FFG

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

Cartridge Filling Procedure

	+	-	comments
temperature field		an insufficient temperature at the root of the front clamp	bad luck
filling time	quick		additionally isolation
syringe	it works		vapor, if syringe is removed from the reservoir
cartridge		bubbles	at the straws
observation area	no bubbles		

Conclusion: Acceptable, under the assumption of a homogeneous temperature field.

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

2

Different Optical Solutions by Lambda X

dark field blue	50000 int time dark field blue	30000 int time dark field + bright field blue	saturated dark field blue
acceptable	o.k.	o.k.	not acceptable

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

فتقتع

FFG

3

Breadboard Test Result for $V = 0.128 \mu m/s$

MUL

Conclusion: optical solution acceptable, temperature gradient to steep.

BB test

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

Breadboard Test Result for $V = 0.9 \mu m/s$

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

Comparing of the Optical Solutions of MUL and Lambda X

MUL bands (19 μ m – 80 μ m)

6 FFG

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

		results	remarks
procedures	filling	o.k.	improve the isolation
	breadboard	o.k.	temperature gradient to steep
parameters	$V = 0.128 \ \mu m/s$	o.k.	temperature gradient to steep
	$V = 0.89 \ \mu m/s$		still open
satisfaction		80% +	
		20% -	temperature gradient
planned objectives			variation of the G/V ratio
open issues		FoV	both corners are necessary
		G_T	solid/liquid interface to close to the hot zone of the furnace

FFG

7

Thank you for listening

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

8

TRIS under Moving Conditions

Simulation & Modeling of Metallurgical Processes, Department Metallurgy, University of Leoben

