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Abstract We benchmark a family of hybrid finite element–node-centered finite volume
discretization methods (FEFV) for single- and two-phase flow/transport through porous
media with discrete fracture representations. Special emphasis is placed on a new method we
call DFEFVM in which the mesh is split along fracture–matrix interfaces so that discontinu-
ities in concentration or saturation can evolve rather than being suppressed by nodal averaging
of these variables. The main objective is to illustrate differences among three discretization
schemes suitable for discrete fracture modeling: (a) FEFVM with volumetric finite elements
for both fractures and porous rock matrix, (b) FEFVM with lower dimensional finite elements
for fractures and volumetric finite elements for the matrix, and (c) DFEFVM with a mesh that
is split along material discontinuities. Fracture discontinuities strongly influence single- and
multi-phase fluid flow. Continuum methods, when used to model transport across such inter-
faces, smear out concentration/saturation. We show that the new DFEFVM addresses this
problem producing significantly more accurate results. Sealed and open single fractures as
well as a realistic fracture geometry are used to conduct tracer and water-flooding numerical
experiments. The benchmarking results also reveal the limitations/mesh refinement require-
ments of FE node-centered FV hybrid methods. We show that the DFEFVM method produces
more accurate results even for much coarser meshes.
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1 Introduction

Accurate simulation of flow and transport through fractured rock requires a model which
captures the physics of the flow processes, as well as an accurate representation of the flow
geometry. Discrete fracture and matrix (DFM) models use the single-continuum approach in
which both fractures and porous rock (i.e., matrix) have discrete representations in the model,
and were developed for this purpose (Kim and Deo 2000; Karimi-Fard and Firoozabadi 2003;
Dietrich et al. 2005; Matthäi et al. 2010; Geiger et al. 2009), as well as to perform upscaling
studies (Gong et al. 2008; Matthäi and Nick 2009). In this approach, numerical modeling of
fracture–matrix transfer processes needs special attention because the porous medium ter-
minates abruptly at the fracture–matrix interface. Due to differences in the multiphase flow
properties, saturation discontinuities may occur (van Duijn et al. 1995). The experiments of
Su and Nimmo (2003) and Rangel-German and Kovscek (2003) show the influence of such
material discontinuities and their barrier effect on two-phase flow. Imbibition experiments
conducted by Rangel-German and Kovscek (2003) on a single fracture in contact with a
low permeability rock, reveal the effect of capillary pressure and velocity magnitude on the
imbibition process at the interface.

The effect of capillary pressure on two-phase flow DFM simulation has previously been
addressed by Monteagudo and Firoozabadi (2004), Niessner et al. (2005), Mikyska (2005),
and Reichenberger et al. (2006). In particular, Hoteit and Firoozabadi (2008a,b) applied a new
formulation to capture transfer by combining the mixed finite element with the discontinuous
Galerkin (DG) method. Hoteit and Firoozabadi (2008a,b) also use lower dimensional ele-
ments without the assumption of cross-flow equilibrium between fractures and neighboring
matrix cells. Recently, Eikemo et al. (2009) proposed a DG method for advective transport
in fractured porous media. They studied its accuracy and utility for different test cases, but
observed that the accuracy decreases for the case of a high permeability contrast between
the finite elements. This discussion highlights that this problem still has scope to explore
alternative solutions for fracture–matrix transfer in search of physically realistic models.

In this study, we present a comparison between two FEFV methods and a new FEFVM
with embedded discontinuity hybrid approach (DFEFVM) for purely advective flow in frac-
tured porous media. The DFEFVM is introduced and verified by Nick and Matthäi (2011)
for the simulation of single-phase flow and transport in inhomogeneous porous media. We
achieve the embedded discontinuity approach by adding extra nodes/degree of freedom at
the fracture–matrix interfaces and solve the equations accordingly. Our main goal is to con-
trast and compare of these methods. For this purpose, three numerical schemes are tested in
single- and two-phase flow models of fractured porous media using four example flow geom-
etries. Results obtained for different fracture–matrix permeability ratios and, in the case of
two-phase flow, different viscosity ratios are presented. Sealed fractures are also considered.
A realistic fracture geometry is used to simulate water-flooding.

2 Methodology

In this section, an overview of the hybrid FEFV discretization schemes is presented. This is
followed by a description of the set up of the numerical experiments employed in this study.
The first scheme refers to the FEFVM in which both the fractures and the porous rock are
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discretized with the same element dimensionality. This is called FEFVM 2D or FEFVM 3D
for 2D and 3D models, respectively. The second method unlike the previous scheme use
lower dimensional elements for the fractures. This is called FEFVM 1D & 2D or FEFVM
2D & 3D for 2D and 3D models, respectively. The third scheme which uses the FEFVM
with embedded discontinuity is accomplished by adding new nodes at the matrix–fracture
interfaces (DFEFVM).

