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Number systems and pre-number systems

We define a pre-number system as a triple (V, φ,D), where

• V is an Abelian group;

• φ is an endomorphism of V of finite cokernel;

• D is a finite subset of V containing a system of representatives

of V modulo φ(V ).

A pre-number system (V, φ,D) is a number system if there exist

finite expansions

a =
ℓ
∑

i=0

φi(di) (di ∈ D)

for all a ∈ V .

We are ultimately interested in the classification of all number

systems.



Examples

• (Z, b, {0, . . . , |b| − 1}) is a pre-number system whenever |b| ≥ 2,

and a number system if and only if b ≤ −2.

• (Z[i], b, {0, . . . , |b|2−1}) is a pre-number system whenever |b| >

1, and a number system if and only if b = −a ± i, for some

a ∈ N.

• (Z[X]/((X −5)(X−7)), X, {1, −1, 3, −3, 5, X, X−2, −X+2,

X−4, −X+4, X−6, −X+6, X−8, −X+8, −X+10, 2X−7,

2X − 9, −2X + 9, 2X − 11, −2X + 11, 2X − 13, −2X + 13,

−2X +15, 3X − 14, 3X − 16, −3X +16, −3X +18, 3X − 18,

−3X +20, 4X − 21, 4X − 23, −4X +23, −4X +25, 5X − 28,

−5X +30}) is a number system (proof: to come!).



Properties

If (V, φ,D) is a number system, then we call D a valid digit set for

(V, φ).

If D contains elements that are congruent modulo φ(V ), we call it

redundant, otherwise irredundant.

Theorem (Okazaki/CvdW) If (V, φ,D) is a number system, then

V ∼= V tor ×H where H ∼= V/V tor.

Also, H is a subgroup of a finite-dimensional Q-vector space, so φ
can be given by a finite-dimensional matrix over Q.

Today, we consider V of the form Z[X]/(P), with P ∈ Z[X] non-

constant, or closely related groups.

Note that when (V, φ,D) and (W,ψ, E) are number systems, the

direct product (V ×W,φ × ψ,D × E) is well-defined and is also a

number system.



Example: the odd digits

Assume V = Z and φ is multiplication by some integer b. Let b be

odd, |b| ≥ 3, and let

Dodd := {−|b|+2,−|b|+4, . . . ,−1,1, . . . , |b| − 2, b}.

This is a valid digit set for all odd b.

For b = 3: it’s {−1,1,3}. We get 0 = 3 · 1+ (−1) · 3.

a (a)3,odd a (a)3,odd a (a)3,odd a (a)3,odd
0 13 5 111 −1 1 −6 1133
1 1 6 13 −2 11 −7 111
2 11 7 111 −3 113 −8 1131
3 3 8 31 −4 11 −9 113
4 11 9 113 −5 111 −10 1131



Projections

Suppose f is a CNS polynomial, so

(Z[X]/(f), X, {0, . . . , |f(0)| − 1})

is a number system. If f = f1f2, then trivially also

(Z[X]/(fi), X, {0, . . . , |f(0)| − 1}) (i = 1,2)

are number systems (with possibly redundant digit sets): if

a =
ℓ
∑

i=0

diX
i (mod f),

then the same expansion is true modulo f1 and f2.

Can we go in the other direction? What is the relation with the

direct product
(

Z[X]

f1
, X,D1

)

×

(

Z[X]

f2
, X,D2

)

?



The Chinese Remainder Theorem

Everybody knows this formulation: if (n,m) = 1, then

Z/nmZ ∼= Z/nZ× Z/mZ.

How about this one: if (f, g) = 1, with f, g ∈ Z[X], then

Z[X]/(fg) ∼= Z[X]/(f)× Z[X]/(g) ?

This is false in general! In Q[X] it works, because Q[X] is a PID,

but Z[X] is not a PID. The correct statement is

Z[X]/(fg) ∼= Z[X]/(f)×Z[X]/(f,g) Z[X]/(g),

where given maps A,B
µ,ν
−→ C, the fibred product A×CB is defined

as

{(a, b) ∈ A×B | µ(a) = ν(b)}.



Really coprime polynomials

We have Z[X]/(fg) ∼= Z[X]/(f)×Z[X]/(f,g) Z[X]/(g).

Now suppose (f, g) = (1); then Z[X]/(f, g) is the zero ring, so the

fibred product is just the direct product. Recall that there exist

u, v ∈ Z[X] with uf + vg = Res(f, g). Therefore:

Theorem Suppose f, g ∈ Z[X] have Res(f, g) = 1. Then (f, g) =

(1). If the leading coefficients are coprime in Z, then the converse

holds, because we have |Z[X]/(f, g)| = |Res(f, g)|.

But (Myerson): let f = 2X + 1 and g = 2X + (1 + 2e) for some

e ≥ 1. Then Res(f, g) = 2e, but (f, g) = (1).

