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Binary digits

Everybody knows that (10)2 = 2 and (11011)2 = 27.

Also, −27 = (−11011)2. Or is it?

Some computers know that −27 = (1111111111100101) (signed

word), and that 32767 + 1 = −32768.

Some people know that −1 = (11111 . . .)2 ∈ Z2 (start with LSD

here), and

−27 = (101001111 . . .)2.

Can we do better?



The expansion algorithm

Define the dynamic mapping T : Z → Z : a 7→






a
2 if a even;
a−1
2 if a odd.

Now to expand a, write 0 if a even and 1 otherwise, and continue

with T(a). Done when Tn(a) = 0.

Example: 27
1→ 13

1→ 6
0→ 3

1→ 1
1→ 0.

However, −1
1→ −1...

Try other digits: D = {d0, d1}, with di ≡ i (mod 2).

Criterion for the existence of a 1-cycle: a−d
2 = a ⇔ a = −d.

So this is hopeless!



Negabinary expansions

Try other basis −2, with digits {0,1}:

−27
1→ 14

0→ −7
1→ 4

0→ −2
0→ 1

1→ 0, so −27 = (100101)−2.

Theorem (Grünwald 1885) All integers have a finite expansion on

the integer basis b ≤ −2 and digits {0,1, . . . , |b| − 1}.

Proof: there are no cycles except 0
0→ 0 !

Excursion: the balanced ternary expansion uses basis +3 and digits

{−1,0,1}, and expands all integers finitely. If only computers had

three-way switches!

Theorem Let a ∈ Z3. Then a ∈ Z if and only if its balanced ternary

expansion is finite.



A curious question

Definition A digit set D is valid for basis ±2 if all integers have a

finite representation

ℓ
∑

i=0

di(±2)i (di ∈ D).

We know that no digit sets are valid for basis +2; for basis −2,

we know the valid digit set {0,1}, and thus also {0,−1} by an

automorphism of the additive group.

Question Are there any others?

Answer Yes, infinitely many!



Expansions of zero

Is it possible to have a digit set without zero? Yes!

The definition of the mapping T and of the stopping criterion is

the same (if you formulate it like I do!).

Example: basis −2, digits {1,4}. Expand −27:

−27
1→ 14

4→ −5
1→ 3

1→ −1
1→ 1

1→ 0, so −27 = (111141)−2.

Interesting: 0
4→ 2

4→ 1
1→ 0, a 3-cycle!

So, 0 = ()−2 = (144)−2 = (144144)−2 = . . .

Theorem Any valid digit set gives rise to a nontrivial expansion of

zero.



Experiments
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Results

Theorem (CvdW 2008) The digit set {d,D} with d < D is valid for

basis −2 if and only if

(i) one of d,D is even and one is odd (trivial)

(ii) if 3 | dD, then one of d,D is 0 and 3 does not divide the other

(avoid 1-cycles except 0)

(iii) we have 2d ≤ D and 2D ≥ d (0 is expansible)

(iv) D − d = 3i for some i ≥ 0 (the real stuff!)

For example, the only valid digit sets with 0 are {0,±1}. On the

other hand, the sets {1,3i +1} are valid for all i ≥ 0.



Higher-dimensional analogues

There is no reason to limit the theory of number systems to Z.

Consider this setup:

• V is an abelian group.

• φ : V → V is an endomorphism of V , with [V : φ(V )] < ∞.

• D represents V modulo φ(V ).

Then we can define T : V → V : a 7→ φ−1(a− da), where da ∈ D has

a ≡ da (mod φ(V )). We call (V, φ,D) a pre-number system, and

additionally a number system when all elements of V are finitely

expansible.

Theorem (Okazaki-CvdW) If (V, φ,D) is a number system, then

V tor is a direct summand of V and is bounded, and V/V tor has

finite rank.



Generalised binary systems

Here, we will consider generalised binary pre-number systems:

• α is an algebraic integer of norm ±2.

• V is a fractional ideal of Q(α).

If V2 = βV1 for some β ∈ Q(α), then (V1, α,D) and (V2, α, βD) are

isomorphic as pre-number systems.