2.1 Governing Equations

Darcy’s law, in its simplified form and ignoring gravitational forces, can be used to obtain
velocity field,

vt = −k λt∇ p, (1)

where vt denotes the total velocity vector and p represents the pressure values. The pressure
equation for single- or two-phase flow in porous media in the absence of gravity and capillary
forces can be written as

φ
∂p

∂t
= ∇ · k λt∇ p + q̇, (2)

where q̇ stands for external sinks and sources [T−1]. Note that for single-phase flow water
saturation is equal to one and the total mobility is λt = 1

μ
. Total mobility, λt, is multiplied

with the permeability k, and depends on the viscosities μα , (where α = n, w) and relative
permeability multipliers krα , for non-wetting (n) and wetting (w) phases.

λt =
(

krn

μn
+ krw

μw

)
. (3)

The calculation of krα multipliers relies on experimentally parameterized non-linear models
such as the Brooks and Corey (1964) or van Genuchten (1980) model. For pure advection
the mass balance is given by,

φ
∂C

∂t
+ ∇ · (vtC) = q. (4)

where C denotes the concentration [ml−3], t represents time, and q is a mass-source/sink
term [ml−3 T−1]. Buckley and Leverett (1942) showed that, in the absence of gravity and
capillary forces, the position of the saturation front can be calculated as a product of vt and
the fractional flow, fα , of the phase α of interest:

fα = λα

(λn + λw)
, (5)

where λn and λw are non-wetting and wetting phase mobilities, respectively. This leads to
the closed form of the Buckley–Leverett equation:

φ
∂Sα
∂t

+ ∇ · ( fαvt)− qα = 0 (6)

The saturation Sα [−] of phase α is defined as the ratio of its volume within the REV over
the total pore volume. For two-phase flow, only one phase needs to be tracked because phase
saturations always sum up to one. The Buckley–Leverett equation is a scalar conservation
law associated with a non-convex saturation profile with a shock migrating with a speed
equivalent to the slope of a line tangent to the fractional flow function, and originating at the
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irreducible saturation of the phase of interest (Bastian 1999). The non linearity arises due to
the coupling of the pressure equation with the saturation equation via total mobility and the
effects of saturation on velocity.

2.2 Numerical Methods

Similar to Huber and Helmig (1999) and Karimi-Fard and Firoozabadi (2003), we com-
pute transient fluid pressure diffusion and miscible/immiscible displacement of compressible
phases in a sequential manner: first, an elliptic–parabolic pressure equation is solved using
the Bubnov-Galerkin finite element method, the flow velocity is obtained from the pressure
gradient and Darcy’s law. It is then used in the solution of the transport equation with a finite
volume scheme. The idea of this FEFVM is to discretize the domain with finite elements
and complementary finite volumes such that for each node of the finite element mesh a finite
volume is created by connecting element barycentres via the midpoints of the associated
edges (Paluszny et al. 2007). Therefore, finite volumes ν j are constructed around the finite
element nodes n j . In contrast with Huber and Helmig (2000), we discretize permeability as
piecewise constant from element to element so that the finite element conform to material
interfaces.

There are two possibilities to discretize fractured porous media with the FEFVM (Juanes
et al. 2002). The first option is to discretize the fractures with the same volumetric/surface
finite elements as the rock matrix. The second option is to use lower dimensional surface/line
elements for fractures. The first option requires the use of high aspect ratio—or very fine
elements for fractures with small apertures. Since the nodes on either side of any fracture
are shared, the method with lower dimensional fracture elements is incapable of simulating
a system with a matrix permeability (km) higher than the fracture permeability (kf).

Pressure Equation

In the Paluszny et al. (2007) approach, material properties such as permeability and poros-
ity are constant within each element ei . Using linear FE shape functions, Ni , the implicit
space-time integration of Eq. 2 over the bounded domain � ⊂ Rd (d = 2, 3) for x ∈ �

yields, ⎡
⎣∑

e

∫
�

NT φNdx + �t
∑

e

∫
�

∇NT λt k∇Ndx

⎤
⎦ pt+�t

=
⎡
⎣∑

e

∫
�

NT φ Ndx

⎤
⎦ pt + �t

∑
e

∫
�

NT q̇ Ndx. (7)

For lower dimensional fracture elements, the domain� consist of two overlapping domains,
�f and �m, as �m ⊂ Rd and �f ⊂ Rd−1 (d = 2, 3). Equation 7 becomes,⎡

