Computational Line Geometry as a Tool for Solving Engineering Problems

International Workshop on Line Geometry and Kinematics $\Pi \acute{\alpha} \varphi o\varsigma, \ 2011 - 04 \ -29$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

Overview

Geometry and Kinematics of Car Side Windows The Task Obtaining the Optimal Screw Motion Additional Constraints Benefits

The Rope Ladder Problem

Problem Formulation The Planar Case The Spatial Case An Interpolation Problem

・ロト ・回 ・ エト ・ エー ・ うへで

Car Side Windows: The Task

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Given: A surface *S*; (side window suggested by the stylist)

・ロト・日下・モー・モー もんの

Given: A surface *S*; (side window suggested by the stylist)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Given: A surface *S*; (side window suggested by the stylist)

Can S be moved in itself?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Given: A surface *S*; (side window suggested by the stylist)

Can S be moved in itself?

In general: no!

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Which spatial curves can be moved in themselves?

・ロト ・日ト ・ヨト ・ヨー つへで

Which spatial curves can be moved in themselves?

Which surfaces can be moved in themselves?

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Which surfaces can be moved in themselves?

Which screw motion best fits the surface S?

・ロト ・日ト ・ヨト ・ヨー つへで

Which screw motion best fits the surface S?

axis a, screw parameter p

Which screw motion best fits the surface S?

axis a, screw parameter p

How to find this screw motion?

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 - のへで

Car Side Windows: Obtaining the Optimal Screw Motion

<ロト <回 > < 三 > < 三 > < 三 > のへで

straight line g:

$$\mathbf{p} = \begin{bmatrix} p_{i1} \\ p_{i2} \\ p_{i3} \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \end{bmatrix}$$

・ロト ・日ト ・ヨト ・ヨー つへで

3-dimensional space \mathbb{E}^3

straight line g:

$$\mathbf{p} = \begin{bmatrix} p_{i1} \\ p_{i2} \\ p_{i3} \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \end{bmatrix}$$

point G: $\begin{bmatrix} \mathbf{g} \\ \overline{\mathbf{g}} \end{bmatrix}$, $\mathbf{g} = \mathbf{d}$, $\overline{\mathbf{g}} = \mathbf{p} \times \mathbf{d}$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

3-dimensional space \mathbb{E}^3

5-dimensional space \mathbb{P}^5

straight line g:

$$\mathbf{p} = \begin{bmatrix} p_{i1} \\ p_{i2} \\ p_{i3} \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \end{bmatrix}$$

point G: $\begin{bmatrix} \mathbf{g} \\ \overline{\mathbf{g}} \end{bmatrix}$, $\mathbf{g} = \mathbf{d}$, $\overline{\mathbf{g}} = \mathbf{p} \times \mathbf{d}$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

3-dimensional space \mathbb{E}^3

Obtaining the Optimal Screw Motion

3-dimensional space \mathbb{E}^3

screw motion M

<ロト <回 > < 三 > < 三 > < 三 > のへで

Obtaining the Optimal Screw Motion

3-dimensional space \mathbb{E}^3

5-dimensional space \mathbb{P}^5

screw motion M

hyperplane ${\cal H}$

normal g belongs to the linear complex \mathcal{L}_M

・ロト・日下・日・・日・ 日・ うへぐ

normal g belongs to the linear complex \mathcal{L}_M

Point G lies in the hyperplane \mathcal{H}

3-dimensional space \mathbb{E}^3

・ロト ・日ト ・ヨト ・ヨー つへで

3-dimensional space \mathbb{E}^3 5-dimensional space \mathbb{P}^5

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

3-dimensional space \mathbb{E}^3

・ロト ・日ト ・ヨト ・ヨー つへで

3-dimensional space \mathbb{E}^3

5-dimensional space \mathbb{P}^5

・ロト ・日ト ・ヨト ・ヨー つへで

5-dimensional space \mathbb{P}^5

hyperplane of regression ${\cal H}$

3-dimensional space \mathbb{E}^3

5-dimensional space \mathbb{P}^5

yields the optimal screw motion

hyperplane of regression ${\cal H}$

・ロ・・母・・ヨ・・ヨー うへぐ

$$\mathbf{v} \cdot \mathbf{g}_{\mathbf{i}} + \mathbf{w} \cdot \overline{\mathbf{g}_{\mathbf{i}}} = 0, \ i = 1, \dots, n$$

