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Abstract: Let ξ1 and ξ2 be two solutions of two stochastic differential equa-
tions with respect to Lévy noise taking values in a certain type of Banach
space. Let Q1 and Q2 be the probability measures on the corresponding Sko-
rohod space induced by ξ1 and ξ2, respectively. In the paper we are interested
under which conditions Q1 is absolute continuous with respect to Q2. More-
over, we give an explicit formula for the Radon Nikodym derivative of Q1 with
respect to Q2.
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1. Introduction

Let ξ1 and ξ2 be two R
d-valued Lévy processes in R

d with characteristics
(A1, γ1, ν1) and (A2, γ2, ν2). Sato gave in his book (see [14, Theorem 33.1])
exact conditions, under which the probability measures on the Skorohod space
D([0, T ]; Rd) of the two Lévy processes ξ1 and ξ2 are equivalent and gave an
explicit formula of the Radon Nikodym derivative (see also the book of Gihman
and Skorohod [9]). Kuzinski [13] generalized this result to Hilbert spaces.

However, often one is only interested in the absolute continuity of one pro-
cess, e.g. ξ1, with respect to the other process, e.g. ξ2, which in fact is a weaker
property as equivalence. In this note we consider only absolute continuity,
which results in weaker conditions on ξ1 and ξ2 as if equivalence of ξ1 and ξ2
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would have been considered. Also, the proof of Kuzinski are based on Hilbert
space theory. Here, in this note, we use another method which can also be
applied to Banach spaces. Therefore, our result can be applied to investigate
absolute continuity of two solution processes to infinite dimensional stochastic
differential equations driven by Lévy processes, which we will illustrate in Ex-
ample 2.9. In case of stochastic differential equations, absolute continuity is
investigated recently by Fournier and Printems [8]

The change of measure formula (or the Girsanov Theorem) is a useful tool
in stochastic analysis. For example, if ξ is a solution to a stochastic (partial)
differential equation driven by a Wiener process, Maslowski and Seidler [15]
have shown that under certain conditions on ξ the corresponding Markovian
semigroup enjoys the strong Feller property by changing the underlying prob-
ability measure and applying a change of measure formula. In large deviation
the change of measure formula is used to find the appropriate skeleton for so-
lutions of stochastic (partial) differential equations (see for a review, e.g. [6]).
In these works the underlying space was a Hilbert space. However, in recent
years stochastic partial differential equation with respect to a Wiener process
in Banach spaces have been considered by several authors (Brzeźniak [3], van
Neerven, Veraar and Weiss [17], van Neerven [16]). Similarly, there exists sev-
eral advantages considering stochastic partial differential equations driven by a
Lévy process in Banach spaces (see e.g. [4, 10, 5]). For example in [10] we were
able to weaken the conditions of the diffusion coefficients. These facts were the
motivation to establish the change of measure formula in Banach spaces for
solutions of infinite dimensional stochastic differential processes driven by Lévy
processes.

In the first part of this note we give a short account of Lévy processes and
Itô processes in Banach spaces. Then, we present the main result. Finally we
give an example where we apply our result to two stochastic partial differential
equations driven by a Lévy process and give an explicit formula of the density
process.

2. Preliminares

To start, let us recall shortly the definition of a Lévy process, the definition of
Lévy measures and the Lévy-Khintchine formula which determines the law of
a Lévy process in a unique way.

Definition 2.1. (see Definition 1.6 [14, p. 3]) Let E be a Banach space.
A stochastic process L = {L(t) : 0 ≤ t < ∞} is an E-valued Lévy process over
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a probability space A = (Ω,F , F, P), where F = (Ft)t≥0 is a right continuous
filtration, if the following conditions are satisfied:

• For any choice n ∈ N and 0 ≤ t0 < t1 < · · · tn, the random variables
L(t0), L(t1) − L(t0), . . ., L(tn) − L(tn−1) are independent.

• L(0) = 0 a.s.

• For all 0 ≤ s < t, the distribution of L(t + s) − L(s) does not depend on
s.

• L is stochastically continuous.