⎢⎣∑
e

∫
�m

NT φNdx +
∑

e

ai

∫
�f

NT φ Ndx

⎤
⎥⎦ pt+�t

+ � t

⎡
⎢⎣∑

e

∫
�m

∇NT λt k∇Ndx +
∑

e

ai

∫
�f

∇NT λt k∇Ndx

⎤
⎥⎦ pt+�t
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Fig. 1 Three different discretizations for the FEFV methods

=
⎡
⎢⎣∑

e

∫
�m

NT φNdx +
∑

e

ai

∫
�f

NT φ Ndx

⎤
⎥⎦ pt

+ � t

⎡
⎢⎣∑

e

∫
�m

NT q̇ Ndx +
∑

e

ai

∫
�f

NT q̇ Ndx

⎤
⎥⎦ , (8)

where ai denotes the aperture of fracture element, i .
To embed discontinuities at material/finite element interfaces we develop a new hybrid

method: DFEFVM. For this propose we locate new nodes at material interfaces so that they
can represent concentration/saturation jump discontinuities at such locations in contrast to
the continuous FEFVM (Fig. 1). Material interfaces exist where properties such as perme-
ability, porosity, or relative permeability change abruptly, �fm ∈ �f ∩ �m. The new nodes
are introduced ascertaining that every node is member of only one sub-domain, either �f or
�m. To solve Eq. 2 with this DFEFVM we assume that the pressure of the wetting phase is
continuous across these interfaces. Now, we adjust the global solution matrix arising from
the pressure equation, to eliminate the extra unknowns due to the new nodes at the interfaces.
This is explained through a simple one dimensional model containing two elements where
node 2 is split for DFEFVM (Fig. 2). The element conductance matrices, K 1 and K 2, with
the coefficients a1 and a2 for the finite elements 1 and 2 can be written as:

123



426 H. M. Nick, S. K. Matthäi

Fig. 2 One dimensional model,
containing two finite elements,
discretized by the FEFVM and
DFEVM

K 1 =
[

a1 −a1

−a1 a1

]

K 2 =
[

a2 −a2

−a2 a2

]

The global conductance matrix for FEFVM reads,

A =
⎡
⎣ a1 −a1 0

−a1 a1 + a2 −a2

0 −a2 a2

⎤
⎦

whereas for the DFEFVM it yields,

A =

⎡
⎢⎢⎣

a1 −a1 0 0
−a1 a1 0 0

0 0 a2 −a2

0 0 −a2 a2

⎤
⎥⎥⎦

The second and third rows correspond to the nodes at the interface. Adding off-diagonal
terms to couple the nodes 2 and 3 in matrix A to the corresponding nodes from the same
interface and modifying the diagonal one accordingly, gives,

A =

⎡
⎢⎢⎣

a1 −a1 0 0
−a1 a1 + a2 0 0 − a2

0 − a1 0 a2 + a1 −a2

0 0 −a2 a2

⎤
⎥⎥⎦

This procedure forces the nodal pressure values on either side of the interface to become the
same.

Mass Balance Equation

The finite volume approach is used to solve Eqs. 4 and 6. We employ piecewise constant
FV interpolation functions, M j for each finite volume ν j , to integrate over the domain V ∈
Vf ∪ Vm. Applying the divergence theorem,

∑
j

∫
ν

Mφψ t+
t dV −
∑

j

∫
ν

Mφψ t dV = 
t

⎡
⎢⎣∑

j

∮
�ν

Ft · nd S +
∑

j

∫
ν

MqdV

⎤
⎥⎦ , (9)

where ψ represents the primary variable (i.e., concentration and saturation), �ν denotes the
cell boundary, and n is the normal vector. For single-phase solute transport simulated with a
first-order upwind scheme, the flux integral term of Eq. 4 for ν j gives,

∮
�ν

Ft · nd S =
Nr∑
r

(
Hj,r A j,r n j,r · vt ψu + (1 − Hj,r )A j,r n j,r · vt ψc

)
, (10)
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where ψu denotes the primary variable of the upstream volume and ψc denotes the primary
variable of the current volume , n j,r is the normal vector of facet r pointing outward of the
finite volume j and the function Hj,r is defined as,

Hj,r =
{

1 if n · vt < 0
0 otherwise.

