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Problem Formulation

A...OA=a(t), B...OB = b(t)
dist?(A,B) = (b —a,b — a) = d? = const

(a,b —a) = (b,b — a), projection theorem

la| = b = /(AB.a) — /(AB.b)
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2 ... moving system
¥ ... fixed system

Y /¥* ... motion



The Planar Case



The Planar Case

—

Z/(AB,a) = Z(AB,b) for all t € [to, t;] ©

A



The Planar Case

—

Z/(AB,a) = Z(AB,b) for all t € [to, t;] ©

a=b forall t € [ty, t1]

A



The Planar Case

—

Z/(AB,a) = Z(AB,b) for all t € [to, t;] ©

a=b forall t € [ty, t1]

curved translation

A



The Planar Case

—

Z(AB,a) = Z(AB,b) for all t € [to, 1] ¢

a=b forall t € [ty, t1]

curved translation

Z(AB,a) = —/(AB,b) for all
t € [to, t1]




The Planar Case

—

Z(AB,a) = Z(AB,b) for all t € [to, 1] ¢

a=b forall t € [ty, t1]

curved translation

Z(AB,a) = —/(AB,b) for all
t € [to, t1]

bisector n of AB = moving polhode
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The Planar Case

¥ /¥* ... motion of a straight line n rolling on a curve s*
S ... midpoint of AB

> /¥* ... Frenet motion along the path s of S
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planar case B

S is a tractrix with respect to a and b




The Planar Case

mobile robot with two wheels
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ruled surface ® generated by the motion of e = AB:
y(t, u) = x(t) + ve(t) with (e,e) =1

A ... a(t) =y(t,a)
B...b(t)=y(t,a+d)

|a| = |b| = (22 + d)(e,e) = —2(x.¢&)
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The Spatial Case

(2a+ d){(e, &) = —2(x, &)

spatial case A
e=0<«<=e=c

® is a cylinder (trivial case)

spatial case B
x=0<=x=c=s

® is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

spatial case C

é,x £ 0

2 (e, e)
The midpoint S of AB is the striction (cuspidal) point on e = AB.
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The Spatial Case

An Example: screw motion

all points on a common right cylinder around the screw axis have
paths of equal length

striction curve s is the helix generated by S
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An Interpolation Problem

Given: series of positions A;B;, i = 1,...,n of the rod AB

Wanted: motion ¥/Y* which
a) moves AB through the given positions and
b) guarantees equal path lengths of A and B

Construction:

Find a suitable curve s interpolating the midpoints S; of
AiB;

Find a ruled surface ¢ that interpolates ¢; = A;B;
and whose striction curve is s
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i+ b; .
curve s...s(t) with s(t;) = % =:s;, i=1,...

7... arclength on s: s =s(7);
(s',sy =1,
S(T,') = §;

Find a vector function e = e(7) with
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An Interpolation Problem

i+bi
curve s...s(t) with s(t;) = aithi_

7... arclength on s: s =s(7);
(s',sy =1,
S(T,') = §;

Find a vector function e = e(7) with

b,-fa,-

e(r)) =e = b; —ay|

i=1,...

ZS,‘,/Zl...

(1)

()
(V)
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X = COoso
. o’sing

y = —7=%

7 =

j:sinm/l—%';
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-
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X coso
o o'sing
y = ——%
. O-IZ
z = =sino 1—?;
e =

3

coso-t — o'sino-h £ sinU\/l—%Z-b

<

O»r «F»r «

it
-
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An Interpolation Problem

. . 2
e = coso-t — o'sino-h + sinoy/1—%;-b

e o' =0: ® is a ruled surface of constant striction;
e € [t,b]

e 0 = 0: ® is the tangent surface of s

e « = 0 (striction curve s is a straight line):
a solution is possible only if o’ = 0, i.e.; o = const.
® is a ruled surface of constant slope and a straight line as striction
curve.



An Interpolation Problem

. . 12
e = coso-t — o'sino-h £ sinoy/1-% b



An Interpolation Problem

e =

€ (t,e) — coso = 0
.

. h,e) o'sing 4
K

coso-t — o'sinc-h + sina\/l—‘l’ﬂ—f-b
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e =

€ (t,e) — coso = 0
.
e (h,e) + ”5;"” = 0

a'(1)?

Construct a striction function o with

< K1)

coso-t — o'sinc-h + sinm/l—i—f-b
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. . 2
e = coso-t — o'sino-h + sinoy/1—%;-b

€ (t,e) — coso = 0
.
er ... (hje) + g s;n 7 = o0

€
Construct a striction function ¢ with
IR < ()
o(r;) = arccos(s'(;),e;)
o(r) = _(s"(7),e) Li=1,...,n

sino(7;)



An Interpolation Problem
. . 2
e = coso-t — o'sino-h £ sinoy/1-% b

€ (t,e) — coso = 0
.
er ... (hje) + g S: 7 — o

Construct a striction function o with

o' () < K1)

o(r;) = arccos(s'(;),e;)
o(m) = _<S//(T,‘),e,'> ,i=1...,n
' sino(7;)

Construct o as a Hermite interpolant.
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