In general, Z[X]/(f, g) has a complicated structure! Can be deter-

mined using strong Gröbner bases over Z.



Conclusion (first try)

Theorem If (Z[X]/(fi), X,Di), for i = 1,2, are number systems,

and (f1, f2) = 1, then

(Z[X]/(f1), X,D1)× (Z[X]/(f2), X,D2)
∼= (Z[X]/(f1f2), X, E)

with E = D1 ×D2 via the CRT.

Of course, when we reduce E modulo fi, we should get Di. So

unfortunately we conclude that even when D1 and D2 are the

canonical digits,

E 6= {0,1, . . . , |f1(0)f2(0)− 1|}

(the canonical digits for f1f2)!

Can we still make this into a nice birthday present for Attila?



Not really coprime polynomials

We still have Z[X]/(fg) ∼= Z[X]/(f)×Z[X]/(f,g) Z[X]/(g).

Try to extend this to number systems, so assume we have digits

Di, and try to form digits modulo fg using the isomorphism.

It follows that d ≡ d′ (mod (f, g)) for all d, d′ ∈ D1 ∪ D2!!!

In particular, D1 and D2 cannot contain 0...

Let’s try an example: f = X − 3, g = X − 5, so (f, g) = (2) and

Z[X]/(f, g) ∼= Z/2Z.

It follows that all digits must be 1 modulo 2! But wait...



A worked example

We have the odd digits {−1,1,3} for X−3 and {−3,−1,1,3,5} for

X − 5. Now use the Chinese Remainder Theorem, and get digits

{1, −1, 3, −3, X, 3X − 10, −X + 4, 2X − 5, −3X + 12, X − 4,

−2X +9, −X +2, 2X − 7, −X +6, X − 2, −2X +7}

for (X − 3)(X − 5).

Using some more technical stuff, we will show that this digit set

is valid.

Bad example: if we had digits 1 and 2, respectively, the isomor-

phism gives 1
2(X − 1), which is not integral, and this residue class

is uniquely determined, by the CRT for Q[X].



Technical stuff

Following the map of reduction modulo (f, g), we obtain a number

system in the finite ring R = Z[X]/(f, g); as we have seen, we

assume there is just one digit d in this number system.

So all possible expansions are d, d+ dX, d+ dX + dX2, . . ., and

these must cover all elements of R. It follows that d is a unit of

R and the sequence

S : 1, 1+X, 1+X +X2, . . .

has period |R|.

These conditions are obviously fulfilled in the example: d = 1, and

X ≡ 3 ≡ 1 as well, so 1 and 1 +X = 0 cover Z/2Z.

Finally, 0 = (−1,3)3,odd = (−1,5)5,odd, and the gcd of these

lengths is 2.



One-sidedly linear case

From now on, suppose f and g are monic nonconstant and f =

X − a is linear. Then we know that

Z[X]/(f, g) ∼= Z/(Res(f, g)) = Z/(g(a)).

If a ≡ 1 (mod g(a)), then X = 1 in the ring R, so of course the

sequence S covers R.

Put sn = 1 + X + . . . + Xn; we have sn+1 = Xsn + 1, a linear

congruential sequence as used in random number generation.

So, to compute the period of S we can use results about LCSs

(e.g. Knuth): we need X ≡ 1 (mod p) for all primes p dividing |R|,

and X ≡ 1 (mod 4) if 4 divides |R|.

These conditions only depend on f and g, so for example if f =

X+4 and g = X+7, there are no valid digit sets that give rise to

a number system modulo (X +4)(X +7).



Conclusion (second try)

Theorem Let f, g ∈ Z[X] be monic, nonconstant and coprime with

f = X − a, |a| ≥ 2. Let R = Z[X]/(f, g). Then the Chinese

Remainder Theorem yields an isomorphism of number systems

(Z[X]/(fg), X, E) ∼= (Z, a,D)×R (Z[X]/(g), X,D′)

if and only if

• E is the inverse image of D ×D′ under the CRT isomorphism;

• (Z, a,D) and (Z[X]/(g), X,D′) are number systems with zero

cycle lengths L and L′, where (L,L′) = |R|;

• X ≡ 1 (mod p) for all primes p dividing |R| and X ≡ 1 (mod 4)

if 4 | |R|;

• there exists d0 ∈ R∗ such that d ≡ d0 (mod (f, g)) for all d ∈

D ∪ D′.



Final question

Can anybody give an infinite set of pairwise really coprime poly-

nomials, or even with pairwise resultant ±1?

My best effort:

{X − 1, X, X2 − X + 1, X3 − X + 1, X4 − X3 + X2 − X + 1,

X5 − 2X3 +3X2 − 2X +1}.

And finally:

Gratulálok a születésnapjára!


