MOTION OF A LINE SEGMENT WHOSE ENDPOINT PATHS HAVE EQUAL ARC LENGTH

Anton GFRERRER ${ }^{1}$
${ }^{1}$ University of Technology, Graz, Austria

Abstract

The following geometric problem originating from an engineering task is being addressed: How can you move a rod in space so that its endpoint paths have equal length? Trivial examples of motions in the Euclidean plane and in Euclidean 3-space where two points A and B have paths of equal arc length are curved translations or screw motions. In the first case all point paths are congruent by translation and in the second all points on a right cylinder coaxial with the screw motion have congruent point paths. It turns out that in the plane there exists only one non-trivial type: If A and B have paths of equal arc length the motion is generated by the rolling of a straight line, namely the bisector n of $A B$ on an arbitrary curve. In 3-space there is a nice relation to the ruled surface Φ generated by the line $A B$: The path of the midpoint S of $A B$ is the striction curve on Φ. This is also the key to the solution to the following interpolation problem: Given a set of discrete positions $A_{i} B_{i}$ of the segment $A B$ find a smooth motion that moves $A B$ through the given positions and additionally guarantees that the paths of A and B have equal arc length.

Keywords: space kinematics, line geometry, paths of equal arc length, motion of a line, ruled surface, striction curve, projection theorem

1 Introduction

We will investigate the problem of moving a rod $A B$ via a Euclidean motion μ in a way that its endpoints A and B follow paths of equal arc length (cf. [3]). The planar and spatial cases are treated in Section 2 and 3, respectively. The main part of the paper (Section 4) is the investigation of the following interpolation problem:
Given a set of discrete positions $A_{i} B_{i}$ of a straight line segment $A B$ find a smooth motion of $A B$ that interpolates the positions $A_{i} B_{i}$ with the side condition that the paths of A and B have the same length. This will lead us to the task of constructing a ruled surface with given striction curve (cf. [1] and [2]).
In the following we always assume that all occurring functions are C^{2}.

2 The planar case

Let t denote the time and $\mathbf{a}(t)$ and $\mathbf{b}(t)$ be the position vectors of the endpoints A and B of a straight line segment moved in the plane. From

$$
d:=\operatorname{dist}(A, B)=\text { const. }
$$

we obtain

$$
\langle\dot{\mathbf{a}}, \mathbf{b}-\mathbf{a}\rangle=\langle\dot{\mathbf{b}}, \mathbf{b}-\mathbf{a}\rangle
$$

where ". " means differentiation w.r.t. time t and " $\langle.,$.$\rangle " denotes the Euclidean scalar product. This$ means that

$$
\angle(\overrightarrow{A B}, \dot{\mathbf{a}})= \pm \angle(\overrightarrow{A B}, \dot{\mathbf{b}}) .
$$

If

$$
\angle(\overrightarrow{A B}, \dot{\mathbf{a}})=\angle(\overrightarrow{A B}, \dot{\mathbf{b}})
$$

holds on in interval $\left[t_{0}, t_{1}\right]$ then the motion under consideration is a curved translation. The instantaneous pole is always at infinity and all points have paths congruent by translation (Fig. 1, left). If contrary

$$
\begin{equation*}
\angle(\overrightarrow{A B}, \dot{\mathbf{a}})=-\angle(\overrightarrow{A B}, \dot{\mathbf{b}}) \tag{1}
\end{equation*}
$$

then the pole always lies on the bisector n of $A B$ (Fig. 1, right), which therefore has to be the moving polhode if the condition (1) holds on an interval $\left[t_{0}, t_{1}\right]$. If S denotes the midpoint of $A B$ and s its path then μ is the motion of the Frenet frame along s (Fig. 2). The fixed polhode is the evolute s^{*} of s, the instantaneous pole being the center S^{*} of curvature of the curve s.

(a) Planar case A: The velocity vectors of A and B are identical.

(b) Planar case $\mathrm{B}: \angle(\overrightarrow{A B}, \dot{\mathbf{a}})=-\angle(\overrightarrow{A B}, \dot{\mathbf{b}})$.

Figure 1: The two cases occurring in the plane.

We summarize in

Proposition 1. If two points A and B are moved w.r.t. a planar Euclidean motion μ so that their paths a and b have equal arc length then μ is either a curved translation or the motion of the Frenet frame along a curve s. In the second case A and B lie symmetric w.r.t. the normal n of s.

Figure 2: General planar motion where 2 points A and B have paths of equal length: The bisector n of the segment $A B$ is the moving polhode.