<ロト < 部 > < 目 > < 目 > < 目 > のへの

$$\mathbf{v} \cdot \mathbf{g}_{\mathbf{i}} + \mathbf{w} \cdot \overline{\mathbf{g}_{\mathbf{i}}} = 0, \ i = 1, \dots, n$$

minimize the squared error function

$$e(\mathbf{v}, \mathbf{w}) := [\mathbf{v}^{\top}, \mathbf{w}^{\top}] \cdot \mathbf{S} \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

<ロト < 部 > < 目 > < 目 > < 目 > のへの
$$\mathbf{v} \cdot \mathbf{g}_{\mathbf{i}} + \mathbf{w} \cdot \overline{\mathbf{g}_{\mathbf{i}}} = 0, \ i = 1, \dots, n$$

minimize the squared error function

$$e(\mathbf{v}, \mathbf{w}) := [\mathbf{v}^{\top}, \mathbf{w}^{\top}] \cdot \mathbf{S} \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

where **S** is the positive semidefinite 6×6 -matrix "scatter matrix":

$$\mathbf{S} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_n \\ \overline{\mathbf{g}}_1 & \cdots & \overline{\mathbf{g}}_n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_1^\top & \overline{\mathbf{g}}_1^\top \\ \vdots & \vdots \\ \mathbf{g}_n^\top & \overline{\mathbf{g}}_n^\top \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \mathbf{g}_i \mathbf{g}_i^\top & \sum_{i=1}^n \mathbf{g}_i \overline{\mathbf{g}}_i^\top \\ \sum_{i=1}^n \overline{\mathbf{g}}_i \mathbf{g}_i^\top & \sum_{i=1}^n \overline{\mathbf{g}}_i \overline{\mathbf{g}}_i^\top \end{bmatrix}$$

・ロト ・日 ・ モ ・ モ ・ モ ・ うへで

$$\mathbf{v} \cdot \mathbf{g}_{\mathbf{i}} + \mathbf{w} \cdot \overline{\mathbf{g}_{\mathbf{i}}} = 0, \ i = 1, \dots, n$$

minimize the squared error function

$$e(\mathbf{v}, \mathbf{w}) := [\mathbf{v}^{\top}, \mathbf{w}^{\top}] \cdot \mathbf{S} \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

where \boldsymbol{S} is the positive semidefinite $6\times 6\text{-matrix}$ "scatter matrix":

$$\mathbf{S} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_n \\ \overline{\mathbf{g}}_1 & \cdots & \overline{\mathbf{g}}_n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_1^\top & \overline{\mathbf{g}}_1^\top \\ \vdots & \vdots \\ \mathbf{g}_n^\top & \overline{\mathbf{g}}_n^\top \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \mathbf{g}_i \mathbf{g}_i^\top & \sum_{i=1}^n \mathbf{g}_i \overline{\mathbf{g}}_i^\top \\ \sum_{i=1}^n \overline{\mathbf{g}}_i \mathbf{g}_i^\top & \sum_{i=1}^n \overline{\mathbf{g}}_i \overline{\mathbf{g}}_i^\top \end{bmatrix}$$

subject to the normalizing constraint:

$$\begin{bmatrix} \mathbf{v}^{\top}, \mathbf{w}^{\top} \end{bmatrix} \cdot \mathbf{E}_6 \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = w_1^2 + w_2^2 + w_3^2 = 1$$

・ロト ・日 ・ モ ・ モ ・ モ ・ うへで

$$\mathbf{v} \cdot \mathbf{g}_{\mathbf{i}} + \mathbf{w} \cdot \overline{\mathbf{g}_{\mathbf{i}}} = 0, \ i = 1, \dots, n$$

minimize the squared error function

$$e(\mathbf{v}, \mathbf{w}) := [\mathbf{v}^{\top}, \mathbf{w}^{\top}] \cdot \mathbf{S} \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

where \boldsymbol{S} is the positive semidefinite $6\times 6\text{-matrix}$ "scatter matrix":

$$\mathbf{S} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_n \\ \overline{\mathbf{g}}_1 & \cdots & \overline{\mathbf{g}}_n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_1^\top & \overline{\mathbf{g}}_1^\top \\ \vdots & \vdots \\ \mathbf{g}_n^\top & \overline{\mathbf{g}}_n^\top \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \mathbf{g}_i \mathbf{g}_i^\top & \sum_{i=1}^n \mathbf{g}_i \overline{\mathbf{g}}_i^\top \\ \sum_{i=1}^n \overline{\mathbf{g}}_i \mathbf{g}_i^\top & \sum_{i=1}^n \overline{\mathbf{g}}_i \overline{\mathbf{g}}_i^\top \end{bmatrix}$$

subject to the normalizing constraint:

$$\begin{bmatrix} \mathbf{v}^{\top}, \mathbf{w}^{\top} \end{bmatrix} \cdot \mathbf{E}_{6} \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = w_{1}^{2} + w_{2}^{2} + w_{3}^{2} = 1$$
where $\mathbf{E}_{6} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{O}_{3} \\ \mathbf{O}_{3} & \mathbf{O}_{3} \end{bmatrix}$