• The trajectories of L are a.s. cádlág on E.

• L is F–adapted.

Let E be a Banach space. For any E-valued Lévy process {L(t) : t ≥ 0}
there exists a trace class operator Q : E → E′, a non negative Lévy measure ν
concentrated on E \ {0}, and an element m ∈ E′ such that

Eei〈L(1),x〉 = exp
(

i〈m,x〉 −
1

2
〈Qx, x〉

+

∫

E

(

1 − ei〈y,x〉 + 1(−1,1)(|y|E)i〈y, x〉
)

ν(dy)
)

, x ∈ E′.

We call the measure ν characteristic measure of the Lévy process {L(t) : t ≥ 0}.
Moreover, the triplet (Q,m, ν) uniquely determines the law of the Lévy process.

Now, starting with an E–valued Lévy process over a filtered probability
space A = (Ω,F , F = (Ft)t≥0, P), one can construct an integer valued random
measure by

ηL : B(E) ×B(R+) ∋ (B × I) 7→ #{s ∈ I | ∆sL ∈ B} ∈ N0 ∪ {∞}.1.

The random measure ηL is a so-called Poisson random measure, whose definition
we give below.

Definition 2.2. (see [11], Definition I.8.1) Let (S,S) be a measurable
space and let A = (Ω,F , F, P) be a complete probability space with right
continuous filtration F = (Ft)t≥0. A Poisson random measure η on (S,S)
with intensity ν ∈ M+(S) over A is a measurable function η : (Ω,F) →
(MI(S × R+),MI(S × R+)), such that

1The jump process ∆X = {∆tX : 0 ≤ t < ∞} of a process X is given by ∆tX(t) :=
X(t) − X(t−), t ≥ 0 and ∆0 = 0.



390 E. Hausenblas

(i) for each B × I ∈ S ⊗ B(R+), η(B × I) := iB×I ◦ η : Ω → N̄ is a Poisson
random variable with parameter2 ν(B)λ(I);

(ii) η is independently scattered, i.e. if the sets Bj × Ij ∈ S ⊗ B(R+),
j = 1, · · · , n, are pair-wise disjoint, then the random variables η(Bj × Ij),
j = 1, · · · , n, are pair-wise independent;

(iii) for each U ∈ S, the N̄-valued process (N(t, U))t≥0 defined by

N(t, U) := η(U × (0, t]), t ≥ 0

is F-adapted and its increments are independent of the past, i.e. if t > s ≥ 0,
then N(t, U) − N(s, U) = η(U × (s, t]) is independent of Fs.

Remark 1. In the framework of Definition 2.2 the assignment

ν : S ∋ A 7→ E
[

η(A × (0, 1))
]

defines a uniquely determined measure. We will denote the difference η − ν by
η̃.

Remark 2. Assume that E is of martingale type p, p ∈ [1, 2] (for the
definition of martingale type p we refer to [4]). Let η be a time homogeneous
Poisson random measure on E with an intensity measure ν which is a Lévy
measure. Then, the process Lη = {Lη(t) : 0 ≤ t < ∞} defined by

L(t) :=

∫ t

0

∫

E

z η̃(dz, ds), t ≥ 0,

is an E–valued Lévy process with characteristic ν̂, such that ν̂ = ν on the unit
ball. For more details about the connection of a Lévy process and a Poisson
random measure we refer to Applebaum [1].

Assume, that A = (Ω,F , F, P) is a complete probability space with right
continuous filtration F = (Ft)t≥0. Let (Z,Z) be a measurable space, ν be a
σ–finite positive measure on Z and η be a time homogeneous Poisson random
measure over A with compensator γ = ν × λ1. Finally, fix p ∈ (1, 2] and let E
be a Banach space of martingale type p. Let

bi : [0,∞) × E → E, i = 1, 2,

and
ci : [0,∞) × E × Z → E, i = 1, 2,

some mappings satisfying the following hypotheses.

