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We investigate population dynamics in N-level systems driven beyond the linear regime by a strong external
field, which couples to the system through an operator with nonzero diagonal elements. As concrete example
we consider the case of dipolar molecular systems. We identify limiting cases of the Hamiltonian leading to
wave functions that can be written in terms of ordinary exponentials, and focus on the limits of slowly and
rapidly varying fields of arbitrary strength. For rapidly varying fields we prove for arbitrary N that the
population dynamics is independent of the sign of the projection of the field onto the dipole coupling. In the
opposite limit of slowly varying fields the population of the target level is optimized by a dipole resonance
condition. As a result population transfer is maximized for one sign of the field and suppressed for the other
one, so that a switch based on flopping the field polarization can be devised. For significant sign dependence
the resonance linewidth with respect to the field strength is small. In the intermediate regime of moderate field
variation, the integral of lowest order in the coupling can be rewritten as a sum of terms resembling the two
limiting cases, plus correction terms for N�2, so that a less pronounced sign-dependence still exists.

DOI: 10.1103/PhysRevA.80.063406 PACS number�s�: 33.80.Be, 33.80.Wz, 42.50.Hz

I. INTRODUCTION

When strong few-cycle-, one-cycle- or sub-one-cycle
pulses �1–5�, or arbitrarily shaped pulses interact with atomic
or molecular many-level systems, significant population
transfer may occur within a fraction of an optical cycle
�6–9�. Concepts based on averaging over field oscillations
�10�, frequencies, and detuning lose their importance, while
properties such as the carrier-envelope phase �CEP� �2� and
interactions with permanent or induced dipole moments of
the system take precedence.

We have previously investigated population transfer in a
dipolar molecular system induced by one- and sub-one-cycle
pulses and found a strong dependence of the dynamics on the
CEP and in particular on the sign of the projection of the
electric field onto the difference of permanent dipole mo-
ments of the states involved in the reaction, in the following
referred to as “sign-dependence” of the field �7,8�. A similar
sign-dependence for vibrational excitation by half-cycle
pulses was found by Korolkov et al. �6�, but not related to
permanent dipole moments. On the other hand, Došlić et al.
�11�, and Naundorf et al. �12� phenomenologically discuss a
dipole-moment induced tunneling resonance in a two-level
system �2LS� under a dc field, but do not go into detail and
do not address the case of general pulses. Note that earlier
Thomas �13� had already given the analytical solution for the
population dynamics of a 2LS under a constant field. Tatić
and Došlić �14� describe an analogous tunneling process in a
dipolar molecule driven by a long single field lobe, which
they interpret as a distorted dc field. In a series of papers,
Meath, Power, Brown and co-workers �15–20� consider the

interaction of laser pulses with dipolar molecules within the
rotating wave approximation �21�, including also the case of
a 2LS with a pulse and an added static field �15�.

In the present paper we take up these points, generalizing
the ideas of Tatić and Došlić to distort a constant field to
lobelike pulses and putting them on a firm footing. Thomas
in Ref. �13� did not address the dependence of the dynamics
on the field strength and the resonance properties of the
Rabi-type process. These can be related to the Stark effect
�22� inducing a change of the energy eigenvalues by cou-
pling to the field, and to WKB-like arguments �22,23� sug-
gesting that “resonant” transfer between two levels should be
maximized at conditions corresponding to degenerate eigen-
values. In this spirit we look for conditions for resonances
and investigate the influence of the sign of the field; for the
important point of constructing propagating pulses see be-
low.

In the domain of short strong pulses traditional tools, such
as the rotating wave approximation �21� or Floquet theory
�24,25�, become inapplicable, while methods such as semi-
classical strong field theory �26–30� are suitable approxima-
tions, although only so for large quantum numbers. Although
exact representations of the population dynamics in strong
fields have been discussed �31,32�, due to their complexity it
is hard to gain the physical insight required, e.g., for con-
structing a simple field that selectively populates the target
level.

Rather than aiming at exact solutions we search for lim-
iting cases that may lead to sufficiently general analytic re-
sults for dipole-moment driven dynamics in N-level systems
�NLSs� in order to find criteria for effective population trans-
fer. We first note that the reason why analytic solutions of the
Schrödinger equation do not exist in the general case is
rooted in the noncommutativity of the two operators in the
Hamiltonian corresponding to the unperturbed energies and
the coupling to the perturbation. This suggests that a way to
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obtain a solution in form of an ordinary exponential, in con-
trast to the usual time-ordered exponential �22�, is to search
for cases where in a suitable representation of the Hamil-
tonian one of the two matrices can be neglected, and copies
of the remaining matrix at different times commute with
each other.

We do not further pursue the well-known cases of the
weak field limit, which can be treated by perturbation theory
�22�, and the strong field limit �26–30�. Instead we concen-
trate on two alternative situations, which are characterized by
slowly and rapidly varying fields of arbitrary strength. In
relation to standard frequency-driven conditions both these
limits would correspond to extreme detuning. The limit of
rapidly varying fields can be qualitatively analyzed for arbi-
trary N by transforming to the interaction representation. The
resulting integrals are elementary and we find that in this
limit population transfer in NLSs does not depend on the
sign of the field. However, for propagating pulses the pos-
sible population transfer is negligibly small.

The more interesting case is the one of slowly varying
fields, where within certain time-intervals the field can be
well approximated by a constant value. This case can be
solved by the adiabatic approximation �33� and diagonaliza-
tion. We show that in this limit a resonance emerges which
enables effective population transfer and will be interesting
for applications. This “dipole resonance” determines the
magnitude and sign of the field in contrast to the resonance
condition on the frequency in usual spectroscopic transitions
under weak fields. Furthermore, for 2LSs the reference case
of a constant field has an exact analytical solution �13�, so
that a combination of these results with the present allows a
more comprehensive understanding of the dipole resonance.