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

・ロト ・日 ・ モ ・ モ ・ モ ・ うへで

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

generalized eigenvalue problem

・ロト・日本・日本・日本・日本・日本

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue λ_0 : $[\mathbf{w}_0, \mathbf{v}_0]$ solves the optimization problem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue λ_0 : $[\mathbf{w}_0, \mathbf{v}_0]$ solves the optimization problem

screw parameter:
$$p = \frac{\langle \mathbf{w}_0, \mathbf{v}_0 \rangle}{\langle \mathbf{w}_0, \mathbf{w}_0 \rangle}$$

・ロト ・日 ・ モ ・ モ ・ モ ・ うへで

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue λ_0 : $[\mathbf{w}_0, \mathbf{v}_0]$ solves the optimization problem

screw parameter:
$$p = \frac{\langle \mathbf{w}_0, \mathbf{v}_0 \rangle}{\langle \mathbf{w}_0, \mathbf{w}_0 \rangle}$$

direction vector of the screw axis a: $\mathbf{d} = \mathbf{w}_0$

Lagrangian multiplier method yields

$$(\mathbf{S} - \lambda \mathbf{E}_6) \cdot \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

generalized eigenvalue problem

determine the eigenvector space for the smallest eigenvalue λ_0 : $[\mathbf{w}_0, \mathbf{v}_0]$ solves the optimization problem

screw parameter:
$$p = \frac{\langle \mathbf{w}_0, \mathbf{v}_0 \rangle}{\langle \mathbf{w}_0, \mathbf{w}_0 \rangle}$$

direction vector of the screw axis a: $\mathbf{d} = \mathbf{w}_0$

point on *a*: **a** =
$$\frac{\mathbf{w}_0 \times \mathbf{v}_0}{\langle \mathbf{w}_0, \mathbf{w}_0 \rangle}$$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

Car Side Windows: Additional Constraints

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへで

boundary curve b (b-pillar)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

b is not! a trajectory of the optimal screw motion M

・ロト・西ト・ヨト・ヨー りへぐ

add some normals of the prescribed b-pillar \boldsymbol{b} to the interpolation problem input

・ロト・日下・モー・モー もんの

computing the optimal screw motion for both, S and b

delivers some replacement for the b-pillar \boldsymbol{b}

the optimal screw motion delivers the optimal side window sheet (screw surface S) out of the roofline c

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

<ロト <回 > < 三 > < 三 > < 三 > のへで

engineering workload constructing the side window

< ロ > < 回 > < 三 > < 三 > < 三 > < ○

Ŷ

engineering workload constructing the side window

<ロト <回 > < 三 > < 三 > < 三 > のへで

Ŷ

engineering workload constructing the side window

quality of the outcome

₽

engineering workload constructing the side window

quality of the outcome

₽

engineering workload constructing the side window

quality of the outcome

serial production cost

How can you move a rod so that its endpoint paths have equal length?

・ロト ・回ト ・ヨト ・ヨー ・ つへで

How can you move a rod so that its endpoint paths have equal length?

<ロト <回 > < 三 > < 三 > < 三 > のへで

$$\vec{A} \dots \vec{OA} = \mathbf{a}(t), \ \vec{B} \dots \vec{OB} = \mathbf{b}(t)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$A \dots \vec{OA} = \mathbf{a}(t), B \dots \vec{OB} = \mathbf{b}(t)$$

