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S . . . window surface
d . . . daylight line
b . . . b-pillar
c . . . roof line
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Given: A surface S ;
(side window suggested by the stylist)

Can S be moved in itself?

In general: no!
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Which screw motion best fits the surface S?

axis a, screw parameter p

How to find this screw motion?
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3-dimensional space E
3

straight line g :

p =

⎡
⎣ pi1

pi2
pi3

⎤
⎦ , d =

⎡
⎣ di1

di2
di3

⎤
⎦

5-dimensional space P
5

point G :
[

g
g

]
, g = d, g = p× d

Plücker condition: 〈g, g〉 = g1g1 + g2g2 + g3g3 = 0

Klein quadric M4
2 ⊂ P

5
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3

screw motion M
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hyperplane H
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3-dimensional space E
3

normal g belongs to the
linear complex LM

5-dimensional space P
5

Point G lies in the hyperplane H
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3-dimensional space E
3

yields the optimal screw
motion

5-dimensional space P
5

hyperplane of regression H
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Lagrangian multiplier method yields

(S− λE6) ·
[

v
w

]
=

⎡
⎢⎣

0
...
0

⎤
⎥⎦

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue λ0:
[w0, v0] solves the optimization problem

screw parameter: p =
〈w0, v0〉
〈w0,w0〉

direction vector of the screw axis a: d = w0

point on a: a =
w0 × v0
〈w0,w0〉
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add some normals of the prescribed b-pillar b to the interpolation
problem input
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Geometry and Kinematics of Car Side Windows: Additional Constraints

the optimal screw motion
delivers the optimal side window sheet (screw surface S)

out of the roofline c
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Rope Ladder Problem: Problem Formulation

Σ . . . moving system

Σ∗ . . . fixed system

Σ/Σ∗ . . . motion
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planar case A
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ȧ = ḃ for all t ∈ [t0, t1]

curved translation

planar case B
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planar case A

∠( �AB , ȧ) = ∠( �AB , ḃ) for all t ∈ [t0, t1]

ȧ = ḃ for all t ∈ [t0, t1]

curved translation

planar case B

∠( �AB , ȧ) = −∠( �AB , ḃ) for all
t ∈ [t0, t1]

bisector n of AB = moving polhode

A

B

e

_a

_b

S

n

A

B
e

_a
_b

S¤
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planar case B

Σ/Σ∗ . . . motion of a straight line n rolling on a curve s∗

s

a

b

n A

B

e

s¤
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planar case B

Σ/Σ∗ . . . motion of a straight line n rolling on a curve s∗

S . . . midpoint of AB

Σ/Σ∗ . . . Frenet motion along the path s of S

s

a

b

n A

B

e

s¤

S¤

S
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planar case B

s is a tractrix with respect to a and b

s

a

b

n A

B

e

s¤

S¤

S
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mobile robot with two wheels
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〈ė, ė〉
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(2a+ d)〈ė, ė〉 = −2〈ẋ, ė〉

spatial case A

ė = 0 ⇐⇒ e = c

Φ is a cylinder (trivial case)

spatial case B

ẋ = 0 ⇐⇒ x = c = s

Φ is a cone and A,B are symmetric w.r.t. its vertex S (trivial case)

spatial case C

ė, ẋ �= 0

a+
d

2
= −〈ẋ, ė〉

〈ė, ė〉
The midpoint S of AB is the striction (cuspidal) point on e = AB .
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Rope Ladder Problem: The Spatial Case

An Example: screw motion

all points on a common right cylinder around the screw axis have
paths of equal length

striction curve s is the helix generated by S
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Rope Ladders: An Interpolation Problem

Given: series of positions AiBi , i = 1, . . . , n of the rod AB

Wanted: motion Σ/Σ∗ which

a) moves AB through the given positions and

b) guarantees equal path lengths of A and B

Construction:

Step 1: Find a suitable curve s interpolating the midpoints Si of
AiBi

Step 2: Find a ruled surface Φ that interpolates ei = AiBi

and whose striction curve is s
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Rope Ladders: An Interpolation Problem

Step 1: curve s . . . s(t) with s(ti ) =
ai + bi

2
=: si , i = 1, . . . , n

τ . . . arclength on s: s = s(τ);

〈s′, s′〉 = 1;

s(τi ) = si

Step 2: Find a vector function e = e(τ) with

e(τi ) = ei =
bi − ai
|bi − ai | i = 1, . . . , n (I)

〈s′, e′〉 = 0 (S)

〈e, e〉 = 1 (U)
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κ := |s′′| . . . curvature of s
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ε1 . . . 〈s′′, e〉 + σ′ sinσ = 0

developable surface Γ with generators g parallel to b

ε1 . . . 〈h, e〉 + σ′ sinσ
κ = 0



Rope Ladders: An Interpolation Problem

σ := ∠(e, s′) . . . striction of Φ

κ := |s′′| . . . curvature of s

t = s′, h = 1
|s′′|s

′′, b = txp . . . Frenet frame of s

〈s′, e〉 = cosσ

〈s′′, e〉+ 〈s′, e′〉︸ ︷︷ ︸
= 0

= −σ′ sinσ

ε . . . 〈s′, e〉 − cosσ = 0
ε1 . . . 〈s′′, e〉 + σ′ sinσ = 0

developable surface Γ with generators g parallel to b

ε1 . . . 〈h, e〉 + σ′ sinσ
κ = 0

The intersection of Γ with the unit sphere contains the spherical
generator image e = e(s) of Φ
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e = cosσ · t − σ′ sinσ · h ± sinσ
√
1− σ′2

κ2 · b

Special Cases

• σ′ = 0: Φ is a ruled surface of constant striction;
e ∈ [t, b]

• σ = 0: Φ is the tangent surface of s

• κ = 0 (striction curve s is a straight line):
a solution is possible only if σ′ = 0, i.e.; σ = const.
Φ is a ruled surface of constant slope and a straight line as striction
curve.
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e = cosσ · t − σ′ sinσ · h ± sinσ
√
1− σ′2

κ2 · b

ε . . . 〈t, e〉 − cosσ = 0

ε1 . . . 〈h, e〉 +
σ′ sinσ

κ
= 0

Construct a striction function σ with

σ′(τ)2 ≤ κ2(τ)

σ(τi ) = arccos〈s′(τi ), ei 〉
σ′(τi ) = −〈s′′(τi ), ei 〉

sinσ(τi )

⎫⎬
⎭ , i = 1, . . . , n

Construct σ as a Hermite interpolant.
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