In the intermediate case of moderate field variation no
general analytic treatment is possible. In this case we use the
contribution of lowest order in the interaction picture and
show that it can be rewritten as a sum of two terms, each one
representing one of the above limiting cases of field varia-
tion. Thus we obtain the result that a somewhat less pro-
nounced dependence on the sign of the field may occur,
which becomes manifest only after a certain “induction pe-
riod.” We extend our treatment of this case to three-level
systems �3LSs�, whenever possible also addressing generali-
zations to the case N�3.

Propagating pulses show the property that in the far field
the time average of its electric field goes to zero �1,5,34,35�.
Such pulses are naturally obtained from vector potentials
with the property limt→��A�t�−A�−t��=0. More pragmati-
cally, “effective half-cycle pulses” obeying the zero time-
average can be designed as fields with one pronounced lobe
balanced by long, but weak tails with opposite sign of the
field strength or by series of small lobes �5�. When using
single lobes, we anticipate that such small “side” lobes will
make negligible contributions if their peak field strength is
far from the resonance field strength. This standard approach
of working with single lobe fields is justified a posteriori by
simulations on model systems �36�.

Our paper is organized in the following way. In Sec. II we
present general developments of the theory, which lead to the
specification of the limiting cases of “slowly varying” and
“rapidly varying” fields. Section III is devoted to the case of

slow field variation, in which we include separate subsec-
tions on 2LSs and NLSs. Next, Sec. IV investigates the
theory for rapidly varying fields, and in the second subsec-
tion we combine the results for the limiting cases to obtain
results for the intermediate case of field variation. In Sec. V
we give a summary of our investigations together with our
conclusions. In three appendixes we in turn discuss spectral
properties of propagating pulses, estimate the magnitude of
multiple integrals of the field, and give details of the deriva-
tion of the results for rapidly varying fields.

II. THEORY: GENERAL DEVELOPMENT

We consider a sequentially coupled, potentially branched
NLS, representing, e.g., vibrational levels of a molecule with
a permanent dipole moment. Using the semiclassical dipole
approximation, the Hamiltonian can be written in algebraic
form, and the time-dependent Schrödinger equation becomes

i�tck = ��k − �kkE�t��ck − �
l�k

�klE�t�cl. �1�

The ck, k=1, . . . ,N, are the time-dependent expansion coef-
ficients of the eigenstates of the potential with eigenvalues
�k. E�t� is the projection of the electric field onto the dipole
operator with expectation values �kl. The diagonal elements
�kk represent the dipole moments.

To proceed we employ a Taylor expansion starting from
the diagonal elements of the Hamiltonian, and switch to the
interaction picture at t=0. Defining new coefficients

�k�t� ª exp�i�
0

t

dt���k − �kkE�t����ck�t� , �2�

we obtain

i�t�k�t� = �
l

Ckl�t��l�t� , �3�

where the time-dependent matrix C�t� is given by

Ckl�t� ª − �klE�t�exp�i�
0

t

dt����kl − ��klE�t���� ,

Ckk�t� ª 0. �4�

Here we also used

��kl ª �k − �l, ��kl ª �kk − �ll. �5�

Note Ckl�t� is nonzero only for coupled pairs k , l. The solu-
tion to this problem is the time-ordered exponential �22�,

�k�t� = �
l
	�kl − i�

0

t

dt1Ckl�t1�

+ �− i�2�
0

t

dt1�
l�

Ckl��t1��
0

t1

dt2Cl�l�t2� + ¯
�l�0�

¬ �
l

�Ikl
�0� + Ikl

�1� + Ikl
�2� + ¯��l�0� . �6�

In this notation Ikl
�n� represents a term with an n-fold integral.
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In the following we consider a transition from an initial
state i to a final state f, for which there exists a unique short-
est coupled path with s steps. From Eq. �6� we have

�f�t� = 	− i�
0

t

dt1Cfi�t1� + �− i�2�
0

t

dt1�
l�

Cfl��t1�

��
0

t1

dt2Cl�i�t2� + ¯
�i�0�

= �Ifi
�1� + Ifi

�2� + ¯��i�0� , �7�

where Ifi
�r� is an r-fold integral corresponding to an r-step

process, and hence Ifi
�r�=0 for r	s. We define the population

Pk�t� of a given level k by the square modulus of the wave
function �k�t� for this level. Using Pi�0�=1, the population
of the target level f then becomes

Pf�t� ª ��f�t��2 = �
n
s

��Ifi
�n��2 + 2 �

m�n

Re��Ifi
�n���Ifi

�m��� . �8�

Terms of the form �Ifi
�n���Ifi

�m� ,m�n, are interference contri-
butions.

The properties of the series of time-ordered integrals are
well studied �22�, yet so far no simplifications have been
derived for the case of general perturbations E�t�, e.g., by
removing the time ordering or by deriving expressions in
terms of elementary functions. Note that not even Ifi

�1� can
be treated analytically for general functions E�t�. Integration
of the Schrödinger equation without going to the interaction
picture is not any simpler, and again leads to time- ordered
integrals. Note however, assuming the equation can be
solved by diagonalization, that the interaction picture does
not lead to the same eigenvalues than the Schrödinger pic-
ture. In order to obtain the correct dynamics, it is essential
to diagonalize the Hamiltonian matrix of the original
Schrödinger equation.

With this situation in mind we address the question which
conditions on the parameters would lead to an analytic solu-
tion. Certainly in the absence of time-ordering Eq. �7� would
become an exponential of the integral of the matrix C, and
therefore the level populations could be calculated explicitly.
Time ordering arises from the noncommutability of the
Hamiltonian matrices taken at different times. In order to
obtain “simple results” we have to identify conditions under
which these matrices do commute. This leaves us with the
following cases:

�1� Strong field limit: the energies involved are much
smaller than the diagonal contributions from the field, �k
��kkE�t�. The dynamics can be obtained by diagonalization
of the dipole matrix.