 $\operatorname{dist}^2(A, B) = \langle \mathbf{b} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle = d^2 = const.$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$\begin{aligned} A \dots \vec{OA} &= \mathbf{a}(t), \ B \dots \vec{OB} &= \mathbf{b}(t) \\ \text{dist}^2(A, B) &= \langle \mathbf{b} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle = d^2 = const. \\ \langle \dot{\mathbf{a}}, \mathbf{b} - \mathbf{a} \rangle &= \langle \dot{\mathbf{b}}, \mathbf{b} - \mathbf{a} \rangle, \text{ projection theorem} \end{aligned}$$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$A \dots \vec{OA} = \mathbf{a}(t), B \dots \vec{OB} = \mathbf{b}(t)$$

dist²(A, B) = $\langle \mathbf{b} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle = d^2 = const.$
 $\langle \dot{\mathbf{a}}, \mathbf{b} - \mathbf{a} \rangle = \langle \dot{\mathbf{b}}, \mathbf{b} - \mathbf{a} \rangle$, projection theorem

< ()< ()</l>

$$\begin{aligned} A \dots \vec{OA} &= \mathbf{a}(t), \ B \dots \vec{OB} &= \mathbf{b}(t) \\ \text{dist}^2(A, B) &= \langle \mathbf{b} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle = d^2 = const. \\ \langle \dot{\mathbf{a}}, \mathbf{b} - \mathbf{a} \rangle &= \langle \dot{\mathbf{b}}, \mathbf{b} - \mathbf{a} \rangle, \text{ projection theorem} \end{aligned}$$

$$|\dot{\mathbf{a}}| = |\dot{\mathbf{b}}| \Longrightarrow \angle (\vec{AB}, \dot{\mathbf{a}}) = \angle (\vec{AB}, \dot{\mathbf{b}})$$

▲目▶ 目 ∽へ⊘

 Σ . . . moving system

・ロト・日下・モー・モー もんの
Rope Ladder Problem: Problem Formulation

Σ . . . moving system

 Σ^* \ldots fixed system

<ロト <回 > < 三 > < 三 > < 三 > のへで

Rope Ladder Problem: Problem Formulation

- Σ . . . moving system
- Σ^* \ldots fixed system
- Σ/Σ^* \dots motion

・ロト・日下・日・・日・ 日・ うへぐ

<ロト <回 > < 三 > < 三 > < 三 > のへで

planar case A

$$\angle (\vec{AB}, \dot{a}) = \angle (\vec{AB}, \dot{b})$$
 for all $t \in [t_0, t_1]$

planar case A

$$\angle (\vec{AB}, \dot{a}) = \angle (\vec{AB}, \dot{b})$$
 for all $t \in [t_0, t_1]$

curved translation

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへで

- 《口》 《郡 / ミ》 《臣》 三臣 - のへで

planar case B

 $\Sigma / \Sigma^* \, \dots \,$ motion of a straight line *n* rolling on a curve s^*

・ロト ・回ト ・ヨト ・ヨー ・ つへで

planar case B

- Σ/Σ^* ... motion of a straight line *n* rolling on a curve s^*
- $S \ldots$ midpoint of AB
- Σ/Σ^* ... Frenet motion along the path s of S

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

planar case B

s is a tractrix with respect to a and b

mobile robot with two wheels

・ロト ・日ト ・ヨト ・ヨー ・ つへで

ruled surface Φ generated by the motion of e = AB:

 $\mathbf{y}(t,u) = \mathbf{x}(t) + u\mathbf{e}(t)$ with $\langle \mathbf{e}, \mathbf{e}
angle = 1$

≡ ∽٩.0

ruled surface Φ generated by the motion of e = AB: $\mathbf{y}(t, u) = \mathbf{x}(t) + u\mathbf{e}(t)$ with $\langle \mathbf{e}, \mathbf{e} \rangle = 1$ $A \dots \mathbf{a}(t) = \mathbf{y}(t, a)$ $B \dots \mathbf{b}(t) = \mathbf{y}(t, a + d)$

≡ ∽٩.0

ruled surface
$$\Phi$$
 generated by the motion of $e = AB$:
 $\mathbf{y}(t, u) = \mathbf{x}(t) + u\mathbf{e}(t)$ with $\langle \mathbf{e}, \mathbf{e} \rangle = 1$
 $A \dots \mathbf{a}(t) = \mathbf{y}(t, a)$
 $B \dots \mathbf{b}(t) = \mathbf{y}(t, a + d)$
 $|\dot{\mathbf{a}}| = |\dot{\mathbf{b}}| \Longrightarrow (2a + d)\langle \dot{\mathbf{e}}, \dot{\mathbf{e}} \rangle = -2\langle \dot{\mathbf{x}}, \dot{\mathbf{e}} \rangle$

≡ ∽ へ (~

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = \mathbf{0} \iff \mathbf{e} = \mathbf{c}$

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = 0 \iff \mathbf{e} = \mathbf{c}$ Φ is a cylinder (trivial case)