2If ν(B)λ(I) = ∞, then obviously η(B) = ∞ a.s..
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H 2.3. The functions bi, i = 1, 2, are uniformly bounded in the first vari-
able and uniformly Lipschitz continuous in the second variable. In particular,
there exists a constant K = Kb > 0 such that

|bi(t, x) − bi(t, y)| ≤ Kb|x − y|, x, y ∈ E, t ≥ 0, i = 1, 2.

H 2.4. The functions ci : [0,∞)×E → Lp(Z, ν;E), i = 1, 2, are uniformly
bounded in the first variable and Lipschitz continuous in the second variable.
In particular, there exists a constant K = Kc > 0 such that

∫ t

0

∫

Z

|ci(s, x, z)−ci(s, y, z)|p ν(dz) ds ≤ K|x−y|p, x, y ∈ E, i = 1, 2, t ≥ 0.

H 2.5. The function c1 is σ(c2)–measurable and we have for all t ≥ 0 and
x ∈ E

Rg(c1(t, x, ·)) ⊂ Rg(c2(t, x, ·))

(here, we denoted by Rg the range of a function).

H 2.6. The functions ci, i = 1, 2, map E into a compact subspace of E. In
particular there exists a Banach space E1, E1 →֒ E compactly, and a constant
K = KE1

> 0 such that

∫ t

0

∫

Z

|ci(s, x, z)|p ν(dz) ds ≤ K(1 + |x|pE1
), x ∈ E and i = 1, 2, t ≥ 0.

Remark 3. From Hypothesis 2.5 it follows by the theorem of Doob
(see [12, Chapter 1, Lemma 1.13]) that there exists a measurable mapping
f : [0,∞) × E → E such that c1 = c2 ◦ f , i.e. c1(s, x, z) = f(s, x, c2(s, x, z)) for
all (s, x, z) ∈ [0,∞) × E × Z.

Let x0 ∈ E1 and let ξi = {ξi(t) : 0 ≤ t < ∞}, i = 1, 2, be two solutions to
the two stochastic differential equations

{

dξi(t) =
∫

Z
ci(t, ξi(t−), z) (η − γ)(dz, dt) + bi(t, ξi(t−)) dt,

ξi(0) = x0, i = 1, 2 .
(1)

By the assumptions on bi and ci, i = 1, 2, we can suppose that there exists a
unique E-valued cádlág process satisfying the SDE given in (1) such that

ξi(t) = x0 +

∫ t

0

∫

Rd

ci(s, ξi(s−), z) (η − γ)(dz, ds) +

∫ t

0
bi(s, ξi(s)) ds, t ≥ 0.

We denote the space of all cádlág function endowed by the Skorohod topol-
ogy by D([0,∞);E). For shortness we denote the Borel σ-field of D([0,∞);E)
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by A. Let us introduce on A a filtration A = (At)t≥0 such that all admissible
mappings3 X : Ω × [0,∞) → E are adapted with respect to A.

Before presenting our result we have two introduce the following notation.
The processes ξ1 and ξ2 induce two probability measures Q1 and Q2 on

D([0,∞);E). In particular,

Qi : A ∋ A 7→ P(ξi ∈ A). (2)

For t ≥ 0, let Qi(t) be the restriction of Qi on At. We are interested in the
Radon Nikodym derivative of Q1(t) with respect to Q2(t), t ≥ 0.

For i = 1, 2, let νi = {νi(t) : 0 ≤ t < ∞} be the unique predictable measure
valued processes given by

[0,∞) × B(E) ∋ (t, A) 7→ νi(t, A) :=

∫

Z

1A(ci(t, ξi(t−), z)) ν(dz). (3)

In fact, since for i = 1, 2, the mapping ci : [0,∞) × E × Z are measurable, the
processes ξ−i are predictable, and it follows that for i = 1, 2, the measure-valued
processes νi, i = 1, 2, are indeed predictable.

Since for any (s, x) ∈ [0,∞) × E we have Rg(c1(s, x, ·)) ⊂ Rg(c2(s, x, ·)),
the measure νc,1(s, x, ·) is absolutely continuous for any (s, x) ∈ [0,∞)×E and
with respect to the measure νc,2(s, x, ·), where

νc,i(s, x,A) =

∫

E

1A(ci(s, x, z)) ν(dz), i = 1, 2.