There are Nr facets r of area A j,r in each finite volume ν j .
For the two-phase flow problem (Eq. 6) surface-integrated influxes are multiplied with

f t
αi (ψu) evaluated with the upstream saturations. Outfluxes are multiplied with the f t

αi (ψc)

of current volume. In any case, the fractional flow function of the current cell is used. So we
have,

∮
�ν

Ft · nd S =
Nr∑
r

(
Hj,r A j,r n j,r · vt fαi (ψu)+ (1 − Hj,r )A j,r n j,r · vt fαi (ψc)

)
. (11)

For the lower dimensional fracture elements, finite volume porosity is calculated as the sum
of porosity of all sectors in ν,

φ =
∑Nsm

n=1 φmVsm∑Nsm
n=1 Vsm

+
∑Nsf

n=1 φfVfm∑Nsf
n=1 Vfm

, (12)

where Nsm and Nsf are the number of matrix and fracture finite volume sectors of the finite
volume ν, respectively, so that Nr = Nsm + Nfm. In 3D models, the parameter Vsm denotes
the volume of matrix finite volume sectors, and Vsf is the surface of fracture finite volume
sectors of the finite volume ν.

Total velocity vt is calculated at the integration point of each finite volume facet using
Eq. 1. Consequently fluxes are continuous across the finite volume facets. For the truncated
finite volumes at the outflow boundaries �out, however, we calculate vt for the Dirichlet
boundary conditions via, ∑

�out

A j,r n j,r · vt = −
∑
�ν

A j,r n j,r · vt. (13)

After splitting the FE mesh at the material interfaces, we treat these as internal boundaries
when solving the transport equation. Therefore, for the DFEFVM, an approximation of the
flux at the internal boundaries �fm between fractures and matrix is required. Equation 13
is employed to calculate these fluxes. For each finite volume in a continuous space, flux
continuity is obtained if, ∑

�ν

A j,r n j,r · vt = 0 (14)

At the fracture–matrix interfaces, finite volumes νm and νf as ν ∈ νm ∪ νf are truncated by
boundaries r ∪ rm and r ∪ rf, respectively. In order to evaluate Eqs. 10 or 11, the unknown
fluxes, n j,rm · v∗

t = −n j,rf · v∗
t , at the interface �fm need to be found. The n j,rm and n j,rf

are the normal vectors to the outward facing elements faces on matrix and fracture sides,
respectively. Since vt is discontinuous at these finite element faces a v∗

t has to be calculated
by rewriting the Eq. 14 for the truncated finite volumes, νm and νf from,∑
�νm

A j,r n j,r · vt +
∑
�fm

A j,rm n j,rm · v∗
t = −

∑
�νf

A j,r n j,r · vt −
∑
�fm

A j,rf n j,rf · v∗
t . (15)
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This can not be used to calculate v∗
t for the finite volumes which contain both internal bound-

aries (�fm) and outflow boundaries (�out). For these finite volumes we calculate v∗
t by taking

the average of vt at each side of the interface �fm.
Similar to Durlofsky (1998), in this analysis we use the implicit pressure explicit sat-

uration (IMPES) formulation to solve the two-phase flow equations. This formulation has
been used commonly as it provides a simple and efficient implementation (Chen et al. 2006).
However, this formulation suffers from instability and time step limitation specially for the
model containing small elements (Matthäi et al. 2010). The scheme is implemented in and
the equations are solved using CSMP++ which is an object-oriented application program-
mer interface (API), designed for the simulation of complex subsurface processes and their
interactions (Matthäi et al. 2007; Zaretskiy et al. 2010; Geiger et al. 2010; Unsal et al. 2010;
Paluszny and Zimmerman 2011).

2.3 Model Configuration for the Numerical Experiments

Five models are used to evaluate the described alternative FEFV discretization approaches,
see Table 1. These models are described in the following.

Model 1

Cross-sectional model of a single fracture (17.5 cm long) connected only to the right bound-
ary of the 20 × 1 cm model domain is used (Fig. 3), meshed with triangular elements. In the
experiments, tracer enters through the left boundary (Dirichlet boundary condition), driving
by a far field pressure difference of 1 × 103 Pa between the left and the right boundaries. We
use a permeable porous media, km = 4 × 10−12 m2, for the matrix with porosity of 0.3. The
fracture has an aperture of 1 mm with the permeability of 4 × 10−10 m2 and porosity of one.
Table 2 lists three level of mesh refinement details.

Model 2

Test model for an immiscible displacement in a 20 × 1 cm rock sample has a single through-
going fracture with the constant aperture size of 1 mm. Fracture and matrix porosities are the

Table 1 Material properties of the test models (Figs. 3, 4, 5, 6, and 13 )

Parameter Units Model 1 Model 2 Single sealed Flow impediment Bristol channel
fracture model model model

Dimensions cm 20×1 20×1 100×20 100×100 300×300

φm – 0.3 0.3 0.3 0.3 0.3

φf – 1 1 0.1 0.3 0.3

km m2 4 ×10−12 4 ×10−15 1 ×10−12 1 ×10−14 1 ×10−14

kf m2 4 ×10−10 4 ×10−10 1 ×10−18 1 ×10−17 4 ×10−11

Fig. 3 Single fracture, Model 1
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Table 2 Mesh parameters of Model 1 for three level of refinements (Fig. 8)

