

Imaging Molecular Orbitals Through Photoemission Spectroscopy

Slide 1

Collaborations and Funding

Lehrstuhl für Atomistic Modelling and Design of Materials – MU Leoben

- Peter Puschnia
- Claudia Ambrosch-Draxl

Experimental Surface Science Group – University Graz, Austria

- Stephen Berkebile
- Alexander Fleming
- Georg Koller
- Mike Ramsey
- Falko Netzer

Lehrstuhl für Technische Physik – University Erlangen-Nürnberg

- Thomas Seyller
- Konstantin Emtsey

The work is part of the National Research Network "Interface controlled and functionalized organic films"

Outline

Motivation

Photoemission Spectroscopy

From Reciprocal to Real Space

Conclusion and Outlook

Organic Semiconductors

Peter Puschnig, 60th Annual ÖPG Meeting, 6. - 10. Sept. 2010, Salzburg

Light

 $Q - V_D$

Drain ,

+ (+)

6

Gate

 $O - V_G$

Æ

Anode

Glass

 $\overline{\oplus}$

(+)

Organic Semiconductors

Pentacene

Pentacene ($C_{22}H_{14}$)

Slide 3

Photoemission Spectroscopy

Uniaxially Aligned Sexiphenyl

Uniaxially Aligned Sexiphenyl

Photoemission Intensity

One Step Model

$$I(\theta,\phi;E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_f^*(\theta,\phi;E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_i \rangle \right|^2 \times \delta \left(E_i + \Phi + E_{\rm kin} - \hbar \omega \right)$$

Photoemission Intensity

Photoemission Intensity

One Step Model $I(\theta, \phi; E_{kin}) \propto \sum_{i} \left| \langle \psi_{f}^{*}(\theta, \phi; E_{kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_{i} \rangle \right|^{2} \times \delta \left(E_{i} + \Phi + E_{kin} - \hbar \omega \right)$ $\bigwedge_{plane \ wave \ e^{i \, k \, r}} e^{i \, k \, r}$ *molecular orbital*

Approximation: final state = plane wave $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times |\tilde{\psi}_i(\mathbf{k})|^2$

Fourier Transform of Initial State Orbital

[Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974).]

Photoemission Intensity in Pictures

Photoemission Intensity in Pictures

Photoemission Intensity in Pictures

Sexiphenyl Monolayer on Cu(110)

Reter Puschnig, 60th Annual ÖPG Meeting, 6. - 10. Sept. 2010, Salzburg

Slide 8

[001]

[1-10]

Sexiphenyl Monolayer on Cu(110)

The Toroidal Electron Spectrometer for Angle-Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

Slide 10

Reconstruction of Orbitals

Puschnig et al., Science 326, 702 (2009)

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy

Pentacene HOMO from a Multilayer

Pentacene HOMO from a Multilayer

Pentacene HOMO from a Multilayer

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

1D and 2D wave function imaging demonstrated

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy
- Desireable to do PE experiments on individual nano-objects (goal is to reach the focussing limit of soft x-rays 25 nm)

Angle-resolved photoemission: From reciprocal space to real space F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy
- Desireable to do PE experiments on individual nano-objects (goal is to reach the focussing limit of soft x-rays 25 nm)
- Scanning tunneling microscopy and PE complement each other

Rohlfing et al. PRB 76 (2007) Peter Puschnig, 60th Annual ÖPG Meeting, 6. - 10. Sept. 2010, Salzburg

Ziroff et al. PRL (2010) Slide 16

Thank You for Your Attention!

Mike

Ramse

Stephen Berkebile

Peter Puschnig, 60th Annual OPG Meeting, 6. - 10. Sept 2010; Salzburg

Georg

Koller