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A

$$\dot{\mathbf{e}} = 0 \iff \mathbf{e} = \mathbf{c}$$

 Φ is a cylinder (trivial case)

spatial case B

 $\dot{\textbf{x}}=0 \Longleftrightarrow \textbf{x}=\textbf{c}=\textbf{s}$

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = 0 \iff \mathbf{e} = \mathbf{c}$ Φ is a cylinder (trivial case)

spatial case B $\dot{\mathbf{x}} = \mathbf{0} \iff \mathbf{x} = \mathbf{c} = \mathbf{s}$

 Φ is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

・ロト ・回ト ・ヨト ・ヨー ・ つへで

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = 0 \iff \mathbf{e} = \mathbf{c}$ Φ is a cylinder (trivial case)

spatial case B $\dot{\mathbf{x}} = \mathbf{0} \iff \mathbf{x} = \mathbf{c} = \mathbf{s}$ Φ is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

spatial case C $\dot{\mathbf{e}}, \dot{\mathbf{x}} \neq \mathbf{0}$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = 0 \iff \mathbf{e} = \mathbf{c}$ Φ is a cylinder (trivial case)

spatial case B $\dot{\mathbf{x}} = \mathbf{0} \iff \mathbf{x} = \mathbf{c} = \mathbf{s}$ Φ is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

spatial case C $\dot{\mathbf{e}}, \dot{\mathbf{x}} \neq 0$ $a + \frac{d}{2} = -\frac{\langle \dot{\mathbf{x}}, \dot{\mathbf{e}} \rangle}{\langle \dot{\mathbf{e}}, \dot{\mathbf{e}} \rangle}$

$$(2a+d)\langle \dot{\mathbf{e}},\dot{\mathbf{e}}
angle = -2\langle \dot{\mathbf{x}},\dot{\mathbf{e}}
angle$$

spatial case A $\dot{\mathbf{e}} = \mathbf{0} \iff \mathbf{e} = \mathbf{c}$ Φ is a cylinder (trivial case)

spatial case B $\dot{\mathbf{x}} = \mathbf{0} \iff \mathbf{x} = \mathbf{c} = \mathbf{s}$ Φ is a cone and A, B are symmetric w.r.t. its vertex S (trivial case)

spatial case C $\dot{\mathbf{e}}, \dot{\mathbf{x}} \neq 0$ $a + \frac{d}{2} = -\frac{\langle \dot{\mathbf{x}}, \dot{\mathbf{e}} \rangle}{\langle \dot{\mathbf{e}}, \dot{\mathbf{e}} \rangle}$

The midpoint S of AB is the striction (cuspidal) point on e = AB.

An Example: screw motion

・ロト ・日ト ・ヨト ・ヨー ・ つへで

An Example: screw motion

all points on a common right cylinder around the screw axis have paths of equal length

<ロト <回 > < 三 > < 三 > < 三 > のへで

An Example: screw motion

all points on a common right cylinder around the screw axis have paths of equal length

striction curve ${\bf s}$ is the helix generated by ${\cal S}$

・ロト ・回ト ・ヨト ・ヨー ・ つへで

Given: series of positions A_iB_i , i = 1, ..., n of the rod AB

・ロト・日下・モー・モー もんの

Given: series of positions A_iB_i , i = 1, ..., n of the rod AB

Wanted: motion Σ / Σ^* which

- a) moves AB through the given positions and
- b) guarantees equal path lengths of A and B

・ロト ・回ト ・ヨト ・ヨー ・ つへで

Given: series of positions A_iB_i , i = 1, ..., n of the rod AB

Wanted: motion Σ / Σ^* which

a) moves AB through the given positions and

b) guarantees equal path lengths of A and B

Construction:

・ロト ・回ト ・ヨト ・ヨー ・ つへで

Given: series of positions A_iB_i , i = 1, ..., n of the rod AB

Wanted: motion Σ / Σ^* which

a) moves AB through the given positions and

b) guarantees equal path lengths of A and B

Construction:

Step 1: Find a suitable curve s interpolating the midpoints S_i of A_iB_i

・ロト・日下・モー・モー うへで

Given: series of positions A_iB_i , i = 1, ..., n of the rod AB

Wanted: motion Σ / Σ^* which

a) moves AB through the given positions and

b) guarantees equal path lengths of A and B

Construction:

Step 1: Find a suitable curve s interpolating the midpoints S_i of A_iB_i

Step 2: Find a ruled surface Φ that interpolates $e_i = A_i B_i$ and whose striction curve is s