�2� Weak field limit: the off-diagonal terms in the Hamil-
tonian matrix are small. This case can be treated by pertur-
bation theory �22�.

�3� Slowly varying (adiabatic) field limit: for every t0 us-
ing the expansion of the field E�t�=�n=0

� �t
nE�t0��t− t0�n /n! we

assume that �E�t�−E�t0��� �E�t��. In this case the dynamics
can be well approximated by a system of piecewise constant,
time-independent Hamiltonians.

�4� Rapidly varying field limit: considering the propaga-
tion matrix in the interaction picture, we find a formal ana-
lytic solution in case of rapidly varying fields.

In the following we will concentrate on the last two cases.
To this end, as a measure of the variation of the field with
time we introduce �min and �max as a characteristic lowest
and highest Fourier frequency of E�t�, suitably determined
from the spectrum. Now we can distinguish two limiting
cases, quantifying in turn the conditions in items 3 and 4
above,

�a� �slowly varying� min�k,l
���kl�
 ��max�,
�b� �rapidly varying� max�k,l
���kl�� ��min�,
as we show in the following. Here �k , l
 denotes all pairs

of levels within the reaction path. In terms of frequency, �a�
and �b� correspond to the two opposite regimes of large de-
tuning.

III. SLOWLY VARYING FIELDS

A. Implications for slowly varying fields

In order to treat the limit of slow variation, we start by
representing the field as an expansion around a fixed value t0,

E�t� = E�t0� + �
n=1

E�n��t0��t − t0�n/n!. �9�

Due to the low frequency of the field we expect that

��
n=1

E�n��t0��t − t0�n/n!� � �E�t0�� �10�

holds, i.e., we deal with “almost constant” fields. In the fol-
lowing we show the implications of this relation on the pa-
rameters of the field.

We rewrite the general spectral representation, Eq. �A15�
from Appendix A, with respect to inversion symmetry, so
that

E�t� = E�t0� +
1

�
�

0

�

d�Su���sin���t − t0�� + Sg����cos���t

− t0�� − 1
 . �11�

Here Su �Sg� denotes the spectrum corresponding to functions
of odd �even� symmetry, and we define the phase, introduced
in Appendix A, as �ª−�t0. From the Fourier representation
we explicitly took out the constant term, given by

E�t0� =
1

�
�

0

�

d�Sg��� . �12�

Replacing the sine and cosine functions by their Taylor series
leads to

E�t� =
1

�
�

0

�

d��Su������t − t0� − �3�t − t0�3/3 ! + ¯�

+ Sg����1 − �2�t − t0�2/2 ! + ¯�
 , �13�

and therefore from Eq. �9� and �13�, using E�0��t0�ªE�t0� for
compact notation, we obtain the relation
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�E�n��t0�� =
1

�
�

0

�

d�SR����n, �14�

in which R denotes the type of representation the spectrum
belongs to, R=g for n even and R=u for n odd. Due to the
discussion in Appendix A we can translate the notion of
“almost constant” to the property that the spectrum of E�t� is
sharply peaked at a small value �0, even in case we include
the switch term. The linewidth of this peak is given by
2�0 /���ln�2�, which goes to zero with �0→0. Assuming
the spectrum is similar to a Gaussian peaked at �=0, from
Eq. �14� we find �E�n��t0�����0 /���ln�2��n�E�t0��, which
gives rise to the upper bound �E�n��t0����0

n�E�t0��. Using this
relation in Eq. �9� we obtain a geometric series as a majorant
for �E�t��, which converges for ��0�t− t0��	1, so that we
obtain

�E�t�� �
�E�t0��

1 − �0�t − t0�
. �15�

Investigating the dynamics within a given time-interval of
length T, e.g., the length of the pulse, we deduce from Eq.
�15� that the condition for slow variation, which is equivalent
to E�t��E�t0�, becomes

T � 1/�0. �16�

For the approximation to be true this sets a limit on the
integration time, so that to each slowly varying field there is
a longest time interval beyond which higher derivatives of
the field become significant.

Next we derive a necessary condition for Eq. �10�, which
is often intuitively connected with slow variation. We obtain

�E�t� − E�t0�� � �E�t0��
n=1

�0
n�t − t0�n/n!�

= ��t − t0�E�t0�	�0 + �
n=2

�0
n�t − t0�n−1/n!
�

� �E��t0��t − t0�� , �17�

where we used ��0�t− t0���1. From �E��t0��t− t0����E�t�
−E�t0��� �E�t0�� it follows that the condition of slow varia-
tion is equivalent to

T � � E�t0�
E��t0�

� , �18�

which is necessary, but not sufficient for Eq. �10�.
We pause for a moment to discuss a subtle point about our

treatment. In general we are interested in results for situa-
tions where the field is zero before and after the pulse. The
present limiting case is unable to deal with a small field
strengths �at the tails of a pulse�, because the derivatives will
eventually exceed the field strength even for slow variation.
However, the case can be extended to complete pulses if the
tails do not contribute significantly to the population dynam-
ics. In numerical studies �36� we indeed find this to be the
case for the 2LS, and for N�2 with some restrictions due to
alternative transfer pathways. Furthermore, by studying the

adiabatic approximation of a general 2LS and nonadiabatic
coupling �NAC� to first order we find that the slope of E�t� in
the tails of the pulse, which gives rise to the NAC, has hardly
any effect during the rise of the field strength, but is respon-
sible that during its decrease the population remains in the
target level �37�.

B. Two-level system

We now address the simple case of a 2LS, where the
concept of a “dipole resonance” is particularly clear, and
where the reference analytical solution is available for a 2LS
under a constant field as the ultimate limit of slow variation.
This section is hence connected to the question if, and how, a
resonant constant field may be deformed into a pulse so that
maximum population transfer is maintained.