Mesh Element size Nodes Nodes Nodes
( mm) FEFVM 1D & 2D FEFVM 2D DFEFVM

1 2.5 415 493 493+150

2 1 2607 2330 2330+342

3 0.5 8242 8397 8397+710

Table 3 Element size and the number of nodes in Model 2 for different schemes

Mesh Element size Nodes Nodes Nodes
( mm) FEFVM 1D & 2D FEFVM 2D DFEFVM

1 2.5 414 507 507+170

Fig. 4 Three triangular element
meshes (1–3) with increasing
levels of uniform refinement
(single sealed fracture model)

same as in model 1. A permeability of 4 × 10−15 and 4 × 10−10 m2 are assigned to the rock
matrix and fracture, respectively. The Brooks–Corey relative permeability model,

krw = S
2+3λ
λ

krn = (1 − S)2(1 − S
2+λ
λ ),

(16)

with a λ value of 2 is used for both the fracture and the matrix. Triangles are used to discretize
the model (Table 3). The model is initially saturated with oil, then water is injected through
the left boundary driven by the applied pressure gradient of 5 × 103 pa/m.

Single Sealed Fracture Model

We study the convergence of the method on a 2D domain with a size of 1 × 0.2 m. The
model has a single sealed diagonal fracture with a permeability of 10−18 and 10−12 m2 for
the fracture and the matrix, respectively. The sealed fracture and matrix porosity are set to
0.1 and 0.3, respectively. Five triangular element meshes (1–5) with increasing levels of
uniform refinement were used to further quantify mesh dependence of the results and mesh
convergence. Figure 4 shows three mesh refinements used in the convergence study. A tracer
plume is injected for 30 h from the left boundary driven by a horizontal pressure gradient of
1 × 103 Pa/m.
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Fig. 5 Triangulation for the
sealed fracture network

Flow Impediment Model

A 2D horizontal domain (Fig. 5) with a size of 1×1 m is employed to compare the alternative
numerical approaches for modeling single-phase flow. This model contains variably oriented
separate flow impediments with a width of 1 cm. The model is initially filled with water, then
a tracer is injected through the top boundary for 10 days. The tracer is then replaced with
fresh water through continuous injection. Flow is driven by a constant pressure gradient of
1.9 × 104 Pa/m. The rock matrix and impediments have a permeability of 1 × 10−14 and
1 × 10−17 m2, respectively. Both flow-domains have the same porosity equal to 0.3.

Bristol Channel Model

A 3 × 3 m cross-sectional model of a fractured limestone bed mapped at the Bristol Channel
coast, UK, (Belayneh 2004) is discretized by triangular elements (Fig. 6; Table 1). This model
contains a set of well-interconnected fractures. The fracture matrix permeability contrast is
set to 4×103 with the uniform fracture aperture of 1 cm. A linear relative permeability model
is assigned to the fractures and the Brooks–Corey model with the Brooks–Corey parameter
of 2 is used for the rock matrix. A pressure difference of 1×103 Pa is prescribed between the
top and the bottom boundaries (Fig. 7). Initially, the model is saturated with oil. The water
injector is located at the top boundary.

3 Results

In this section, the accuracy and performance of the different hybrid discretization schemes
(FEFVM 2D, FEFVM 1D & 2D, and DFEFVM) are illustrated through numerical exper-
iments. We start with the single fracture model comparing the schemes’ performance for
single-phase flow. One aspect of this analysis is the effect of fracture matrix permeability
contrast on the accuracy of the results. For two-phase flow a simple single fracture model is
considered. The aim is to measure the error of the different schemes for different fluid vis-
cosity ratios. Furthermore, the single sealed fracture model and flow impediment model are

123



Comparison of Three FE-FV Numerical Schemes 431

Fig. 6 Two different discretizations of the fractured limestone bed

Fig. 7 Calculated pressure field after 1 min for the fractured limestone bed. The right plot illustrates the
pressure field in 3D which presents the pressure changes inside the fractures

used to study the performance of the numerical schemes for a tracer advection. The section
concludes with a comparison among the different schemes in water flooding simulation with
the Bristol channel model.