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Step 1: curve
$$s \dots \mathbf{s}(t)$$
 with $\mathbf{s}(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

Step 1: curve
$$s \dots s(t)$$
 with $s(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$
 $\tau \dots$ arclength on s : $\mathbf{s} = \mathbf{s}(\tau)$;
 $\langle \mathbf{s}', \mathbf{s}' \rangle = 1$;
 $\mathbf{s}(\tau_i) = \mathbf{s}_i$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

Step 1: curve
$$s \dots \mathbf{s}(t)$$
 with $\mathbf{s}(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$
 $\tau \dots$ arclength on $s: \mathbf{s} = \mathbf{s}(\tau);$
 $\langle \mathbf{s}', \mathbf{s}' \rangle = 1;$
 $\mathbf{s}(\tau_i) = \mathbf{s}_i$

Step 2: Find a vector function $\mathbf{e} = \mathbf{e}(\tau)$ with

・ロト・日下・モー・モー もんの
Step 1: curve
$$s \dots \mathbf{s}(t)$$
 with $\mathbf{s}(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$
 $\tau \dots$ arclength on s : $\mathbf{s} = \mathbf{s}(\tau)$;
 $\langle \mathbf{s}', \mathbf{s}' \rangle = 1$;
 $\mathbf{s}(\tau_i) = \mathbf{s}_i$

Step 2: Find a vector function $\mathbf{e} = \mathbf{e}(\tau)$ with

$$\mathbf{e}(\tau_i) = \mathbf{e}_i = \frac{\mathbf{b}_i - \mathbf{a}_i}{|\mathbf{b}_i - \mathbf{a}_i|} \ i = 1, \dots, n \quad (\mathsf{I})$$

・ロト・日下・日・・日・ 日・ うへぐ

Step 1: curve
$$s \dots \mathbf{s}(t)$$
 with $\mathbf{s}(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$
 $\tau \dots$ arclength on $s: \mathbf{s} = \mathbf{s}(\tau);$
 $\langle \mathbf{s}', \mathbf{s}' \rangle = 1;$
 $\mathbf{s}(\tau_i) = \mathbf{s}_i$

Step 2: Find a vector function $\mathbf{e} = \mathbf{e}(\tau)$ with

$$\mathbf{e}(\tau_i) = \mathbf{e}_i = \frac{\mathbf{b}_i - \mathbf{a}_i}{|\mathbf{b}_i - \mathbf{a}_i|} \ i = 1, \dots, n \quad (\mathsf{I})$$
$$\langle \mathbf{s}', \mathbf{e}' \rangle = 0 \qquad (\mathsf{S})$$

・ロト・日下・日・・日・ 日・ うへぐ

Step 1: curve
$$s \dots \mathbf{s}(t)$$
 with $\mathbf{s}(t_i) = \frac{\mathbf{a}_i + \mathbf{b}_i}{2} =: \mathbf{s}_i, i = 1, \dots, n$
 $\tau \dots$ arclength on s : $\mathbf{s} = \mathbf{s}(\tau)$;
 $\langle \mathbf{s}', \mathbf{s}' \rangle = 1$;
 $\mathbf{s}(\tau_i) = \mathbf{s}_i$

Step 2: Find a vector function $\mathbf{e} = \mathbf{e}(\tau)$ with

$$\mathbf{e}(\tau_i) = \mathbf{e}_i = \frac{\mathbf{b}_i - \mathbf{a}_i}{|\mathbf{b}_i - \mathbf{a}_i|} \ i = 1, \dots, n \quad (\mathsf{I})$$
$$\langle \mathbf{s}', \mathbf{e}' \rangle = 0 \qquad (\mathsf{S})$$
$$\langle \mathbf{e}, \mathbf{e} \rangle = 1 \qquad (\mathsf{U})$$

・ロト・日下・モー・モー・ モー・ つへで

$$\sigma := \angle(\mathbf{e}, \mathbf{s}') \dots$$
 striction of Φ

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$\begin{split} \sigma &:= \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi \\ \kappa &:= |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s} \\ \mathbf{t} &= \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} &= \mathbf{t} \times \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s} \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \mathbf{x} \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \mathbf{x} \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\langle \mathbf{s}'', \mathbf{e} \rangle + \underbrace{\langle \mathbf{s}', \mathbf{e}' \rangle}_{= 0} = -\sigma' \sin \sigma$$

