

Structural and Electronic Properties of Organic Molecular Films from Density Functional Theory

Collaborations and Funding

Lehrstuhl für Atomistic Modelling and Design of Materials, MU Leoben Dmitrii Nabok Priya Sony Lorenz Romaner Claudia Ambrosch-Draxl

Institut für Physik, MU Leoben Gregor Hlawacek Christian Teichert

Institut für Physik, Karl-Franzens-Universität Graz Stephen Berkebile Alexander Fleming Georg Koller Mike Ramsey

Institut für Festkörperphysik, TU Graz Paul Frank Adolf Winkler Roland Resel

The work is part of the National Research Network "Interface controlled and functionalized organic films"

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

Der Wissenschaftsfonds.

Slide 2

Motivation

White OLED

Area = 10x10 cm2 (from HC Starck CleviosTM PH510 PEDOT layer)

OLED display

(from Samsung, ultra-thin 0.05mm, 4-inch 480×272 resolution, 100,000:1 contrast , $200cd/m^2$)

Organic Solar Cell

(Linz Institute for Solar Cells)

Advantages: large areas, mechanically flexible, low cost

Motivation

OLED

OFET

para-Sexiphenyl (6P) ($C_{36}H_{26}$)

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

Pentacene (5A) ($C_{22}H_{14}$)

Motivation

OLED

OFET

Challenges for Theory

- Cohesive properties: between molecules and at organic / metal interface
- Thin film growth: molecular orientation, morphology, growth modes
- Electronic structure: band gaps, level alignment, electronic states at the interfaces
- Optical properties: excitonic effects

Cohesive Energy of Molecular Crystals

$$\left[-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

Kohn-Sham Equations

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) \end{bmatrix} \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$
$$-\frac{Z}{r} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r' \qquad \frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$

atomic nuclei Hartree potential exchange-correlation potential

$$\int \left[-\frac{1}{2} \nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) \right] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$
$$-\frac{Z}{r} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r' \qquad \frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$
Self-consistency
$$n(\mathbf{r}) = \sum_i^{\text{occ}} |\psi_i(\mathbf{r})|^2$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V_{\text{ext}}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r}) \end{bmatrix} \psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$$
$$-\frac{Z}{r} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r' \qquad \underbrace{\frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}}_{\text{Approximations:}}$$
e.g.: LDA, GGA, ...
$$n(\mathbf{r}) = \sum_{i}^{\text{occ}} |\psi_{i}(\mathbf{r})|^{2}$$

Cohesive Energy of Molecular Crystals

Van der Waals Density Functional

Nonlocal Correlation Energy leading to van-der-Waals interaction

$$E_c^{\rm nl} = \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) \phi(\mathbf{r}, \mathbf{r}') n(\mathbf{r}')$$

Exchange-Correlation Energy $E_{xc}^{\text{vdWDF}} = E_x^{\text{GGA}} + E_c^{\text{LDA}} + E_c^{\text{nl}}$

Dion et al, Phys. Rev. Lett. 92, 246401 (2004).

Cohesive Energy of Molecular Crystals

Nabok, Puschnig, Ambrosch-Draxl, Phys. Rev. B 77, 245316 (2008).

Thiophene / Cu(110)

Thiophene / Cu(110)

Sony, Puschnig, Nabok, Ambrosch-Draxl, Phys. Rev. Lett. 99, 176401 (2007).

PTCDA / Coinage Metals

Romaner, Nabok, Puschnig, Zojer, Ambrosch-Draxl, New. J. Phys. 11, 053010 (2009).

PTCDA / Coinage Metals

Romaner, Nabok, Puschnig, Zojer, Ambrosch-Draxl, New. J. Phys. 11, 053010 (2009).

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

Overview

Van der Waals Interactions within DFT

Organic / organic works fine; organic / metal interactions still problematic Nabok et al., *PRB* **77**, 245316 (2008). Sony et al., *PRL*. **99**, 176401 (2007). Romaner et al., *NJP* **11**, 053010 (2009).

