Evaluation of the strength of Low Temperature Co-fired Ceramics under biaxial stress

R. Bermejo^{1,a}, P. Supancic¹, I. Kraleva², C. Krautgasser², F. Aldrian³, R. Morrell^{1,4}, R. Danzer¹

¹Institut für Struktur- und Funktionskeramik (ISFK), Montanuniversität Leoben, Austria ²Materials Center Leoben Forschung GmbH, Leoben, Austria ³EPCOS OHG, Deutschlandsberg, Austria ⁴National Physical Laboratory, Teddington, Middlesex, United Kingdom ^aCorresponding author's e-mail address: raul.bermejo@unileoben.ac.at

Introduction

Low Temperature Co-fired Ceramics (LTCCs) are 3D micronetwork of metal structures embedded within a glass-ceramic substrate (*i.e.* printed circuit), which are used as **high precision electronic** devices (*e.g.* mobile and automotive technologies).

The aim of this work is to determine the mechanical biaxial strength of LTCCs. The effect of surface metallisation and internal structure is analysed.

Cross-section of a typical LTCC component

Experimental testing

Specimens (\approx 10x10x0.4mm³) are cut from the panels. **Different locations** have been tested.

1: near vias; 2: far from electrodes; 3: btw. electrodes

B₃B

Maximal stress distribution around location 2.

The mechanical strength is determined using the **Ball-on-three-balls** (B3B) test.

Testing conditions: 0.5 mm/min, 21°C and 23% relative humidity.

The failure stress (*equiv. tensile stress*) is calculated with FEA:

$$\sigma_{\rm eq, max} = [2.58 - 0.67 \cdot (t/t_0 - 1)] \cdot \frac{P}{t^2}$$

P = Fracture load (N), t = thickness (mm), t_0 = 0.43 mm

Mechanical strength results

Summary

- + The **mechanical strength** of LTCC components depends on the surface features (metallisation, vias, etc.)
- + The internal architecture of the component has an effect on the resistance to crack propagation of the material

Acknowledgements

Financial support by the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft und Arbeit) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgeselischaft mbH and by Steirische Wirtschaftsförderungsgeselischaft mbH, within the research activities of the K2 Competence Centre on "Integrated Research in Materials, Processing and Product Engineering", operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence Centre Programme, is gratefully acknowledged. The company EPCOS OHG, Deutschandsberg, Austria, is also acknowledged for providing the material for this investigation.