1. Dipole resonance in the two-level system

In the 2LS we have only one possible step from level 1 to
2 �which in our notation now become i and f�. In order to use
the results of this section for N�2 discussed below, we con-
sider the integral M1 corresponding to the step i to f as a
possible innermost integral of an arbitrary term in Eq. �7�
that is part of a transfer pathway in an N-level system.

By using the approximation E�t��E�t0��1+ �t− t0��0
+O��0

2�� we obtain

�
0

T

dtE�t� = E�T��
0

T

dt�1 + �t − T��0�

= TE�T�	1 +
T�0

2

 � TE�T� �19�

for the integral in the exponent of M1. This is similar to the
adiabatic approximation �22,33�, where the field is treated as
constant when performing the diagonalization and integra-
tion of the Hamiltonian, with subsequent substitution of E�t�
for E in the result. We get

M1�t1� � i�l1iE�t1��
0

t1

dt0 exp�i���l1i − ��l1iE�t0��t0


�
�l1iE�t1��exp�i���l1i − ��l1iE�t1��t1
 − 1�

��l1i − ��l1iE�t1�
. �20�

This equation clearly shows a resonance whenever E�t�
=��l1i /��l1i¬A0, which we term dipole resonance. We note
that the resonance selects one sign of the field.

2. Two-level system in a constant field

The resonant behavior seen in Eq. �20� is equally obtained
for the 2LS under a constant field, as expected. As noted by
Thomas �13�, the analytical solution for the evolution of
population in the 2LS under a constant polarized field with
�effective� field strength E is governed by Rabi-dynamics. It
is convenient to use reduced parameters, slightly different
than the ones used in �13�, which are defined as
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d ª

��fi − ��fiE

2�fiE
, � ª

�fiE

2
t . �21�

We call d the dipolar detuning, zero at dipole resonance, and
� is a generalized time. Using the initial condition Pi�t=0�
=1, we have

Pf��� =
1

1 + d2sin2���1 + d2� . �22�

We observe Rabi-like behavior with �, where the dipole reso-
nance is reflected by the prefactor containing the detuning in
form of a Lorenzian. However, as shown in Fig. 1, variation
of the “physical” tuning parameter E does not result in a
Lorenzian. We plot the maximal final population Pf

max�d�,
found by varying only �, against E and d in Fig. 1. Note that
d=0 represents the global maximum of Pf

max and in the limit
of infinite field strength we only get Pf

max=�fi
2 / ��fi

2

+��fi
2 /4�, independent of the sign of the field. Using the

resonance field with inverted sign, E=−��fi /��fi, we obtain
a maximal population in level f of Pf

max=�fi
2 / ��fi

2 +��fi
2�. Im-

mediately we conclude that significant sign dependence oc-
curs only for �fi���fi.

Next we use this criterion to derive a condition of sign
dependence for slowly varying fields. We map the slowly
varying field onto a constant field by averaging E�t� and then

combine this relation with the one for slow variation in Eq.
�16�. Assuming we constructed E�t� such that the average
field strength is on resonance we obtain from Eq. �22� that
the first instance of population inversion is given by the Rabi
time t=� /�fiA0. Inserting into Eq. �16� we conclude �
� ��fi /���fi���fi. Hence we have two possibilities to fulfill
this condition: either we make � very small or we search for
systems with �fi
��fi. In the latter case � need not be too
small but there is no sign dependence. We note that only in
the former case do we get sign-dependence for which we find
����fi as a necessary condition, which relates system pa-
rameters to field parameters. Note that, supported by Fig. 1,
a significant sign dependence implies a significantly narrow
resonance peak as a function of E.

C. N-level systems

In order to illustrate a general system with s
2, we use
the example of a two-step process i→b→ f from an initial
state i via an intermediate state b to the final state f in a
three-level system.

We start by analyzing Ifi
�2�, which is the simplest term that

already reflects the added complexity of more than two lev-
els. Ifi

�2� is the term of smallest order in the coupling that
contributes to the population of the target level. Explicitly we
have

Ifi
�2� = �− i�2�fb�bi�

0

t

dt1�
0

t1

dt2E�t1�E�t2�

�exp�i	��fbt1 + ��bit2 − �
0

t1

dt���fbE�t��

− �
0

t2

dt���biE�t��
� . �23�

Consistent with the condition of slow variation of the field
we approximate this integral in the following way, similar to
the procedure in Sec. III B 1,

Ifi
�2� � �− i�2�fb�bi�

0

t

dt1�
0

t1

dt2E�t1�E�t2�

�exp�i���fb − ��fbE�t1��t1

+ ���bi − ��biE�t2��t2
 . �24�

From our discussion above we know that the tails of the
pulse can be ignored and therefore we use E�0�=0 as the
lower boundary of each integration. This gives

Ifi
�2� � �fb�biE�t�2 exp�i���fi − ��fiE�t��t�

���fi − ��fiE�t�����bi − ��biE�t��
,

�25�

where ��fi ,��fi are differences between values at i and f,
and ��bi ,��bi describe a transition from i to b. We assume
for the moment that E�t����bi /��bi holds, i.e., no reso-
nance occurs for intermediate steps. Equation �25� then
clearly shows a resonance at E�t�=A0=��fi /��fi, in which
case the population of the final state becomes

FIG. 1. �Color online� Maximum population Pf
max�d� in the final

level of a 2LS under constant field, plotted against E /A0 �upper
panel� and against the dipolar detuning �lower panel�. The levels are
denoted i �initial� and f �final�. The resonance field strength is set to
A0=��fi /��fi=1, and two values of the ratio �fi /��fi are used as
indicated. The maximum detuning is given by ��fi /2�fi, leading to
the �visible� right-hand cutoffs in the lower graph.
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Pf�E=A0
�t� = �fb

2 �bi
2 A0

4t2/���bi − ��biA0�2. �26�

We call this an overall resonance because it establishes a
resonance between the initial and the final state across all
intermediate steps.

