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S ... window surface
d ... daylight line

b ... b-pillar

c ... roof line

o F = = £ Dar
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(side window suggested by the stylist)
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Can S be moved in itself?
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Can S be moved in itself?

In general: no!
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Which spatial curves can be moved in themselves?

straight line circle

screw line
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Which surfaces can be moved in themselves?

g%

general cylinder surface of revolution

screw surface
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Which screw motion best fits the surface S?

axis a, screw parameter p
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Which screw motion best fits the surface S?

axis a, screw parameter p

How to find this screw motion?
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,

straight line g: point G: {
pi1 di1

p=| P2 |,d=| d
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3-dimensional space E3
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straight line g: point G: {
pi1 di1
p=| P2 |,d=| d
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3-dimensional space E3

f 5-dimensional space P°
d /\ N
| e |
P
P
/

straight line g: point G: { g } ,g=d, g=pxd

Pi1 din
p=| p2 |,d=| d

Pi3 diz
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3-dimensional space E3

5-dimensional space P°

.G
/

straight line g:

point G: {g}, g
pi1 din
p=| p2 |,d=| d
Pi3

d;

Pliicker condition: (g,8) = g£18; + &8> +&8; = 0
Klein quadric M3 C P°
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3-dimensional space E3

screw motion M
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Obtaining the Optimal Screw Motion

3-dimensional space E3

5-dimensional space P°

screw motion M

hyperplane H
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3-dimensional space E3

g

normal g belongs to the
linear complex Ly
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3-dimensional space E3

g

5-dimensional space P°

normal g belongs to the
linear complex Ly

Point G lies in the hyperplane H
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3-dimensional space E3
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3-dimensional space E3 5-dimensional space P°
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3-dimensional space 3

\\\\\‘&Wz%
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3-dimensional space E3
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5-dimensional space P°
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5-dimensional space P°

hyperplane of regression H
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3-dimensional space E3

5-dimensional space P°

yields the optimal screw
motion

hyperplane of regression H

DA
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v.gitw-g = 0, i=1,...

minimize the squared error function

e(v,w) = [T, w']-S- {
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v-gi+w-g = 0, i=1,...,n

minimize the squared error function

. T W7 v
e(vw) = [vi,w']-S. { w }
where S is the positive semidefinite 6 x 6-matrix "scatter matrix”:
T
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v-gi+w-g = 0, i=1,...,n
minimize the squared error function
e(vyw) = [vi,w']-S- v
) 3 W
where S is the positive semidefinite 6 x 6-matrix "scatter matrix”:
T &1 1 LA
8 8 >Seegl YeE
s — |:g1 gn} : : = | =1 i=1
8o B TogT Y.g8 Y EE
gr 8n i=1 i=1

subject to the normalizing constraint:

v
[VT,WT]~E6~[W] = wrwitwi =1
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v-gi+w-g = 0, i=1,...,n
minimize the squared error function
e(vyw) = [vi,w']-S- v
) 3 W
where S is the positive semidefinite 6 x 6-matrix "scatter matrix”:
T &1 1 LA
8 8 >Seegl YeE
s — |:g1 gn} : : = | =1 i=1
8o B TogT Y.g8 Y EE
gr 8n i=1 i=1

subject to the normalizing constraint:

v
[VT,WT]~E6~[W] = wrwitwi =1

where Eg = { (I)3 83 }
3 3
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generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue Ag:
[wo, vo] solves the optimization problem
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Lagrangian multiplier method vyields

(S—Aeﬁ)-“’] =

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue Ag:
[wo, vo] solves the optimization problem

<W0a V0>

screw parameter: p = < >
Wo, Wo



Geometry and Kinematics of Car Side Windows: Obtaining the Optimal Screw Motion

Lagrangian multiplier method vyields
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generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue Ag:
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direction vector of the screw axis a: ' d = wy



Geometry and Kinematics of Car Side Windows: Obtaining the Optimal Screw Motion

Lagrangian multiplier method vyields

(S—Aeﬁ)-“’] =

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue Ag:
[wo, vo] solves the optimization problem

. <W07V0>
screw parameter: p = ———
(wo, o)
direction vector of the screw axis a: ' d = wy
Wp X Vg

pointonaa = —
(wo, wo)
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Geometry and Kinematics of Car Side Windows: Additional Constraints

boundary curve b (b-pillar)



Geometry and Kinematics of Car Side Windows: Additional Constraints

o F = E = DAl
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b is not! a trajectory of the optimal screw motion M
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add some normals of the prescribed b-pillar b to the interpolation
problem input

o>
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computing the optimal screw motion for both, S and b
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delivers some replacement for the b-pillar b
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the optimal screw motion

delivers the optimal side window sheet (screw surface S)
out of the roofline ¢
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Car Side Windows: Benefits

engineering workload
constructing the side window

quality of the outcome '

serial production cost =
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cable connection