3.1 Single Phase Flow in a Single Fracture (Model 1)

The first test is to evaluate the three schemes for different levels of mesh refinement. Figures
8 and 9 show the concentration fronts after 70 and 720 s of injection for three level of mesh
refinements. The unphysical lateral smearing seen in the two continuum FEFV methods be
attributed to the fact that the finite volumes at the fracture matrix interfaces contain both
fracture and matrix regions (Fig. 8). This retards solute transport in the fracture whereas the
concentration front in the fracture as computed using DFEFVM moves with the speed cor-
responding to the flow velocity of the fracture. The discrepancy between the tracer velocity
of FEFV methods and DFEFVM decreases with decreasing mesh size refinement. However,
a difference exists even for a very fine mesh (Fig. 9). This implies that in the case of FEFV
methods concentration advance in higher permeability regions is slower than what expected.

Breakthrough curves are commonly used to describe transport behavior of heterogeneous
porous media. Figure 10 shows the resulting breakthrough curves of the numerical schemes.
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Fig. 8 Three mesh refinements
and the result of concentration
front for three schemes at
t = 70 s. (a) FEFVM 1D & 2D,
(b) FEFVM 2D, and (c)
DFEFVM

Two concentration jumps in breakthrough curves are expected. The first jump corresponds
to when the tracer passing through the fracture reaches the right boundary. The next one
occurs as the whole domain becomes infiltrated by the tracer. DFEFVM captures two jumps
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Fig. 9 Concentration fronts at
t = 720 s for different mesh
refinements and numerical
schemes. (a) FEFVM 1D & 2D,
(b) FEFVM 2D, and (c)
DFEFVM

Fig. 10 Breakthrough curves for three different mesh refinements and numerical schemes

with minor numerical dispersion while both continuum FEFV approaches only show these
for the highly refined meshes (Fig. 10). Interestingly, for the coarsest mesh, the continuum
approaches fails to reveal any jumps. They produce considerable errors even for the finest
mesh size. The jumps arrive at the outlet after 5 and 98 min, respectively. These can be used
to calculate the error of each solution in the breakthrough curves. We calculate two error
norms, L1 and L2, for studying the accuracy of these schemes. Table 4 shows the concentra-
tion discretization error for the three numerical approaches as evaluated for the three levels
of mesh refinement. The FEFVM combined with the lower dimensional fracture approach
gives better results than the FEFVM for single phase flow. This was already argued by
Juanes et al. (2002). The DFEFVM at the coarsest mesh solution already is more precise than
the FEFVM on the finest mesh (Table 4). The number of unknowns for the DFEFVM at the
coarsest mesh is almost 13 times less than that for the FEFVM at the finest mesh.

3.1.1 Effect of Permeability Contrast

The effect of fracture–matrix permeability contrast on the performance of each scheme is
studied by conducting simulations on Mesh 3. Variations in permeability are achieved by
retaining the permeability of the fracture, i.e., kf = 4 × 10−10, but altering the permeability
of matrix, i.e., km = 4 × 10−11, 4 × 10−12, 2 × 10−12, and 4 × 10−13. Figure 11 depicts
the concentration fronts obtained with the three approaches. The tracer fills the fracture rap-
idly for all cases shown in Fig. 11, however, it advances the fastest in the DFEFVM model.
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Table 4 Discretization errors for single-phase flow as a function of mesh refinement (Model 1)

L1 L2

Mesh FEFVM FEFVM DFEFVM FEFVM FEFVM DFEFVM
1D & 2D (%) 2D (%) 2D (%) 1D & 2D (%) 2D (%) 2D (%)

1 111.61 115.45 4.49 12.13 12.49 1.40

2 58.55 72.60 2.79 6.30 7.87 1.24

3 40.56 43.85 2.15 4.35 4.68 1.21

Mesh 1 is the coarsest and Mesh 3 the finest

Fig. 11 Concentration fronts for
the three fracture–matrix
permeability contrasts at different
time (Mesh 3). (a) FEFVM 1D &
2D, (b) FEFVM 2D, and
(c) DFEFVM

Table 5 Relative L2 norms for the four different fracture-matrix permeability ratios applied to Model 1

Permeability FEFVM FEFVM DFEFVM
ratio kf/km 1D & 2D (%) 2D (%) 2D (%)

10 21.44 21.11 1.00

100 11.59 10.77 2.99

200 21.22 19.31 3.97

1000 23.70 21.46 5.00

This discrepancy is most pronounced for the case with the lowest fracture–matrix perme-
ability ratio. Breakthrough curves are plotted in Fig. 12 for all three cases. The differences
are considerable, as shown in Table 5. The L2 error is larger for the higher fracture–matrix
permeability contrasts.
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Fig. 12 Comparison of breakthrough curves for four different fracture–matrix permeability ratios calculated
by three numerical schemes

Fig. 13 Saturation fronts calculated by three numerical schemes for different viscosity ratios at t = 60 s,
(Model 2)