We return to the case of simultaneous resonance of any
number of intermediate steps �but not all of them�. In our
example this reduces to the single step i→b, so that we
obtain the condition E�t�=��bi /��bi. Equation �24� then be-
comes

Ifi
�2� � �− i�2�fb�biE�t�2�

0

t

dt1t1

�exp�i	��fbt1 − �
0

t1

dt���fbE�t��
� . �27�

The remaining integral contributes significantly only if an
additional resonance condition is fulfilled—in our example
the resonance of step b→ f. Apart from the case that the field
was shaped to attain the correct resonance condition of each
step just at the time transfer occurs there, this is only pos-
sible for systems where all steps have the same A0 �“dipole-
harmonic” systems�. For this case no distinction with respect
to N is necessary. In dipole-harmonic systems transfer to any
“final” state will not be highly selective as all intermediate
levels are on resonance.

Our analysis for a two-step process has a natural gener-
alization to s�2. Dynamics via an overall resonance �direct
coupling of i to f even if �fi=0� is direct and hence different
from stepwise population transfer. From the results obtained
above for the 2LS and the 3LS we conclude that population
transfer is maximized when an “overall” dipole resonance
condition is met. The resulting resonance field is determined
by a ratio of the average of energy differences and the aver-
age of dipole moments along the shortest path P between the
initial and the final state,

A0 =
�i�P��i

�i�P��i
=

��fi

��fi
. �28�

We note the interesting detail that within this approximation
the parameters of the intermediate levels have no influence
on A0 �which reflects overall resonance�. However, Pf de-
pends on the properties of the intermediate level by Eq. �26�.

IV. RAPIDLY VARYING FIELDS AND
THE INTERMEDIATE CASE

A. Rapidly varying fields

The limit of rapid field variation is defined by the condi-
tion max�k,l
���kl�� ��max�. We show in Appendix C that this
limit is applicable whenever the majority of the Fourier spec-
trum of E�t� is located well beyond the largest energy differ-
ence from the initial level to any level along the transfer
path. An example would be a single field lobe with suffi-
ciently short duration �there is no immediate restriction on
the number of lobes�. The n levels along the transfer path are
denoted �l0 , l1 , . . . , ln
 with l0=i and ln=f. We investigate the
first step from i to l1 and begin with defining the auxiliary
functions

a�x� ª exp�i��l1ix� ,

b�x� ª E�x�exp	− i��l1i�
0

x

dx�E�x��
 ,

B�x� ª �
0

x

dx�b�x�� . �29�

Due to the oscillating kernel, repeated integrals of b could be
zero at isolated points. In order to keep our results general,
we consider the repeated integral of order k=n0 nonzero,
while all integrals of lower order with k	n0 are zero. Using
n0 partial integrations, in Appendix C we show the validity
of the approximation

M1�t1� = i�l1i�
0

t1

dxa�x�b�x�

= �− 1�n0−1i�l1i	a�n0−1��x�IB�n0,x��0
t1

− �
0

t1

dxa�n0��x�IB�n0,x�

� i�l1i�− ��l1i�n0−1a�t1�IB�n0,t1� . �30�

in the present limit. In Eq. �30� we use the definitions
IB�k , t�ª�0

t dxIB�k−1,x�; IB�1, t�=B�t� as the kth integral of
B�t�, and a�k� denotes the kth derivative of a. The properties
of k-fold iterated integrals of the field, Ik�E , t�, are discussed
in Appendix B.

Only two cases are relevant when considering pulses: the
integral over the pulse may be zero �propagating pulse� or
nonzero, leading to n0=2 or n0=1, respectively.

1. n0=1

Explicitly inserting a and b into M1 and using Eq. �C7�,
we obtain

M1�t1� �
�l1i

��l1i
exp�i��l1it1�

��1 − exp	− i��l1i�
0

t1

dt�E�t��
� . �31�

We use this expression in the kernel of the integral Il2i
�2� that

represents the two-step process �from i to l2� and apply Eq.
�30� once more to obtain

M2�t2� �
�l2l1

�l1i

��l1i
exp�i���l2l1

+ ��l1i�t2�� 1

��l2l1
�1

− exp	− i��l2l1�
0

t2

dt�E�t��
� −
1

��l2l1
+ ��l1i

��1 − exp	− i���l2l1
+ ��l1i��

0

t2

dt�E�t��
�� .

�32�
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Proceeding in this way we note that Mk contains a sum of
terms with the same functional form as M1, which however
depend on ��lji

and ��lji
and correspond to a subpath of the

reaction path from i to lj, with j�k�n; for details see Ap-
pendix C.

The calculation of the target state population Pf involves
taking the square modulus of a sum of terms consisting of a
real factor multiplied by a product of the complex quantities
pk�x� and f��, which are defined in Eq. �C1�. It follows that
Pf is written as a sum of factors

�pkf����plf�� + pkf���plf����

= 2�cos��
j=l

k−1

��lj+1lj
x�

− cos	�
j=l

k−1

��lj+1lj
x − w���

0

x

dt�E�t��

− cos	�

j=l

k−1

��lj+1lj
x + w���

0

x

dt�E�t��

+ cos	�

j=l

k−1

��lj+1lj
x − �w�� − w����

0

x

dt�E�t��
� ,

�33�

multiplied by real numbers. Without loss of generality we
used n
k� l.

Regarding Eq. �33�, a few comments are in order. In case
of a single initial state in a system with a unique path to the
final state the sum over energy differences does not appear in
Eq. �33�, because direct contributions to the wave function
and interference terms �path i to f augmented by loop paths
from f back to f� all contain the same phase factor of energy
differences. We arrive at the important conclusion that in this
case the population of the final state does not depend on the
sign of the external perturbation E. Note this result follows
without any assumption about the number of field lobes.