Therefore, there exists a positive function gc : [0,∞)×E×B(E) → R such that

νc,1(s, x,A) =

∫

A

gc(s, x, y) νc,2(s, x, dy). (4)

Defining

g : [0,∞) × E ∋ (s, x) 7→ g(s, ξi(s−), x) ∈ R
0
+, (5)

3Here, we call a process X admissible, if there exist two predictable process c : Ω×R
+

0 ×Z →
E and b : Ω × R

+

0 → E such that for any I ∈ B(R+

0 ) we have

E

Z

I

Z

E

|c(s, z)|2ν(dz) ds < ∞,

and

X(t) =

Z

t

0

Z

E

c(s, z) (η − γ) (dz, ds) +

Z

t

0

b(s) ds, t ≥ 0.
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it follows that g is a predictable function-valued process such that we have for
all t ≥ 0 and A ∈ B(E)

ν1(t, A) =

∫

A

g(t, x) ν2(t, dx). (6)

Now, with these definitions we can present our main result.

Theorem 2.7. Let (Z,Z) be a measurable space and η be a time ho-

mogenous Poisson random measure on (Z,Z) over a filtered probability space

A = (Ω,F , F, P) such that F = σ(η). Let E be of martingale type p, 1 < p ≤ 2,
and let ci : [0,∞) × E × Z → E, bi : [0,∞) × E → E, i = 1, 2, be measurable

functions, satisfying the Hypothesis H 2.3-H 2.6.

Suppose that for all t ≥ 0 and x ∈ E we have

∫ t

0
(b1(s, x) − b2(s, x)) ds =

∫ t

0

∫

Z

(c1(s, x, z) − c2(s, x, z)) ν(dz) ds. (7)

Then, the Radon Nikodym derivative of the probability measures Q1 and Q2

defined in (2) is given by

dQ1(t)

dQ2(t)
= G(t), t ≥ 0,

where G = {G(t) : 0 ≤ t < ∞} solves











dG(t) =

∫

Z

(g(t, z)) − 1) G(t−)(η − γ)(dz, dt),

G(0) = 1,
(8)

and g = {g(t) : 0 ≤ t < ∞} is the density process defined in (6).

Remark 4. Using the definition of gc in (4) we can write instead of (8)
the following











dG(t) =

∫

Z

(gc(t, ξ2(t−), z)) − 1) G(t−)(η − γ)(dz, dt),

G(0) = 1.

Remark 5. In case ξ1 and ξ2 are two Lévy processes, Theorem 2.7 leads to
the same result as Theorem 33.1 in [14]. To illustrate this fact, we assume in the
following that E = R

d and c1 and c2 are constant in time and space. Let ν1 and
ν2 be two Lévy measures on R

d such that there exists a function ρ : R
d → R with
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ν2(A) =
∫

A
eρ(s,x) dν1(t, dx) for all A ∈ B(Rd) and

∫

Rd

(

e2ρ(s,x) − 1
)2

ν(dz) < ∞.
Let U = {U(t) : t ≥ 0} be given by

U(t) :=

∫ t

0

∫

Rd

ρ(s, z)η(dz, ds) −

∫ t

0

∫

Rd

(eρ(s,z) − 1)ν1(dz)ds, t ≥ 0.

Then, an application of the Itô formula shows that

G(t) = exp(U(t)), t ≥ 0.

Example 2.8. Let E be a Banach spaces of martingale type p. Let Z
and Z1 be two measurable spaces, ν and ν1 be two σ–finite measures defined
on Z and Z1, respectively, and η and η1 be two time homogeneous Poisson
random measure on Z and Z1 with intensity measure ν and ν1, respectively.
Let c : E × R+ × Z → B1(E)4 and c1 : E × R+ × Z1 → E \ B1(E) be two
mappings such that
∫ t

0

∫

Z

|c(s, x, z)|pν(dz) ds < ∞, and

∫ t

0

∫

Z1

|c1(s, x, z)|p ν1(dz) ds < ∞.

