Stacking-tault energies for Cu, Ag, and Au
from density-functional theory
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2. Method

The stacking-fault energy (SFE) i1s defined as the excess energy per unit interface
area when two adjacent atomic planes 1n a crystal lattice are sheared relative to
each other.

1. Motivation

The plastic deformation of fcc crystals are strongly determined by the 1/2<110>
dislocation, and 1ts geometric structure can be traced back to the {111} y-surface.
A precise knowledge of selected points on this surface 1s, hence, of essential
importance. Unfortunately, experimental and theoretical results are varying over a
wide range, which is related to the fact that the energetic differences can be very 7
small, it is 1n the meV/atom range. Using density-functional theory (DFT) we

calculate the stacking-fault energies for the {111} surface of Cu, Ag, and Au. The —>
computational efficiency and accuracy of several different approaches are a
investigated. Strong emphasis i1s laid on the convergence with respect to the k
point sampling. The influence of slab thickness and relaxation of unit-cell
parameters and atomic positions 1s also examined. With our procedures, the
stacking-fault energies are obtained with very high precision.
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3. Comparison of models 4. Convergence
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6. Stacking-fault energies (mJ/m?)
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5. Bulk properties
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i ------

PBE 45 (48) 171 (170) 526 (503) 902 (832)
Cu 45
LDA 56 52 (52) 206 (202) 641 (610) 1099 (1017)

PBE 16  16(16)  97(95) 307(289) 507 (456)

Ag

LDA 29  29(28) 134(131) 422(396) 693 (624)

PBE 30 28(28)  78(75) 257(230) 394 (326)

Au
LDA 38

Exp.[1-3] 4.079 34 (34) 101 (97) 344 (309) 530 (443)

* Results from stress relaxation are listed 1in brackets.

7. Conclusions 8. References

Performing well-converged calculations, consistent yyvalues between the ANNNI
model and the CT model are revealed, indicating a reliable determination of SFEs
from DFT. Relaxing the z components of force and stress has small influence on
Yo and y,,, but leads to a much quicker convergence of y,. and y,,, with respect to
the number of atomic layers used in the most efficient method, which 1s the CT
model. The SFEs calculated with this procedure are of high precision, and the
values agree better with the most trustable experimental results than previous DFT
calculations.
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