/ window surface

sliding block

sliding block

guide rail guide rail
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How can you move a rod so that its endpoint paths have equal
length?

cable connection

/ window surface

sliding block

sliding block

guide rail guide rail
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How can you move a rod so that its endpoint paths have equal
length?

cable connection

/ window surface

sliding block

sliding block

guide rail guide rail

1
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A...OA=a(t), B...
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(a,b —a) = (b,b — a), projection theorem
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Rope Ladder Problem: Problem Formulation

A...OA=a(t), B...OB = b(t)
dist?(A,B) = (b —a,b — a) = d? = const

(a,b—a) = (b,b — a), projection theorem

la| = |b| = /(AB.a) = Z(AB.b)

Da
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2 ... moving system

2 ... fixed system



Rope Ladder Problem: Problem Formulation

2 ... moving system
2 ... fixed system

¥/¥* ... motion
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planar case A
Z/(AB,a) = Z(AB,b) for all t € [to, t;] ©

a=hbforall t €[ty t]

curved translation

planar case B
Z/(AB,a) = —/(AB,b) for all
t € [to, ta]




Rope Ladder Problem: Planar Case

planar case A
Z/(AB,a) = Z(AB,b) for all t € [to, t;] ©

a=hbforall t €[ty t]

curved translation

planar case B
Z/(AB,a) = —/(AB,b) for all
t € [to, ta]

bisector n of AB = moving polhode
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planar case B

¥ /¥* ... motion of a straight line n rolling on a curve s*




Rope Ladder Problem: The Planar Case
planar case B
> /¥* ... motion of a straight line n rolling on a curve s*
S ... midpoint of AB

¥ /¥* ... Frenet motion along the path s of S




Rope Ladder Problem: The Planar Case

planar case B

s is a tractrix with respect to a and b




Rope Ladder Problem: The Planar Case

mobile robot with two wheels
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ruled surface ® generated by the motion of e = AB:
y(t, u) = x(t) + ve(t) with (e,e) =1
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Rope Ladder Problem: The Spatial Case

ruled surface ® generated by the motion of e = AB:
y(t, u) = x(t) + ve(t) with (e,e) =1
A...a(t)=y(ta)

B...b(t)=y(t,a+d)

la| = |b| = (22 + d)(e, &) = —2(x, &)

Da
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e=0<—e=c
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spatial case B
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® is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)
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Rope Ladder Problem: The Spatial Case

(2a+ d)(é, &) = —2(x, &)

spatial case A
e=0<=e=c

® is a cylinder (trivial case)

spatial case B
x=0<=x=c=s

® is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

spatial case C

e x40
d_ (x¢)
T2 T ke

The midpoint S of AB is the striction (cuspidal) point on e = AB.
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paths of equal length



Rope Ladder Problem: The Spatial Case

An Example: screw motion

all points on a common right cylinder around the screw axis have
paths of equal length

striction curve s is the helix generated by S
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Given: series of positions A;B;, i = 1,...,n of the rod AB
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Wanted: motion ¥/Y* which
a) moves AB through the given positions and
b) guarantees equal path lengths of A and B
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Wanted: motion ¥/Y* which
a) moves AB through the given positions and
b) guarantees equal path lengths of A and B

Construction:

Step 1: Find a suitable curve s interpolating the midpoints S; of
AiB;



Rope Ladders: An Interpolation Problem

Given: series of positions A;B;, i = 1,...,n of the rod AB

Wanted: motion ¥/Y* which
a) moves AB through the given positions and

b) guarantees equal path lengths of A and B

Construction:

Step 1: Find a suitable curve s interpolating the midpoints S; of
AiB;

Step 2: Find a ruled surface ® that interpolates e = A;B;

and whose striction curve is s



Rope Ladders: An Interpolation Problem

a;i +b;

Step 1: curve s...s(t) with s(t;)) = ——— =:s;, i=1,...

2



Rope Ladders: An Interpolation Problem

Step 1: curve s...s(t) with s(t;) =

7... arclength on s: s = s(7);
(s,8) = 1

S(T,') =S;

ai+b;
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ai+b;

Step 1: curve s...s(t) with s(t;) =
7... arclength on s: s = s(7);
(s's) =1,

S(T,') =S;

Step 2: Find a vector function e = e(7) with
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ai+b;

Step 1: curve s...s(t) with s(t;) = 5 =i i=1,
7... arclength on s: s = s(7);
<Slvs/> =1
S(T,') =S;
Step 2: Find a vector function e = e(7) with
b, —a; .
e(r)=ej= 2 i—1....n ()

|b; — a;



Rope Ladders: An Interpolation Problem

ai+b;

Step 1: curve s...s(t) with s(t;) = 5 =i i=1,
7... arclength on s: s = s(7);
<Slvs/> =1
S(T,') =S;
Step 2: Find a vector function e = e(7) with
bi —a; .
e(ri)=ej=7—1i=1,..., |
() = = oo " ()