3.2 Two-Phase Flow in a Single Fracture

Model 2 is simulated with different viscosity ratios (M = μdisplacing phase/μdisplaced phase)
to assess how the three discretization schemes handle water flooding. This is achieved by
retaining a constant viscosity for the water of 0.001 Pa s but varying the viscosity of the oil
from 0.0001, to 0.001, to 0.01 Pa s (Fig. 13). The Sw at the shock front is the highest for the
lowest viscosity ratio. Self-sharpening of the front is most pronounced for the smallest M
because the velocity in front of the shock is much smaller than that behind the shock. The
DFEFVM yields earlier water breakthrough than the FEFVM. For a viscosity ratio of 0.1,
water breakthrough occurs in less than a minute in the DFEFVM model, but takes about 2 min
with the FEFVM. The absolute difference in breakthrough time is maximized at M = 10
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Fig. 14 Comparison of water saturation breakthrough curves calculated by three numerical schemes for
different viscosity ratios (Model 2)

Fig. 15 Total oil saturation curves for different viscosity ratios (Model 2)

Fig. 16 Comparison of DFEFVM and FEFVM against analytical solution for M =0.1, 1, and 10. The water
saturation profiles are measured at the middle of the fracture in Model 2

(Fig. 14). For all viscosity ratios the results of the continuum methods are similar. Total oil
saturation versus time is plotted in Fig. 15. Here, the continuum models yield unrealistic
high oil recoveries. A first order dependence on discretization of the fracture matrix interface
causes this unsatisfactory feature. The DFEFVM reveals its superiority to the FEFV methods
by eliminating this effect. It has the advantage that it allows evaluating the fractional flow
without averaging nodal saturation values of elements with different relative permeability
relationships. In order to compare results with an analytical solution, we apply a constant
influx at the left boundary and use the velocity calculated at the first time step for the entire
simulations. Note that the analytical solution is only solved for the fracture domain since the
permeability of the matrix is very low. The results of the DFEFVM are in a good agreement
with the analytical solution, but the shock fronts calculated with the FEFVM move more
slowly (Fig. 16).
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Fig. 17 Comparison of water saturation breakthrough curves calculated by three numerical schemes for dif-
ferent viscosity ratios (Model 2). The λ value of 0.2 and 10 are assigned for the fracture and matrix, respectively

a b

c

Fig. 18 Breakthrough curves for single sealed fracture model for different mesh refinements; a DFEFVM,
b FEFVM, and c L2 errors versus element sizes (h) for different mesh refinements

Furthermore, the Model 2 is simulated with different Brooks–Corey parameter. The λ
value of 0.2 and 10 are assigned for the fracture and matrix, respectively. Figure 17 reveals
the water saturation breakthrough curves. The FEFVM combined with the lower dimensional
fracture approach (FEFVM 1D & 2D) produces less accurate results than the FEFVM.

3.3 Single Sealed Fracture Model—Convergence Study

As explained earlier, sealed fractures or faults with a lower transmissivity than the country
rock cannot be represented using lower dimensional elements. Therefore, we only compare
the FEFVM 2D with the DFEFVM. The breakthrough curves for different mesh refinements
show the effect of mesh refinement on the results (Fig. 18a, b). The L2 errors are plotted

against element size (h) in Fig. 18c. The L2 norms are calculated as
√∑

(c − cr )
2, where cr

is the result of FEFVM 2D on Mesh 5 for FEFVM 2D, and the result of DFEFVM on Mesh
5 for DFEFVM. It is evident that the convergence order is higher for the DFEFVM, and the
DFEFVM L2 errors are much smaller than the errors of the FEFVM.
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Fig. 19 Concentration fronts after 20 and 30 days for flow impediment model. Two different schemes,
DFEFVM and FEFVM, are compared. a FEFVM and b DFEFVM

3.4 Flow Impediment Model

Similar to the previous example, this section only focuses on comparing the FEFVM 2D with
the DFEFVM. Figure 19 shows tracer distributions after 20 and 30 days. The flow impedi-
ments influence the pressure and velocity fields in both schemes. The velocities are identical
for the FEFVM and DFEFVM, but the solute transport differs behavior (Figs. 19 and 20).
The FEFVM is more dispersive, see Fig. 21. Furthermore, the total mass in time is shown in
Fig. 22. In spite of the equal input mass flux for both methods, the output mass flux calculated
by the DFEFVM is higher than that of FEFVM 2D. The FEFVM 2D yields a more dispersive
result.