If the initial population resides in more than one state,
more than one path to the target level contributes to the dy-
namics, each one with its own energy difference and corre-
sponding phase factor. In general, due to interference effects
the dynamics will then depend on the sign of the field. This
sign dependence however vanishes asymptotically in the
strong field limit.

2. n0�1

This case occurs whenever the field is supplied as a
propagating pulse. It implies that the time-integral over the
field is zero �35�, resulting in S�0�=0. This is a common
situation in experiments which we therefore discuss here
separately. In the general case we arrive at the estimate

�M1�t1�� = O� ���l1i�n0−1

�min
n0

� . �34�

Equipped with this relation of general order we investigate
population transfer at the end of a propagating pulse, Pf�t
→��. We can apply the approximation in Eq. �30� with
n0=1 for all integrations but the one corresponding to the
last step, which contains t→� as an upper limit. The reason
lies in the fact that B�x� becomes zero at x→� �for all times
after the pulse has passed�. Hence we have to consider n0
=2 only in the integral representing the last step to level f.
The same holds true for all possible interference terms. Thus
from Eq. �C4� we expect the maximum final population to be
of the order ���fls−1

/�0�2�1 smaller than in case n0=1. Due
to the fact that this holds for arbitrary s, we conclude that a
short, rapidly varying propagating pulse hardly transfers any
population. It is important to recall that rapidly varying in
our definition refers to the total field E�t�, independent of the
envelope, and hence to a field of very high frequency. Like
for n0=1 we find that population transfer �regardless of its
small magnitude� is independent of the sign of the field if we
start from a single initial state.

B. Intermediate case

1. Two-level systems

If ���fi� is comparable to both �min and �max, we are in an
“intermediate” regime concerning the two limits considered
above. No analytic treatment is available, and we have to use
other tools to analyze the integrals of the time-ordered series.
We first note that due to the same functions E�t� occurring in
the exponent and in the factor multiplied with the exponen-
tial in the kernel of the integral, it is useful to use the identity

E�t� = − �gkl� �t� − ��kl�/��kl, �35�

with the time derivative of the phase defined by

gkl� �t� = ��kl − ��klE�t� . �36�

The indices k , l are arbitrary and correspond to a given step.
Using this relation in the integral representing the first step
together with substitution leads to

M1�t1� = −
�fi

��fi
�exp�i	��fit1 − ��fi�

0

t1

dt�E�t��
�
− 1 − i��fi�

0

t1

dt0

�exp�i	��fit0 − ��fi�
0

t0

dt�E�t��
�� . �37�

The first term is equivalent to the expressions obtained in
case �a�. The second term can neither be calculated analyti-
cally nor be approximated as slowly varying in the whole
domain of integration. However, from the discussion in Sec.
III B 1 it is clear that for sufficiently short integration time
we could apply the slowly varying approximation to the in-
tegrand. This leads in a natural way to the idea of partition-
ing the domain of integration into intervals. It only remains
to find the intervals that show resonance. In the optimal case
only one significant contribution remains and we can indeed
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replace the second term in Eq. �37� by its slowly varying
approximation.

The integrand of the second term in Eq. �37� cannot be
treated by the saddle point approximation �SPA� �38� be-
cause �→0 need not be true and in addition we integrate
over a finite time domain which results in contributions from
the contour near t0=0 and t0= t1. Elsewhere we will discuss a
method of partitioning the domain of integration �39�.

To find resonance points �, we search for a minimal first
derivative of the modulus of the phase in the exponent.
Around these points the variation of the phase factor in the
integrand is slow and the resulting integral becomes large.
Note this is a more general criterion than in the SPA, includ-
ing all possible saddle points.

In the following we abbreviate the phase difference be-
tween initial and final state with g�t�. In order to use differ-
entiation we note the bijective mapping of �g�� to g�2. This
leads to

�t�g��t��2�t=� = 2g�����tg��t��t=� = 0, �38�

and demanding a positive second derivative,

�t
2�g��t��2�t=� = 2��tg��t��2�t=� + 2g�����t

2g��t��t=� � 0, �39�

we obtain the centers � of the resonance intervals with maxi-
mum population transfer. If �g��t���0 for all times, then �
lies at an extremum of the field. Otherwise g�t� becomes
stationary, g����=0, so that E���=��fi /��fi¬A0, which we
denote true “dipole resonance.” The latter case corresponds
to the usual condition of the SPA. The above equations show
that for oscillatory fields population transfer can only be
large for one given sign within the period. The opposite sign
corresponds to a maximum of g�2 and yields hardly any

transfer. In passing we note that the optimal case of a dipole
resonance can only occur if g�t� is not strictly monotonic.

In general, we may obtain more than one solution �. As an
example, for E�t�=A sin �t the solutions of Eq. �38� that
lead to maximum population transfer are given in Table I. If
�g��t�� remains sufficiently small between two solutions, the
corresponding resonance intervals merge, and the dipole
resonance condition is maintained for a particularly long
time. If E�t� consists of a single half-cycle lobe, its optimal
amplitude A should therefore be somewhat larger than A0.

From Eq. �37� it is apparent that the resonance condition
has to be maintained for a time longer than 1 /��fi, or equiva-
lently 1 / t	��fi, in order that the second term dominates the
sign-independent first term. Combining this result with the
condition of a slowly varying field, �t�1, �at least valid
around the interval of resonance� gives a condition relating
properties of the field to the system parameters, namely,
min�k,l
���kl�
 ��max�. Note this relation is identical with the
one presented in Sec. III B 2. Furthermore, it is opposite to
the one for fast variation in Sec. IV. The sign dependence
gradually disappears as the pulses become shorter. For very
short pulses this case goes over to the limiting case �a�.