(s,e)=0 (S)



Rope Ladders: An Interpolation Problem

b
Step 1: curve s...s(t) with s(t;) = a,—;— f=rsp, i =1
7... arclength on s: s = s(7);
<Slvs/> =1
S(T,') =S;
Step 2: Find a vector function e = e(7) with
b, —a; .
e(rj) =e = 7|bi_:’_| i=1,....n ()
(s,€') =0 (S)
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k:=1s"| ... curvature of s
t=s¢, h= ‘S—%,Is”, b =txp ... Frenet frame of s
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o := /(e,s’) ... striction of ¢

| ... curvature of s

K:i=s
t=s, h= 25" b=txp ... Frenet frame of s

Is”|

(s',e) = coso
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o := /(e,s’) ... striction of ¢

k:=1s"| ... curvature of s
t=s¢, h= ‘S—%,Is”, b =txp ... Frenet frame of s

(s',e) = coso

(s",e)+ (s',e') = —c'sinc
——
=0



Rope Ladders: An Interpolation Problem

o := /(e,s’) ... striction of

I/|

K:i=s . curvature of s

t=s, h= 25" b=txp.

Is”|

(s',e) = coso

(s",e)+ (s',e') = —c'sinc
——
=0
€ (s',e) — coso

0]

.. Frenet frame of s
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o= /(e,s') ... striction of ®

Kk:=1s"] ..

. curvature of s
t=s¢, h= ‘S—%,Is”, b =txp ... Frenet frame of s

(s',e) = coso

(s",e)+ (s',e') = —c'sinc

——

=0
e ... (she) — coso =0
er ... (s",e) + o'sinc = 0

developable surface [ with generators g parallel to b



Rope Ladders: An Interpolation Problem

o= /(e,s') ... striction of ®
. curvature of s

t=s¢, h= ‘S—%,Is”, b =txp ... Frenet frame of s

(s",e)+ (s',e') = —c'sinc

——

=0
e ... (she) — coso =0
er ... (s",e) + o'sinc = 0

developable surface [ with generators g parallel to b

E1 ... <h,6> + a/s% =0



Rope Ladders: An Interpolation Problem

o= /(e,s') ... striction of ®
. curvature of s

t=s¢, h= ﬁs”, b =txp ... Frenet frame of s

(s",e) + (s',€') = —a'sinc

——

=0
e ... (se) — coso =0
er ... (s",e) + o'sinc = 0

developable surface [ with generators g parallel to b

er ... (hje) + a,s% = 0

The intersection of I with the unit sphere contains the spherical
generator image e = e(s) of ¢
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Rope Ladders: An Interpolation Problem

X = COoso
o o'sing
y = - K
V4 fg

tsinoy/1- 25

<«

DA



Rope Ladders: An Interpolation Problem

X = coso
o’sing
y e
. 7?2
z = :I:smm/l—%
g
e

coso-t — o'sino-h £ sino\/l—‘,’c—g-b

DA
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. . 2
e = coso-t — o'sinc-h £ sinoy/1-% b
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e =

. . 2
coso-t — o'sino-h + sinoy/1—%;-
Special Cases

o>
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. . 2
e = coso-t — o'sinc-h £ sinoy/1-% b

Special Cases

e 0/ =0: ® is a ruled surface of constant striction;
ec [t,b]
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Special Cases

e 0/ =0: ® is a ruled surface of constant striction;
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e 0 =0: ® is the tangent surface of s



Rope Ladders: An Interpolation Problem

. . 2
e = coso-t — o'sinc-h £ sinoy/1-% b

Special Cases

e 0/ =0: ® is a ruled surface of constant striction;
ec [t,b]

e 0 =0: ® is the tangent surface of s

e k =0 (striction curve s is a straight line):
a solution is possible only if ¢/ =0, i.e.; 0 = const.
® is a ruled surface of constant slope and a straight line as striction
curve.
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Rope Ladders: An Interpolation Problem

e

coso-t — o'sinc-h £ sina\/l—"'2 b

coso = 0
A
o SIno
<h,e> . = 0
[
Construct a striction function o with
a'(r)> < (1)

DA



Rope Ladders: An Interpolation Problem

e =

coso-t — o'sinc-h £ sina\/l—%’;b

€ (t,e) — coso = 0
,
€1 (h,e) + g s;na = 0

Construct a striction function o with

o'(r)? < K1)
o(ri) =
o' (7i)

arccos(s’(77), ;)

_ (m)e)

,i=1....n
sino(77)

DA



Rope Ladders: An Interpolation Problem

e = coso-t — o'sinc-h £ sina\/l—%’;b
3 (t,e) — coso = 0

o
. the) + Us;na _ 9

Construct a striction function o with
0/(7_)2 é 52(7-)
o (i) arccos(s'(7;), e;)
o'(r) = - (s"(i),ei) ,i=1,...,n
' sino(77)

Construct o as a Hermite interpolant.

[m]
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