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \mathbf{x} \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\langle \mathbf{s}'', \mathbf{e} \rangle + \underbrace{\langle \mathbf{s}', \mathbf{e}' \rangle}_{= 0} = -\sigma' \sin \sigma$$

$$\varepsilon \dots \langle \mathbf{s}', \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{s}'', \mathbf{e} \rangle + \sigma' \sin \sigma = 0$$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \mathbf{x} \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\langle \mathbf{s}'', \mathbf{e} \rangle + \underbrace{\langle \mathbf{s}', \mathbf{e}' \rangle}_{= 0} = -\sigma' \sin \sigma$$

$$\varepsilon \dots \langle \mathbf{s}', \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{s}'', \mathbf{e} \rangle + \sigma' \sin \sigma = 0$$

developable surface Γ with generators g parallel to **b**

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \times \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\langle \mathbf{s}'', \mathbf{e} \rangle + \underbrace{\langle \mathbf{s}', \mathbf{e}' \rangle}_{= 0} = -\sigma' \sin \sigma$$

$$\varepsilon \dots \langle \mathbf{s}', \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{s}'', \mathbf{e} \rangle + \sigma' \sin \sigma = 0$$

developable surface Γ with generators g parallel to \mathbf{b}

$$arepsilon_1 \quad \ldots \quad \langle {f h}, {f e}
angle \ + \ {\sigma' \sin \sigma \over \kappa} \ = \ 0$$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$\sigma := \angle (\mathbf{e}, \mathbf{s}') \dots \text{ striction of } \Phi$$

$$\kappa := |\mathbf{s}''| \dots \text{ curvature of } \mathbf{s}$$

$$\mathbf{t} = \mathbf{s}', \ \mathbf{h} = \frac{1}{|\mathbf{s}''|} \mathbf{s}'', \ \mathbf{b} = \mathbf{t} \times \mathbf{p} \dots \text{ Frenet frame of } \mathbf{s}$$

$$\langle \mathbf{s}', \mathbf{e} \rangle = \cos \sigma$$

$$\langle \mathbf{s}'', \mathbf{e} \rangle + \underbrace{\langle \mathbf{s}', \mathbf{e}' \rangle}_{= 0} = -\sigma' \sin \sigma$$

$$\varepsilon \dots \langle \langle \mathbf{s}', \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \langle \mathbf{s}'', \mathbf{e} \rangle + \sigma' \sin \sigma = 0$$

developable surface Γ with generators g parallel to \mathbf{b}

$$\varepsilon_1 \quad \ldots \quad \langle \mathbf{h}, \mathbf{e} \rangle \quad + \quad \frac{\sigma' \sin \sigma}{\kappa} \quad = \quad \mathbf{0}$$

The intersection of Γ with the unit sphere contains the spherical generator image ${\bf e}={\bf e}(s)$ of Φ

・ロト・白ア・エア・エア・ ロックへの

$$\begin{array}{rcl} x & = & \cos \sigma \\ y & = & -\frac{\sigma' \sin \sigma}{\kappa} \\ z & = & \pm \sin \sigma \sqrt{1 - \frac{{\sigma'}^2}{\kappa^2}} \end{array}$$

・ロト・白ア・エア・エア・ ロックへの

・ロト ・回ト ・ヨト ・ヨー ・ つへで

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

・ロト ・日ト ・ヨト ・ヨー ・ つへで

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

Special Cases

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

Special Cases

• $\sigma' = 0$: Φ is a ruled surface of constant striction; $\mathbf{e} \in [\mathbf{t}, \mathbf{b}]$

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{{\sigma'}^2}{\kappa^2}} \cdot \mathbf{b}$$

Special Cases

- $\sigma' = 0$: Φ is a ruled surface of constant striction; $\mathbf{e} \in [\mathbf{t}, \mathbf{b}]$
- $\sigma = 0$: Φ is the tangent surface of *s*

$$\mathbf{e} = \cos \boldsymbol{\sigma} \cdot \mathbf{t} - \boldsymbol{\sigma}' \sin \boldsymbol{\sigma} \cdot \mathbf{h} \pm \sin \boldsymbol{\sigma} \sqrt{1 - \frac{\boldsymbol{\sigma}'^2}{\kappa^2}} \cdot \mathbf{b}$$