II. Kinetic Barriers in Growth

III. Electronic Structure

Molecular Mounds

AFM image: Sexiphenyl grown on a disordered mica surface

Molecular Mounds

Der Steirische Erzberg (Iron Ore Mine)

Ehrlich-Schwoebel Barrier (ESB)

Sexiphenyl on Mica

Ehrlich-Schwoebel Barrier = 0.67 eV

2nd layer nucleation rate

AFM image: Film thickness = 30 nm

Step-Edge Barrier

Step-Edge Barrier

AFM image: Film thickness = 1nm

2nd layer nucleation rate

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

0.26 vs. 0.67

ESB

0.26 vs. 0.67

G. Hlawacek et al., Science 321, 108 (2008).

Overview

Van der Waals Interactions within DFT

Organic / organic works fine; organic / metal interactions still problematic Nabok et al., *PRB* **77**, 245316 (2008). Sony et al., *PRL*. **99**, 176401 (2007). Romaner et al., *NJP* **11**, 053010 (2009).

Organic Thin Film Growth

Some success in understanding certain kinetic barrieres, but still a lot of work to do ... G. Hlawacek et al., *Science* **321**, 108 (2008). See also: Goose et al., *PRB* **81**, 205310 (2010).

III. Electronic Structure

Uniaxially Aligned Sexiphenyl

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

Uniaxially Aligned Sexiphenyl

Angle-Resolved Photoemission

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

Slide 33

Photoemission Intensity

One Step Model $I(\theta,\phi;E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_f^*(\theta,\phi;E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_i \rangle \right|^2 \times \delta \left(E_i + \Phi + E_{\rm kin} - \hbar \omega \right)$

Photoemission Intensity

Photoemission Intensity

Approximation: final state = plane wave $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times |\tilde{\psi}_i(\mathbf{k})|^2$

Fourier Transform of Initial State Orbital

[Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974).]

Comparison with DFT

Comparison with DFT

Comparison with DFT

Sexiphenyl Orbitals

G. Koller et al., Science 317, 351 (2007).

Sexiphenyl Monolayer on Cu(110)

Reter Puschnig, Workshop Eisenerz, May 30th - June 3rd, 2010

Slide 41

[001]

[1-10]

Sexiphenyl Monolayer on Cu(110)

Sexiphenyl Monolayer on Cu(110)

Berkebile et al. (submitted to PNAS)

Reter Puschnig, Workshop Eisenerz, May 30th - June 3rd, 2010

2D-Momentum Maps

Х

filled LUMO **HOMO** -6 2 -2 -2 k_x Ζ $E_{_{kin}}, k$ hv |ψ>

The Toroidal Electron Spectrometer for Angle-Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

2D-Momentum Maps

2D-Momentum Maps

HOMO

Reconstruction of Orbitals

Low-T STM Images

100x40 Å²

Filled LUMO

Low-T STM images by courtesy of Stephen Berkebile

⁻¹³⁰ mV / 0.38 nA

Peter Puschnig, Workshop Eisenerz, May 30th – June 3rd, 2010

170 mV / 1 nA

-120 mV / 0.8 nA

Slide 48

Summary

Van der Waals Interactions within DFT

Organic / organic works fine; organic / metal interactions still problematic Nabok et al., *PRB* **77**, 245316 (2008). Sony et al., *PRL*. **99**, 176401 (2007). Romaner et al., *NJP* **11**, 053010 (2009).

Organic Thin Film Growth

Some success in understanding certain kinetic barrieres, but still a lot of work to do ... G. Hlawacek et al., *Science* **321**, 108 (2008). See also: Goose et al., *PRB* **81**, 205310 (2010).

Real Space Orbital Information from ARPES

Proof of principle done, future prospects: 3D images, complement STM, ... Koller et al., *Science* **317**, *351 (2007);* Berkebile et al., *PRB* **77**, 115312 (2008). Puschnig et al., *Science* **326**, 702 (2009). Ziroff et al., *PRL* (June, 2010).

Reconstruction of Orbitals

Puschnig et al., Science 326, 702 (2009).