

Atomistic Modelling of Organic Semiconductors

Organic Semiconductor Devices

White OLED

Area = 10x10 cm2 (from HC Starck CleviosTM PH510 PEDOT layer)

OLED display

 $\begin{array}{l} (from \ Samsung, \ ultra-thin \\ 0.05mm, \ 4-inch \ 480\times272 \\ resolution, \ 100,000:1 \ contrast \ , \\ 200cd/m^2) \end{array}$

Organic Solar Cell

(Linz Institute for Solar Cells)

Advantages: large areas, mechanically flexible, low cost

π-Conjugated Molecules

Light

V

 $Q - V_D$

Drain ,

► (|)

 $\overleftarrow{}$

π-Conjugated Molecules

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

Light

From First-Principles

Electron Density Distribution

- Electron density $n(\mathbf{r})$ is the basic variable
- Density Functional Theory (DFT) provides rigorous framework
- Microscopic and macroscopic properties depend on n(r)

Electron Density in a (10,0) single-walled Carbon Nano-Tube

Kohn-Sham Equations

$$\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V_{\text{ext}}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r}) \end{bmatrix} \psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$$
$$-\frac{Z}{r} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r' \qquad \frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$
Atomic nuclei Hartree potential "Exchange-correlation-potential"
$$\underbrace{classical \ electro-static}_{interactions} \qquad \begin{aligned} Quantum-mechanical \\ effects \end{aligned}$$

Density Functional Theory

Structural Properties

Electronic Structure

Optical Properties

Electronic Band Structure

Photoelectric Effect

Angle-Resolved PhotoEmission Spectroscopy

Band Structure of Graphite

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

From Benzene to Sexiphenyl

Highest Occupied Molecular Orbital (HOMO) of a benzene ring $(C_{e}H_{e})$

From Benzene to Sexiphenyl

From Benzene to Sexiphenyl

Uniaxially Aligned Sexiphenyl

Uniaxially Aligned Sexiphenyl

Photoemission Intensity

Photoemission Intensity

Approximation: final state = plane wave $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times |\tilde{\psi}_i(\mathbf{k})|^2$

Fourier Transform of Initial State Orbital

[Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974).]

Comparison with DFT

Comparison with DFT

Comparison with DFT

Intramolecular Band Structure

Planar vs. Twisted

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

Twisted Sexiphenyl

G. Koller et al., Science 317, 351 (2007).

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

Orbital Tomography

Х

The Toroidal Electron Spectrometer for Angle-Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

 θ ,

E_{kin}, k

Sexiphenyl Monolayer on Cu(110)

Sexiphenyl Monolayer on Cu(110)

Sexiphenyl Monolayer on Cu(110)

Berkebile et al. (submitted to PNAS)

2D-Momentum Maps

ARPES data for a monolayer of 6P / Cu(110)

Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

2D-Momentum Maps

HOMO

LUMO

Reconstruction of Orbitals

Puschnig et al., Science 326, 702 (2009).

Reconstruction of Orbitals

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

1D and 2D wave function imaging demonstrated

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy

Angle-resolved photoemission: From reciprocal space to real space

F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy
- Desireable to do PE experiments on individual nano-objects

(goal is to reach the focussing limit of soft x-rays 25 nm)

Angle-resolved photoemission: From reciprocal space to real space F.J. Himpsel, J. Electron Spectrosc. Relat. Phenom. (2010), doi:10.1016/j.elspec.2010.03.007

- 1D and 2D wave function imaging demonstrated
- Prospect of 3D imaging through scans of the photon energy
- Desireable to do PE experiments on individual nano-objects (goal is to reach the focussing limit of soft x-rays 25 nm)
- Scanning tunneling microscopy and PE complement each other

Ziroff et al. PRL (2010) Slide 38

Rohlfing et al. PRB 76 (2007) Peter Puschnig, Habilitationskolloquium, 3. Mai 2010

Where to Go in Theory?

- Structural properties
 - Van der Waals interactions: improvements in xc-functional
 - Thin film growth: multiscale modelling
- Electronic structure
 - Band structure: go beyond DFT
 - Photoemission experiments: more accurate description of final state
 - Electronic transport: electron-phonon coupling
- Optical properties
 - Excitons: Assess validity of usual approximations in BSE

Collaborations and Funding

Lehrstuhl für Atomistic Modelling and Design of Materials, MU Leoben Dmitrii Nabok Priya Sony Lorenz Romaner Claudia Ambrosch-Draxl

Institut für Physik, MU Leoben Gregor Hlawacek Christian Teichert

Institut für Physik, Karl-Franzens-Universität Graz Stephen Berkebile Alexander Fleming Georg Koller Mike Ramsey

Institut für Festkörperphysik, TU Graz Paul Frank Adolf Winkler Roland Resel

The work is part of the National Research Network "Interface controlled and functionalized organic films"

Thank You!