3 The spatial case

Let Φ be the ruled surface generated by the straight line $e:=A B$ via a Euclidean motion μ :

$$
\mathbf{y}(t, u)=\mathbf{x}(t)+u \mathbf{e}(t)
$$

Here \mathbf{e} is a normalized direction vector of the the line e, i.e.,

$$
\begin{equation*}
\langle\mathbf{e}(t), \mathbf{e}(t)\rangle \equiv 1 \tag{2}
\end{equation*}
$$

and t denotes the time. Then the two points A and B have position vectors $\mathbf{a}(t)=\mathbf{y}(t, a)$ and $\mathbf{b}(t)=\mathbf{y}(t, a+d)$ where $d:=\operatorname{dist}(A, B)$ and a are constants. Let us moreover assume that Φ is not a cylinder, which means that \mathbf{e} is not a constant vector.

From

$$
|\dot{\mathbf{a}}|=|\dot{\mathbf{b}}|
$$

we easily derive that

$$
a+\frac{d}{2}=-\frac{\langle\dot{\mathbf{x}}, \dot{\mathbf{e}}\rangle}{\langle\dot{\mathbf{e}}, \dot{\mathbf{e}}\rangle}
$$

Hence we have
Proposition 2. If two points A and B are moved via a spatial Euclidean motion μ so that their paths a and b have equal arc length then the midpoint S of the straight line segment $A B$ is the $\left\{\begin{array}{c}\text { striction point } \\ \text { point of regression } \\ \text { vertex }\end{array}\right\}$ on e, in case of Φ being $a\left\{\begin{array}{c}\text { skew ruled surface } \\ \text { tangent surface } \\ \text { cone }\end{array}\right\}$.

4 An interpolation problem

We consider the following interpolation problem in 3-space: Given a set of discrete positions $A_{i} B_{i}$, $i=1, \ldots, n$ of the segment $A B$ find a smooth motion that moves $A B$ through the given positions and additionally guarantees that the paths of A and B have equal arc length. Being aware of Proposition 2 we suggest to solve this problem in two steps:

Step 1: Determine an interpolation curve $s \ldots \mathbf{s}(t)$ of the midpoint series S_{i} of $A_{i} B_{i}, i=1, \ldots, n$.
Step 2: Construct a ruled surface Φ that interpolates $e_{i}=A_{i} B_{i}$ and whose striction curve is s.
Whereas the first step is a standard task the second needs some additional considerations. Let

$$
\mathbf{s}=\mathbf{s}(\tau)
$$

be the arclength parametrization of s and

$$
\mathbf{e}=\mathbf{e}(\tau)
$$

the direction vector of the ruled surface's generator e which we have to determine. We assume that \mathbf{e} is normalized:

$$
\begin{equation*}
\langle\mathbf{e}, \mathbf{e}\rangle \stackrel{\tau}{\equiv} 1 \tag{3}
\end{equation*}
$$

Denoting derivatives w.r.t. the arclength τ of s by $^{\prime}{ }^{\prime}{ }^{\prime \prime}, \ldots$ and introducing the striction

$$
\sigma:=\angle\left(\mathbf{s}^{\prime}, \mathbf{e}\right)
$$

of Φ we have

$$
\begin{equation*}
\left\langle\mathbf{s}^{\prime}, \mathbf{e}\right\rangle=\cos \sigma \tag{4}
\end{equation*}
$$

Moreover,

$$
\left\langle\mathbf{s}^{\prime}, \mathbf{e}^{\prime}\right\rangle=0
$$

because s is the striction line on Φ. Thus, differentiating (4) we obtain

$$
\begin{equation*}
\left\langle\mathbf{s}^{\prime \prime}, \mathbf{e}\right\rangle=-\sigma^{\prime} \cdot \sin \sigma . \tag{5}
\end{equation*}
$$

Let \varkappa be the curvature and $\left\{\mathbf{t}=\mathbf{s}^{\prime}, \mathbf{h}=\frac{1}{\varkappa} \mathbf{s}^{\prime \prime}, \mathbf{b}=\mathbf{t} \times \mathbf{h}\right\}$ denote the Frenet frame of s. Then (4), (5) can be rewritten as

$$
\begin{align*}
\langle\mathbf{t}, \mathbf{e}\rangle & =\cos \sigma, \tag{6}\\
\langle\mathbf{h}, \mathbf{e}\rangle & =-\frac{\sigma^{\prime} \cdot \sin \sigma}{\varkappa} \tag{7}
\end{align*}
$$

which together with (3) yields

$$
\begin{equation*}
\mathbf{e}=\cos \sigma \cdot \mathbf{t}-\frac{\sigma^{\prime} \cdot \sin \sigma}{\varkappa} \cdot \mathbf{h} \pm \sin \sigma \sqrt{1-\frac{\sigma^{\prime 2}}{\varkappa^{2}}} \cdot \mathbf{b} . \tag{8}
\end{equation*}
$$

