Numerical investigation of liquid film flow on a rotating disk

Doris Prieling¹, Helfried Steiner¹, Petr Vita²

¹Institute of Fluid Mechanics and Heat Transfer Graz University of Technology

²Petroleum Production and Processing University of Leoben

Ercoftac ADA PC meeting Vienna, 6.11.2009

(中) (종) (종) (종) (종) (종)

Outline

- Problem statement
- 3 Asymptotic solution
- 4 Numerical Simulation VoF Method
- 5 Test cases
- 6 Results

Page 2/13

・ロト ・回ト ・ヨト ・ヨト

Motivation

Problem statement

• Impinging jet on rotating disk

• Film motion governed by highly complex dynamics

Prieling,	Steiner,	Vita
-----------	----------	------

< ≣ >

Asymptotic solution

Nusselt solution

$$Ro^2 \ll 1, Ro^2 = \left(\frac{\bar{u}}{\omega r}\right)^2$$

 $\nu \frac{\partial^2 v_r}{\partial z^2} = -r\omega^2$

Film thickness

$$\delta = \left(\frac{3}{2\pi} \frac{Q\nu}{\omega^2 r^2}\right)^{\frac{1}{3}}$$

Asymptotic solution

Rauscher et al. (1973) [1]: $\frac{\delta}{h_0} = r^{*-2/3} + \left(\frac{62}{315} - \frac{2}{9}F^{-1}\right)r^{*-10/3} + \mathcal{O}(r^{-4})$ with $F^{-1} = \frac{2\pi g\nu}{3\omega^2 Q}$, $r^* = r/l$ characteristic lengths: $l = \left(\frac{9Q^2}{4\pi^2\nu\omega}\right)^{\frac{1}{4}}$ and $h_0 = \left(\frac{\nu}{\omega}\right)^{\frac{1}{2}}$

Prieling, Steiner, Vita

Ercoftac ADA PC meeting Vienna, 6.11.2009

Page 5/13

13

Numerical Simulation - VoF Method (Hirt, Nichols [3])

1	– Volume fraction α –			Surface tracking
	(1)	liquid		Interpolation of face values:
	$\alpha(x,t) = \begin{cases} 0 \end{cases}$	gas		 boundedness criterion
	$0 < \alpha < 1$	2-phase zone		 preserve sharp interface
	``	·		Surface tracking methods
	Advection equation ($ abla$	$\cdot \vec{u} = 0$)		Higher Order Differencing
$\frac{\partial \alpha}{\partial \alpha} + \nabla \cdot (\alpha \vec{\mu}) = 0$		(HRIC, Inter- γ , QUICK,)		
∂t		Reconstruction Schemes		
				(PLIC,)
	interface α_f			
	$\begin{array}{c} \bullet \\ \alpha_{\rm U} \end{array} \qquad \begin{array}{c} \alpha_{\rm D} \\ \alpha_{\rm D} \end{array} \qquad \begin{array}{c} \alpha_{\rm D} \\ \alpha_{\rm D} \end{array}$	f ● _α		0.1 0 0 0.3 0.6 0 1.0 1.0 0.2
	flow direction >	<u>\</u>		Figure adopted from [2] I > < = > < = > = 0
Dri	oling Stoiner Vita Fr	cottac ADA PC montine	r Vic	Dana 6 11 2000 Dana 6 /

Test cases (Experiments: Thomas et al. 1991, Ozar et al. 2003)

Radially injected liquid sheet -

Volumetric flowrate Q, rotational speed ω and δ_0 prescribed. Inner radius: r_1 =50.8mm, outer radius: r_2 =203mm. • Test case I:

- $\omega = 200 rpm, Q = 7 lpm$
- Test case II: $\omega = 300 rpm, Q = 3 lpm$

Test case I - Instantaneous film thickness (a

 $(\omega = 200 rpm, Q = 7 lpm)$

Instantaneous film thickness after t=2s

Prieling, Steiner, Vita

Ercoftac ADA PC meeting Vienna, 6.11.2009

Page 8/13

Test case II - Instantaneous film thickness ($\omega = 300$ rpm, Q = 3 lpm)

Instantaneous film thickness after t=2s

Temporal film thickness variation, monitor at r=180mm

<u>Test case I - Time averaged values</u>

 $(\omega = 200 rpm, Q = 7 lpm)$

Test case I ω =200rpm, Q=71pm, v_1 =1x10⁻⁶m²/s, θ =10deg

Test case I - Time averaged values

 $(\omega = 200 rpm, Q = 7 lpm)$

Test case I ω =200rpm, Q=71pm, v_1 =1x10⁻⁶m²/s, θ =10deg

Prieling, Steiner, Vita

Ercoftac ADA PC meeting Vienna, 6.11.2009

Page 10/13

 $(\omega = 300 rpm, Q = 3 lpm)$

Test case II - Time averaged values

0,4 FLUENT PLIC FLUENT HRIC 0,35 FLUENT QUICK OpenFOAM Inter-γ 0,3 Nusselt solution - - Asympt. Rauscher et al. Exp. Ozar et al. 0,25 δ[mm] 0.2 0.15 0,1 0.05 50 60 80 100 120 140 160 180 200 r [mm]

Test case II ω =300rpm, Q=31pm, v_1 =0.66x10⁻⁶m²/s, θ =10deg

Prieling, Steiner, Vita

Ercoftac ADA PC meeting Vienna, 6.11.2009

Page 11/13

Test case II - Time averaged values

 $(\omega = 300 rpm, Q = 3 lpm)$

Prieling, Steiner, Vita

Ercoftac ADA PC meeting Vienna, 6.11.2009

Page 11/13

Conclusions 1/2

Comparison: OpenFOAM - FLUENT

- Both CFD codes produce comparable time averaged values
- Significant differences in *instantaneous* values associated with surface tracking method
 - PLIC: interface highly distorted
 - HRIC, Inter- γ and QUICK show smoother solutions with smaller waviness
- Sensitivity of instantaneous results to surface tracking schemes requires further investigations

Prieling, Steiner, Vita

Page 12/13

イロト イポト イヨト イヨト

Conclusions 2/2

Comparison against Experiments & Asymptotic solution

- Asymptotic solution: good agreement of time averaged values in both cases
- Experimental:
 - Good agreement for Test case I
 - $(\omega = 200 rpm, Q = 7 lpm)$
 - Overpredictions for Test cases II

(
$$\omega = 300$$
 rpm, $Q = 3$ lpm)

- \rightarrow possibly enhanced 3d-effects?
- \rightarrow influence of measurement technique?

Prieling, Steiner, Vita

Page 13/13

- J. Rauscher, R. Kelly, J. Cole, An asymptotic solution for the laminar flow of thin films on a rotating disk, Appl. Mechanics 40 (1973) 43–47.
- R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567–603.
- C. Hirt, B. Nichols, Volume of fluid VOF method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201–225.
- S. Thomas, A. Faghri, W. Hankey, Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk, Journal of Fluids Engineering 113 (1991) 73–80.
- B. Ozar, B. Cetegen, A. Faghri, Experiments on the flow of a thin liquid film over a horizontal stationary and rotating disk surface, Experiments in Fluids 34 (2003) 556–565.

イロト イポト イヨト イヨト