2. N-level systems

For N�2, new aspects arise due to the fact that the single
steps along the transfer path can have different resonance
amplitudes. This necessitates the definition of what we call
diagonal detuning. For a given �sub�path the diagonal detun-
ing dp can be defined relative to a reference transfer path
from initial to final state by comparing the phases,

dp�t� ª gp��t� − gfi��t� . �40�

We realize that the diagonal detuning is time-dependent for
general fields. At a true overall resonance we get dp���
=gp���� as the phase difference along the path p. Note in case
of a dipole-harmonic system dp���=0 for every subpath of
the transfer path.

We again demonstrate the dynamics by discussing a two-
step process. Similar to the treatment of the case N=2 we use
Eq. �35� and substitution to split each of the two integrals in
M2 into a sum of 2 terms. We first substitute for E in the
inner integral,

Ifi
�2� = �− i�2�fb�bi

��bi
�

0

t

dt1E�t1�exp�igfb�t1����exp�igbi�t1�� − 1� − i��bi�
0

t1

dt2 exp�igbi�t2���
= �− i�2�fb�bi

��bi
��

0

t

dt1E�t1�exp�igfi�t1���1 − exp�− igbi�t1��� − i��bi�
0

t

dt1E�t1�exp�igfb�t1���
0

t1

dt2 exp�igbi�t2��� . �41�

It is interesting to note that population transfer shows not
only the expected resonance from the initial to the final level,
indicated by gfi, but also a concurring one to the intermediate
level. The latter resonance has the effect that in case of a
harmonic system mainly the third term contributes and no
resonance from the initial to the final level occurs. The third

term is a correction term with no further possibility of sim-
plification, which describes stepwise excitation. Using Eq.
�35� with indices f and i for replacing E�t1� in the first two
terms, and after writing the phases out explicitly we finally
obtain

TABLE I. Possible solutions of Eq. �38� in �0,2�� correspond-
ing to minima of g�2 for E�t�=A sin �t.

Condition:

A0�A�0
or

A0	A	0

A0�0�A�−A0

or
A0	0	A	−A0 �A�
 �A0�

Solution: �1= �

2� �2= 3�
2� �3,4= 1

�arcsin�
A0

A �
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Ifi
�2��t� =

�fl1
�l1i

��fi��l1i
�exp�i	��fit − ��fi�

0

t

dt�E�t��
� − 1 − i��fi�
0

t

dt1 exp�i	��fit1 − ��fi�
0

t1

dt�E�t��
�
+ i��fi�

0

t

dt1E�t1�exp�i	��fl1
t1 − ��fl1�

0

t1

dt�E�t��
�	1 + i��l1i�
0

t1

dt2 exp�i	��l1it2 − ��l1i�
0

t2

dt�E�t��
�
� .

�42�

Apparently, an interpretation similar to the case N=2
above can be given. The first term does not induce any de-
pendence on the sign of the field. The second term gives rise
to the overall resonance, with conclusions equivalent to N
=2, if the appropriate differences of energies and moments
are used. The last term is a correction term and consists of
two iterated integrals, each one with a resonance field of the
respective step. In case of a harmonic system this term will
contribute along with the second term. In case of systems
with small but nonzero diagonal detuning a complicated tem-
poral behavior with beatings is possible. In case of large
diagonal detuning along the path the third term will be neg-
ligible and the dynamics should be similar to an effective
2LS. Generalizing to more than two steps, the number of
correction terms will increase. In case of alternate paths only
such correction terms can contribute to quantum interference
effects. We conclude that in systems with large diagonal de-
tuning fairly symmetric switching of population by an appro-
priate choice of the field strength is possible because no in-
terference can occur.

Together with the results obtained for the two-level sys-
tem in the intermediate regime we conclude that in systems
with sufficient diagonal detunings the relation

A0 =
��fi

��fi
�43�

remains valid for fields with moderate variation. The quality
of the approximation of independence of A0 on the details of
the path increases with increasing diagonal detuning.

In all situations discussed up to now we have assumed
that each �� relevant for A0 is nonzero. Considering for the
moment the case ��fi=0, we see that A0 will tend to infinity.
This expresses the fact that in this case a resonance cannot
occur, and population transfer can only proceed through
other mechanisms.

Elsewhere we will present numerical simulations of popu-
lation transfer in 2LS and 3LS for pulses and constant field
�36�, which clearly show the qualitative features discussed
above.

V. SUMMARY AND CONCLUSIONS

Using the time-dependent Schrödinger equation, we ana-
lyze the population dynamics in N-level systems induced by
strong and short field pulses. The operator of the system,
which couples to the external field, is assumed to contain
different nonzero diagonal elements. In the present paper we

investigate as an example a system with permanent dipole
moments coupled semiclassically to an electric field via the
dipole operator.

We search for possible limiting cases of the Hamiltonian,
for which the solution of the Schrödinger equation can be
well approximated by ordinary iterated integrals without
time ordering. Using respectively the original Schrödinger
picture and the interaction picture, we identify two new re-
gimes relevant for strong fields, namely the two opposite
limits of large frequency detuning.

In the limit of rapid variation of the field, compared to a
characteristic energy difference of the system, we prove for
arbitrary N that the population dynamics is independent of
the sign of E�t�. Furthermore, for propagating pulses no sig-
nificant population can be transferred by the pulse.

In the opposite limit of slow field variation, population
dynamics is determined by a resonance originating from the
diagonal matrix elements of the observable contained in the
coupling. This resonance selects the amplitude and phase of
the field. This is in sharp contrast to the well-known reso-
nance in the perturbative regime that determines the fre-
quency of the field as a difference of eigenvalues for a tran-
sition. As a result population transfer crucially depends on
the sign of the projection of E�t� onto the appropriate differ-
ence of permanent dipole moments whenever the resonance
linewidth with respect to the field strength is sufficiently
small.