Let ξ1 and ξ2 be the solutions for t ≥ 0 to

ξ1(t) = x0 +

∫ t

0
b(s, ξ1(s−)) ds

+

∫ t

0

∫

Z

c(s, ξ1(s−), z) (η − ν)(dz, ds) +

∫ t

0

∫

Z1

c1(s, ξ1(s−), z) ν1(dz) ds,

ξ2(t) = x0 +

∫ t

0
b(s, ξ2(s−)) ds

+

∫ t

0

∫

Z

c(s, ξ2(s−), z)(η−ν)(dz, ds)+

∫ t

0

∫

Z1

c1(s, ξ2(s−), z) (η1−ν1)(dz, ds).

Then, g defined in (5) is independent of time and given by

g(t, z) =

{

1, z ∈ Z,

0, z ∈ Z1.

If ν1 is a finite measure, it follows that the density process is given by

G(t) = 1 +

∫ t

0
G(s−) ν1(E \ B1(E)) ds −

∫ t

0
G(s−) η1(E \ B1(E), ds), t ≥ 0.

4B1(E) = {x ∈ E : |x| ≤ 1}.
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Example 2.9. Let E be a Banach spaces of martingale type p, 1 < p ≤ 2,
and A be an analytic operator on E with discrete spectrum {en : n ∈ N}. Let
U be the unit sphere in E, i.e. U = {x ∈ E : |x| = 1} and σ : B(∂U) → R+ be
a finite measure defined by

B ∈ B(∂U) B open σ(B) :=
∑

n∈N

λ−α
n χen

(B).

Let ν be given by

ν : B(E) ∋ B 7→

∫ ∞

0
1B(rx) k(r, x) dr σ(dx),

where k(r, x)/rα+1 → 0 as r → ∞. Let η be a time homogenouse Poisson
random measure with intensity measure ν|U , and η1 be a time homogenouse
Poisson random measure with intensity measure ν|E\U . Let ξ1 be the Ornstein
Uhlenbeck process given by

{

dξ1(t) = Aξ1(t) +
∫

U
z η̃(dz, ds),

ξ1(0) = x0,

and ξ2 be the Ornstein Uhlenbeck process given by

{

dξ2(t) = Aξ2(t) +
∫

U
z η̃(dz, ds) +

∫

E\U z η̃1(dz, ds),

ξ2(0) = x0.

Then, at time t ≥ 0 the probability measure Q1(t) is absolute continuous with
respect to Q2(t) with Radon Nikodym derivative G given by

G(t) = 1 +

∫ t

0
G(s−) ν1(E \ B1(E)) ds −

∫ t

0
G(s−) η1(E \ B1(E), ds).

Example 2.10. Also the change of measure formula in Lemma 6.16 of [2]
follows from Theorem 2.7. Let E = Z = R

d and let η be a time homogenous
Poisson random measure with compensator γ = λd×λ. Let v : [0,∞)×R

d → R
d

be a predictable mapping such that θ, given by θ := Id + v, is invertible. Put

ηθ : B(Z) ×B([0,∞)) ∋ (I × A) 7→

∫

Z

1A(θ(z)) η(dz, ds).

Then the two Poisson random measure η and ηθ, where ηθ is defined by

ηθ : B(Rd) × B(R+) ∋ A × I :=

∫

I

∫

Rd

1A(θ(z)) η(dz, ds).
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Fix A ∈ B(Rd) and let the processes NA = {NA(t) : 0 ≤ t < ∞} and NA =
{NA

θ (t) : 0 ≤ t < ∞} defined for t ≥ 0 by NA(t) = η(A × [0, t]) and

NA
θ (t) =

∫ t

0

∫

Rd

1A(θ(z))ηθ(dz, ds),

respectively. Let QA be the probability measure on D([0,∞); Rd) induced by
NA and let QA

θ be the probability measure on D([0,∞); Rd) induced by NA
θ .