We give a geometric interpretation of the formulæ above (Fig. 3). Considering e as unknown position vector of a point, Eq. (4) represents a plane ε with normal vector \mathbf{s}^{\prime} and distance $|\cos \sigma|$ from the origin. For running τ we obtain a one parametric set of such planes. The envelope of these planes is a developable surface Ψ whose equation can be determined by eliminating τ from the two equations Eq. (4) and Eq. (5). The latter represents another plane ε_{1} perpendicular to ε. In order to find suitable vectors \mathbf{e} we have to intersect the generators $g=\varepsilon \cap \varepsilon_{1}$ of Ψ with the unit sphere represented by Eq. (3):

The spherical generator image of Φ lies in the intersection of the developable surface Ψ and the unit sphere.

Figure 3: Spherical image of a generator e
Making use of this we can now tackle Step 2 by constructing a function $\sigma=\sigma(\tau)$ which fulfills

$$
\begin{align*}
\sigma\left(\tau_{i}\right) & =\arccos \left\langle\mathbf{s}^{\prime}\left(\tau_{i}\right), \mathbf{e}_{i}\right\rangle \tag{9}\\
\sigma^{\prime}\left(\tau_{i}\right) & =-\frac{\left\langle\mathbf{s}^{\prime \prime}\left(\tau_{i}\right), \mathbf{e}_{i}\right\rangle}{\sin \sigma\left(\tau_{i}\right)} \tag{10}\\
\sigma^{\prime 2}(\tau) & \leq \varkappa^{2}(\tau) \tag{11}
\end{align*}
$$

Here τ_{i} is the arc length parameter value belonging to the midpoint S_{i} of the given segment $A_{i} B_{i}$, $i=1, \ldots, n$ and $\mathbf{e}_{i}:=\frac{\overrightarrow{A_{i} B_{i}}}{\left|\overrightarrow{A_{i} B_{i}}\right|}$. After having fixed the function $\sigma=\sigma(\tau)$ the direction vector $\mathbf{e}=\mathbf{e}(\tau)$ is determined via Eq. (8).
The ruled surface Φ in Fig. 4 was constructed by the method outlined above. In this example four generators $e_{i}=A_{i} B_{i}, i=1,2,3,4$ were given. The striction curve s was then constructed as interpolant of the midpoints $S_{1}, S_{2}, S_{3}, S_{4}$ (Step 1) and reparametrized w.r.t. arclength. Afterwards a suitable striction function $\sigma=\sigma(\tau)$ was constructed (Step 2) as Hermite interpolant fulfilling the conditions (9), (10) and (11).

Figure 4: Ruled surface Φ interpolating the segments $A_{i} B_{i}$; the endpoints A and B are symmetric w.r.t. the striction curve s and run on curves of equal length.

Remarks:

(a) As condition (3) is quadratical the proposed method can fail if the sign chosen in front of the square root in (8) differs for the prescribed generators $e_{i}, i=1, \ldots, n$.
(b) Eq. (8) can already be found in [1] where it is derived in another way.
(c) In [2] a method to construct ruled surfaces Φ from a given striction curve $s \ldots \mathbf{s}=\mathbf{s}(t)$ is suggested: As the generators of a ruled surface are geodesically parallel along the striction curve one can take any developable surface Δ through s, develop it into a plane π, then choose an arbitrary direction in π and draw the lines $g(t)$ parallel to this direction. Bringing these lines back into space by means of the inverse developing mapping one gets the generators of a solution surface Φ. This method is not appropriate to solve the task in Step 2 as we are given a set of prescribed generators $e_{i}=A_{i} B_{i}, i=1, \ldots, n$.

References

[1] H. Beck, Über Striktionsgebilde, Jahresbericht D. M. V. 37, 91-106, 1928.
[2] R. Behari, Some properties of the line of striction of a ruled surface, Math. Notes Edingburgh math. Soc. 31, 12-13, 1939.
[3] K. Brauner, H. R. Müller, Über Kurven, welche von den Endpunkten einer bewegten Strecke mit konstanter Geschwindigkeit durchlaufen werden, Math. Z. 47, 291-317, 1941.

Contact e-mail: gfrerrer@tugraz.at