Special Cases

- $\sigma' = 0$: Φ is a ruled surface of constant striction; $\mathbf{e} \in [\mathbf{t}, \mathbf{b}]$
- $\sigma = 0$: Φ is the tangent surface of s
- κ = 0 (striction curve s is a straight line): a solution is possible only if σ' = 0, i.e.; σ = const.
 Φ is a ruled surface of constant slope and a straight line as striction curve.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

$$\varepsilon \dots \langle \mathbf{t}, \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{h}, \mathbf{e} \rangle + \frac{\sigma' \sin \sigma}{\kappa} = 0$$

・ロト・日下・モー・モー もんの

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

$$\varepsilon \dots \langle \mathbf{t}, \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{h}, \mathbf{e} \rangle + \frac{\sigma' \sin \sigma}{\kappa} = 0$$

Construct a striction function $\boldsymbol{\sigma}$ with

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{{\sigma'}^2}{{\kappa}^2}} \cdot \mathbf{b}$$

$$\varepsilon \dots \langle \mathbf{t}, \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{h}, \mathbf{e} \rangle + \frac{\sigma' \sin \sigma}{\kappa} = 0$$

Construct a striction function $\boldsymbol{\sigma}$ with

$$\sigma'(au)^2 \leq \kappa^2(au)$$

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{\sigma'^2}{\kappa^2}} \cdot \mathbf{b}$$

$$\varepsilon \dots \langle \mathbf{t}, \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \dots \langle \mathbf{h}, \mathbf{e} \rangle + \frac{\sigma' \sin \sigma}{\kappa} = 0$$

Construct a striction function $\boldsymbol{\sigma}$ with

$$\begin{array}{lll} \sigma'(\tau)^2 &\leq & \kappa^2(\tau) \\ \sigma(\tau_i) &= & \arccos\langle \mathbf{s}'(\tau_i), \mathbf{e}_i \rangle \\ \sigma'(\tau_i) &= & -\frac{\langle \mathbf{s}''(\tau_i), \mathbf{e}_i \rangle}{\sin \sigma(\tau_i)} \end{array} \right\}, \ i = 1, \dots, n \end{array}$$

$$\mathbf{e} = \cos \sigma \cdot \mathbf{t} - \sigma' \sin \sigma \cdot \mathbf{h} \pm \sin \sigma \sqrt{1 - \frac{{\sigma'}^2}{{\kappa}^2}} \cdot \mathbf{b}$$

$$\varepsilon \qquad \dots \qquad \langle \mathbf{t}, \mathbf{e} \rangle - \cos \sigma = 0$$

$$\varepsilon_1 \qquad \dots \qquad \langle \mathbf{h}, \mathbf{e} \rangle + \frac{{\sigma'} \sin \sigma}{\kappa} = 0$$

Construct a striction function σ with

$$\begin{aligned} \sigma'(\tau)^2 &\leq \kappa^2(\tau) \\ \sigma(\tau_i) &= \arccos\langle \mathbf{s}'(\tau_i), \mathbf{e}_i \rangle \\ \sigma'(\tau_i) &= -\frac{\langle \mathbf{s}''(\tau_i), \mathbf{e}_i \rangle}{\sin \sigma(\tau_i)} \end{aligned} \right\}, \ i = 1, \dots, n \ \end{aligned}$$

Construct σ as a Hermite interpolant. $(\Box) \times (\Box) \times (\Box) \times (\Box) \times (\Box) \times (\Box)$

- K. Brauner, H. R. Müller, Über Kurven, welche von den Endpunkten einer bewegten Strecke mit konstanter Geschwindigkeit durchlaufen werden, *Math. Z.* 47, 291–317, 1941.
- A. Gfrerrer, J. Lang, A. Harrich, M. Hirz, J. Mayr, Car Side Window Kinematics, *Computer Aided Design* 43, 2011, pp. 410–416.
- B. Odehnal, H. Stachel, The upper talocalcanean join, *Technical Report 127, Geometry Preprint Series*, Vienna Univ. of Technology, 2004, 12 pages, http://www.geometrie.tuwien.ac.at/odehnal/knochen.pdf
- H. Pottmann, T. Randrup, Rotational and Helical Surface Approximation for Reverse Engineering, *Computing* 60, 1998, pp. 307–322.
- H. Pottmann, J. Wallner, *Computational Line Geometry*, Springer, 2000.
- H. Pottmann, M. Hofer, B. Odehnal, J. Wallner, Line Geometry for 3D Shape Understanding and Reconstruction, in: T. Pajdla, J. Matas (Eds.), *Computer Vision – ECCV 2004*, Part I, Vol. 3021 of Lecture Notes in Computer Science, 1999, pp. 297–309.