Then, it follows by Theorem 2.7 that the Radon Nikodym derivative G of NA

with respect to NA
θ is given by



















dGA(t) =
∫

A
[det(Jθ(t, z)) − 1]GA(t−) (ηθ − γ)(dz, dt)

=
∫

A
det(Jv(t, z))GA(t−) (ηθ − γ)(dz, dt),

GA(0) = 1.

Here, Jθ and Jv denotes the Jacobian matrix of the function θ and v, respec-
tively. In particular, we have

dQA(t)

dQA
θ (t)

= GA(t).

Let us assume that v is chosen in such a way, that for any T ≥ 0

∫ T

0

∫

Rd

|det(Jv(s, z))|p λd(dz)λ(ds) < ∞

and let Q the probability measure on M((0,∞]×R
d) induced by η and Qθ the

probability measure on M((0,∞] × R
d) induced by ηθ. Let c : R+ × R

d → R
d

be a continuous function satisfying the hypothesis of Theorem 2.7. Let ζ be a
solution to







dζ(t) =
∫

Rd c(t, ζ(t−), z) (ηθ − γ)(dz, dt)

ζ(0) = x0.

Note, under Q the process ζ is a martingale. Under Qθ the process ζ can be
written as























dζ(t) =

∫

Rd

c(t, ζ(t−), z) (η − γ)(dz, dt)

+

∫

Rd

c(t, ζ(t−), z) (ηθ − η)(dz, dt) + b(t, ζ(t−)) dt ,

ζ(0) =x0.
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where

b(s, x) =

∫

Rd

(c(s, x, z) − c(s, x, θ(z))) λd(dz), s ≥ 0.

It follows from Theorem 2.7 that for all φ ∈ C(Rd) we have E
QθGφ(ζ) =

E
Qφ(ζ).

Proof of Theorem 2.7. In the first step we construct a probability measure
P0 on A such that P0 ≫ P and

P
(

ξ1 ∈ A
)

= P0

(

ξ2 ∈ A
)

, A ∈ D([0,∞);E). (9)

For i = 1, 2, let us define the random measure ηi

ηi : B(E) × B(R+) ∋ (B × I) 7→

∫

I

∫

E

1B(ci(s, ξi(s−), z)) η(dz, ds),

and the corresponding compensators γi over A by

γi : B(E) ×B(R+) ∋ (B × I) 7→

∫

I

∫

E

1B(ci(s, ξi(s−), z)) ν(dz, ds),

Let us now define a new probability measure P0 on A in the following way. For
any A ∈ B(E), I ∈ B([0,∞)) and k ∈ N we put

P0(η2(A × I) = k) := P(η1(A × I) = k).

Therefore, η2 has compensator γ1 under P0. Note that the process ξ2 can also
be written as follows

ξ2(t) = x0 +

∫ t

0

∫

Z

z (η2 − γ1)(dz, ds) +

∫ t

0
b2(s, ξ2(s−)) ds + Γ(t), t ≥ 0,

where

Γ(t) :=

∫ t

0

∫

Z

(c1(s, ξ2(s−), z) − c2(s, ξ2(s−), z)) dz ds.

Condition (7) implies that

ξ2(t) = x0 +

∫ t

0

∫

Z

z (η2 − γ1)(dz, ds) +

∫ t

0
b1(s, ξ2(s−)) ds, t ≥ 0.

Hence, ξ2 solves a SDE under P0 given by

{

dξ(t) =
∫

Z
z (η2 − γ1)(dz, dt) + b1(s, ξ(t−)) dt,

ξ(0) = x0,
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and, therefore, we can conclude that

P(ξ1 ∈ A) = P0(ξ2 ∈ A), t ≥ 0.