Easy necessary conditions to have finite expansibility of all a ∈ V :

• α and α− 1 must be non-units of Z[α].

• α must be expanding: for all σ : Z[α] →֒ C we have |σ(α)| > 1.

Note that any monic and expanding f ∈ Z[x] with |f(0)| prime is

automatically irreducible.



Expanding polynomials of given norm

On my website

www.opt.math.tugraz.at/ cvdwoest/maths/expanding

I collected some software and tables about enumeration of expand-

ing and Pisot polynomials. Using a MAGMA implementation of

ideas due to Schur, Dufresnoy-Pisot, Chamfy, and Kovács-Burcsi,

I computed all monic expanding polynomials with integer coeffi-

cients and constant term ±2 up to degree 20, as well as several

cases with higher norm.

The computation for (e.g.) degree 13 and norm 2 takes less than

13 seconds on an Athlon.



The periodic set

Because α is expanding, the mapping T is almost a contraction on

V , and the unique finite subset P ⊂ V that is invariant under T is

called the periodic set of the pre-number system.

Lemma The periodic set of (Z,−2, {d,D}) is the arithmetic pro-

gression
{⌈

2d−D
3

⌉

, . . . ,
⌊

2D−d
3

⌋}

.

In higher dimensions, the periodic set is usually quite irregular.

Work of the Austro-Hungarian school has led to several (exponen-

tial) algorithms to compute the periodic set for any pre-number

system.

Theorem (V, α,D) is a number system if and only if the action of

T on P has exactly one cycle, which passes through 0.



The tile

There is a continuous variant of the (discrete) periodic set, called

the tile of the pre-number system, because it usually tiles V ⊗ R.

For (Z,−2, {d,D}), it is the interval
[

2d−D
3 , 2D−d

3

]

.

These tiles have the following properties:

• they are compact and the closure of their interior.

• they have fractal boundary.

• they may have infinitely many connected components, but they

are connected when |D| = 2.

To prove a higher-dimensional analogue of the main Theorem, we

must characterise the lattice points in the tile, and describe the

action of T on them.



Work in progress

More-or-less-theorem Let α be an expanding algebraic integer of

norm ±2. Then up to finitely many exceptions, a digit set D =

{d0, d0+ δ} makes (Z[α], α,D) into a number system if and only if:

(i) (d0, α− 1) = (d1, α− 1) = (1)

(ii) there is a nontrivial zero expansion

(iii) δ is a product of prime divisors of α − 1 that are unramified,

totally split and lie over different primes of Z

Note that for a given degree d, there are only finitely many ex-

panding α of degree d and norm ±2. The smallest nonmaximal

order among them is generated by x4+x2+4 (Potiopa 1997). The

smallest example with a nontrivial ideal class group is x8−x6−x2+2

(CvdW 2009).



Technical assumptions

I need the following:

(i) α− 1 is expanding;

(ii) the Hausdorff dimension of the tile is less than dimZ Z[α];

(iii) Z[α] is a maximal order;

(iv) (Z[α], α, {0,1}) is a number system.

The last assumption says that the minimal polynomial of α is a

CNS polynomial.

I hope to remove all of these assumptions.



Example

A famous example is τ = −1+
√
−7

2 satisfying x2+x+2. This basis

has cryptographic significance because it can be used to speed up

operations on Koblitz elliptic curves.

x2 + x+2 is a CNS polynomial, so (iv) is satisfied.

Z[τ ] is maximal, and τ−1 = (τ+1)2, where (τ+1) is an unramified

prime of norm 2, and hence split.

All conjugates of τ have the same modulus, so the assumption on

the Hausdorff dimension of the boundary follows from a theorem

of Veerman.

So the Theorem holds for basis τ .



Experimental verification

This was verified experimentally for all pairs {a+bτ, c+1+dτ} with

a, b, c, d ∈ {−4, . . . ,4}, a and c even. In all valid pairs, the difference

is ±(τ +1)e, with 0 ≤ e ≤ 7.

The attractors have the “right” number of elements, except (e.g.)

for {τ, τ +1}, where it has 3.


