

with implied constants independent of n, x0, and y0. �

Acknowledgments

The authors gratefully acknowledge Jan van Neerven and the anonymous referees for
their helpful comments.

REFERENCES

[1] Z. Brzeźniak. On stochastic convolution in Banach spaces and applications. Stochastics Stochastics
Rep., 61(3-4):245–295, 1997.

[2] D.L. Burkholder. Martingales and singular integrals in Banach spaces. In “Handbook of the Geom-
etry of Banach Spaces”, Vol. I, pages 233–269. North-Holland, Amsterdam, 2001.

[3] S.G. Cox. Stochastic Differential Equations in Banach Spaces: Decoupling, Delay equations, and
Approximations in Space and Time, 2012. PhD thesis, available online at http://repository.tudelft.
nl.

[4] S.G. Cox and E. Hausenblas. Pathwise space approximations of semi-linear parabolic SPDEs with
multiplicative noise. Int. J. Comput. Math., 89:2460–2478, 2012.

http://repository.tudelft.nl
http://repository.tudelft.nl


Vol. 13 (2013) Perturbations of SDEs in UMD Banach spaces 827

[5] S.G. Cox and J.M.A.M. van Neerven. Pathwise Hölder convergence of the implicit-linear Euler
scheme for semi-linear SPDEs with multiplicative noise. Numer. Math., 125(2):259–345, 2013.
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