Since
dQ1(A)

dQ2(A)
=

dP(ξ1 ∈ A)

dP(ξ2 ∈ A)
=

dP0(ξ2 ∈ A)

dP(ξ2 ∈ A)
,

we will calculate in the second step the Radon Nikodym derivative of P0 ◦ ξ2

with respect to P ◦ ξ2. In fact, we will show

E
P0e−λξ2(t) = E

PG(t)e−λξ2(t). (10)

Assume for the time being that (10) is valid. Then it follows from Identity (7)
that, if ξ is the canonical process on D([0,∞);E) (i.e. for ω ∈ D([0,∞);E),
ξ(ω) = ω)

E
Q1e−λξ(t) = E

Pe−λξ1(t) = E
P0e−λξ2(t) = E

P(G ◦ ξ2)(t) e−λξ2(t)

= E
Q2G(t) e−λξ(t). (11)

By the definition of the Radon Nikodym derivative, the assertion follows.
Put

Z(t) := exp

(

−λξ2(t) + λ

∫ t

0

∫

E

[

e−λz − 1 + λz
]

γ1(dz, ds)

+λ

∫ t

0
b1(s, ξ2(s−)) ds

)

.

An application of the Itô formula and taking into account that
∫ t

0
b1(s, ξ2(s−)) ds =

∫ t

0
b2(s, ξ2(s−)) ds + Γ(t)

give for t > 0 and P0-a.s.

dZ(t) = −λ

∫ t

0

∫

E

Z(s−)z(η2 − γ1)(dz, ds)

+

∫ t

0

∫

E

Z(s−)
[

e−λz − 1 + λz
]

(η2 − γ1)(dz, ds).

Since the compensator of η2 is γ1 over (Ω,F , P0), it follows that E
P0Z(t) = 1.

Hence, our aim is to show that equation (10) is valid. Applying the Itô formula
we obtain

E
P [G(t)Z(t)] = 1 − λE

P

∫ t

0

∫

E

G(s−)Z(s−)z(η2 − γ1)(dz, ds)
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+ E
P

∫ t

0

∫

E

G(s−)Z(s−)
[

e−λz − 1 + λz
]

(η2 − γ1)(dz, ds)

+ E
P

∫ t

0

∫

E

G(s−)Z(s−) [g(s, z) − 1] (η2 − γ1)(dz, ds)

+ E
P

∫ t

0

[

∫

E

[

G(s)Z(s) − G(s−)Z(s−)

− Z(s−)G(s−)
(

e−λz − 1
)

− Z(s−)Gi(s−) (g(s, z) − 1)
]

η2(dz, ds)
]

.

Since η2 has compensator γ1 under P we get

= 1 − λE
P

∫ t

0

∫

E

G(s−)Z(s−)z(γ1 − γ1)(dz, ds)

+ E
P

∫ t

0

∫

E

G(s−)Z(s−)
[

e−λz − 1 + λz
]

(γ1 − γ1)(dz, ds)

+ E
P

∫ t

0

[

∫

E

G(s−)Z(s−)
[

e−λzg(s, z) − 1 −
(

e−λz − 1
)

− (g(s, z) − 1)
]

γ1(dz, ds)
]

.

By identity (6) we get

= 1 − λE
P

∫ t

0

∫

E

G(s−)Z(s−)z(1 − g(s, z))ν1(s, dz) ds

+ E
P

∫ t

0

∫

E

G(s−)Z(s−)
[

e−λz − 1 + λz
]

(1 − g(s, z))ν1(s, dz) ds

+ E
P

∫ t

0

[

∫

E

G(s−)Z(s−)
[

e−λzg(s, z) − e−λz − g(s, z) + 1
]

ν1(s, dz) ds
]

.

Some calculations lead to

= 1 − E
P

∫ t

0

∫

E

G(s−)Z(s−)λz(1 − g(s, z))ν1(s, dz)

+ E
P

∫ t

0

∫

E

G(s−)Z(s−)
[

[

e−λz − 1 + λz
]

(1 − g(s, z))

+ e−λzg(s, z) − e−λz − g(s, z) − 1
]

ν1(s, dz) ds

= 1 − E
P

∫ t

0

∫

E

G(s−)Z(s−)λz(1 − g(s, z))ν1(s, dz) ds

+ E
P

∫ t

0

∫

E

G(s−)Z(s−)
[

λz − λzg(s, z)
]

ν1(s, dz) ds = 1.
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Therefore, E
P0Z(t) = E

PG(t)Z(t) and (10) is valid, hence, by (11) the assertion
follows.
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