3.5 Water Flooding of the Bristol Channel Limestone Model

To further illustrate the advantages of the DFEFVM, a two dimensional model of Bristol
Channel limestone model is used to conduct a water flooding experiment. Saturation fronts
at different time steps are plotted in Fig. 23. Due to the low permeability of the host rock,
the flow is channelized in the fractures. However, ultimate recovery is controlled by the
properties of the rock matrix. Also, there is a discrepancy of almost 4 days between water
breakthrough predicted with the FEFVM and the DFEFVM (Fig. 24). The amount of recov-
ered oil is higher for the FEFVM due to the incorrect oil displacements at the fracture–matrix
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Fig. 20 Comparison of breakthrough curves calculated along at cross sections 0.15, 0.5, and 1 m away from
injection boundary, i.e., top boundary (flow impediment model). The gray dashed line (FEFVM 1D & 2D)
presents the result of using lower dimensional elements for the flow impediments

Fig. 21 Concentration profiles along the main flow direction at three different times (flow impediment model)

Fig. 22 Total mass calculated by
the FEFVM 2D and DFEFVM
(flow impediment model)

interfaces. Water breakthrough time and sweep efficiency are the main unknowns of interest
to field-scale simulation. These are not predicted precisely by the FEFV methods for this
model (Fig. 24). This is also revealed by Fig. 25 where total Sn decreases faster using the
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Fig. 23 Saturation fronts for Bristol channel model at four different times calculated by the three numerical
schemes
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Fig. 24 Water saturation versus time at the outlet of the Bristol channel model
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Fig. 25 Total oil saturation in Bristol channel model calculated by different numerical methods

FEFVM than for the DFEFVM, implying a more sweep when FEFVM is used. The total
Sn is calculated by

∑
j

∫
ν

MφSt
ndV/

∑
j

∫
ν

MφdV .

4 Discussion

The single- or two-phase flow simulation using FEFVM 1D & 2D needs a very fine mesh.
Hoteit and Firoozabadi (2008a,b) argue that it is not practical to employ such a method on the
large-scale. Using a very detailed mesh makes simulation of large-scale model computation-
ally very costly. FEFVM representing fractures by lower dimensional line elements is used
frequently for DFM simulations because this method resolves the computational problems
posed by fracture elements with very large aspect ratios, see Juanes et al. (2002) and Paluszny
et al. (2007). Apart from this advantage, however, this continuum method introduces errors
into the simulation of single- and two-phase transport through fractured porous media due to
the abrupt changes of the material properties across the fracture–matrix interfaces. This is not
the case for the DFEFVM. In order to bring the advantages of the mixed dimensional method
into the DFEFVM, it would need to be extended to discretizations with lower dimensional
elements representing the fractures. This method would combine the ease of discretizing
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fractured media with the accuracy of the DFEFVM. Such a method is highly desirable for
modeling dense fracture networks with a relatively coarse mesh.

The discussed DFEFVM is implemented explicitly in time and therefore suffers from
the CFL constraint, the main drawback is that small finite volumes with large flow veloci-
ties cause the whole simulation to slow down. This can be improved by employing implicit
time stepping (Matthäi et al. 2010). In many real fracture model simulations, fracture flow
velocities and mesh refinement are 2–6 orders of magnitude greater than in the rock matrix.
Already in the explicit form, DFEFVM facilitates using larger time steps as it does not require
very fine elements for the fractures as opposed to the FEFVM which needs highly refined
discretizations at fracture–matrix interfaces.

The DFEFVM provides an excellent framework for considering capillary effects at the
interfaces. Benes et al. (2005), Mikyska (2005), Reichenberger et al. (2006), and Hoteit and
Firoozabadi (2008a,b) show that saturation discontinuities caused by capillary effects can not
be represented by the FEFVM unless a special treatment is employed. The tests described
here show that DFEFVM can be employed to solve such a problem by adding capillary
diffusion term in Eq. 6. This is subject to our ongoing research.

5 Conclusions

In this article, we have compared and contrasted three hybrid discretization schemes for
flow in porous media: FEFVM, FEFVM on mixed dimensional elements, and DFEFVM.
We have applied these three methods to single- and two-phase flow 2D models excluding
gravitational and capillary terms. This detailed comparison highlights their differences. The
results indicate that

– The FEFV continuum methods do not represent the real physics of single- or two-phase
flow in fractured media when using a coarse mesh, due to smearing of the transport
variable leading to inaccurate concentrations near the discontinuity.

– This also slows down the advance of saturation or concentration fronts in more perme-
able regions. Resulting transport speeds are not consistent with the permeability of the
fractures. The opposite is true for low permeability regions.

– The DFEFVM resolves these issues and allows using a relatively coarse mesh to maintain
accuracy.

– The DFEFVM predicts breakthrough times most accurately when compared to the FEFV
continuum methods.

– Embedding discontinuities at the fracture–matrix interfaces, therefore, will lead to more
accurate predictions of tracer transport and propagation speed of saturation fronts.
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