We also give a qualitative discussion of the intermediate
case of moderate variation of the field, by analyzing the con-
tribution of lowest order to the population in the final level.
For N=2 we rewrite the integral to a form consisting of a
sign-independent and a sign-dependent term, each corre-
sponding to one of the limiting cases discussed above. A
significant sign dependence occurs only for field pulses with
a duration longer than the inverse level spacing of the initial
and final level. In case of N�2, added correction terms must
be considered. The correction terms usually show no reso-
nance but their number increases with increasing number of
levels, weakening the effect of the resonance.

The pronounced sign dependence of the population dy-
namics for slowly varying fields would allow for ready con-
trol of branching between target states with different polarity
and thus suggests an application of dipole-resonant popula-
tion transfer in a setup acting as a molecular switch. For
few-cycle pulses, the behavior of the intermediate case will
also become manifest as a dependence of population transfer
on the carrier-envelope phase.

The nature of the coupling and the origin of the diagonal
terms are not relevant to our analysis, and hence our findings
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should also hold in various problems of optical and magnetic
population dynamics. Even the condition of existence of di-
agonal elements of the operator coupling to the field can be
relaxed by considering induced quantities within an effective
Hamiltonian of dressed states. This might explain phenom-
ena such as the asymmetric escape of electrons as a nonlinear
field effect in atoms.
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APPENDIX A: SPECTRAL PROPERTIES
OF PROPAGATING PULSES

An experimentally admissible propagating pulse is
formed by shaping the vector potential A�t� under the restric-
tion that the difference of A at the beginning and the end of
the pulse is zero. We assume a Gaussian vector potential and
write A�t� for the projection of the vector potential onto the
current density to obtain

A�t� = − c
Am�t�

�0
sin��0t + ��, m�t� = exp	−

�t − tmax�2

�2 
 .

�A1�

Here A denotes an amplitude and �0 the frequency. The
half-width at half maximum of m�t� is given by � /�ln�2�.
This keeps the discussion fairly general because an arbitrary
smooth envelope could be well approximated by a finite sum
of Gaussians with appropriate parameters. Using E�t�ª
− 1

c �tA�t� as the corresponding projection of the field onto the
dipole moment we obtain

E�t� = Am�t�	cos��0t + �� −
2�t − tmax�

�0�2 sin��0t + ��
 .

�A2�

We adjusted � to accommodate � optical cycles in the full
width at half maximum of the Gaussian envelope, i.e., �
=���ln 2 /�0 �see also Ref. �7��.

Starting from the vector potential in form of a Gaussian
pulse, in Eq. �A2� we obtain two terms for the electrical
field. The second term is usually denoted the switch term. We
will call the first term the principal term. We first derive the
spectral representation for the principal term, which can be
rewritten as

EP�t� = A exp�−
t2

�2�cos��0t + �� , �A3�

by changing the origin of the time axis to tmax and redefining
� at the same instance. Furthermore, we use �0
0 without
loss of generality. The spectrum can be calculated analyti-
cally from its definition,

SP��� ª �
−�

�

dtEP�t�exp�− i�t�

= A�
��

2
�cos���	exp�−

�2

4
�� − �0�2�

+ exp�−
�2

4
�� + �0�2�
� �A4�

�+ i sin���	exp�−
�2

4
�� − �0�2�

− exp�−
�2

4
�� + �0�2�
� �A5�

¬A�
��

2
�SP,1���cos��� + iSP,2���sin���� .

�A6�

Clearly the spectrum consists of two parts, which are even
�SP,1���� and odd �SP,2���� with respect to inversion sym-
metry.

In order to find the spectral representation for the switch
term, we again change the origin of the time axis and rede-
fine � to obtain

ES�t� = −
2At

�0�2exp�−
t2

�2�sin��0t + �� �A7�

Note that the switch term contains a sine, but due to its
prefactor belongs to the same representation with respect to
inversion symmetry as the principal term. The spectrum can
be calculated in a similar way as for the principal term,

SS��� ª �
−�

�

dtES�t�exp�− i�t�

= − A
��

2�0
�cos���	�� − �0�exp�−

�2

4
�� − �0�2�

− �� + �0�exp�−
�2

4
�� + �0�2�


+ i sin���	�� − �0�exp�−
�2

4
�� − �0�2�

+ �� + �0�exp�−
�2

4
�� + �0�2�
�

¬ − A
��

2�0
�SS,1���cos��� + iSS,2���sin���� .

�A8�

With respect to inversion symmetry, the spectrum again con-
tains an even part �SS,1���� and an odd one �SS,2����.

Using Eq. �A6� and �A8� we find the spectral representa-
tion of the field by inverse Fourier transformation,
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E�t� ª
1

2�
�

−�

�

d��SP��� + SS����exp�i�t�

=
A

2��
�

0

�

d��	�SP,1��� −
SS,1���

�0

cos���cos��t�

− 	�SP,2��� −
SS,2���

�0

sin���sin��t��

�
A

2��
�

0

�

d�	�SP,av��� −
SS,av���

�0

cos��t + �� ,

�A9�

The approximation in the last line uses S.,avª �S.,1+S.,2� /2
and rests on the fact that the even and odd spectral contribu-
tions from the principal and switch terms form peaks that
have similar shape near �0. Invoking the relation between
frequency and energy, this approximation can be rewritten as

E�t� �
A�

2��
�

0

�

d�	SP,av��� −
SS,av���
���ln 2


cos��t + �� .

�A10�

The spectrum of the principal term shows a symmetric
peak at �0, whereas the spectrum of the switch term changes
sign at �0. It possesses a negative and a positive peak with
positions

�S,peak = �0 �
�2

�
, �A11�

obtained as the local extrema of SS,av���.
From the shape of the spectra and Eq. �A10� it becomes

clear that the resulting pulse has its peak slightly below �0
and extends farther toward smaller values of � than larger
ones, due to cancellation of the principal and switch term
spectra. The cancellation introduces a cutoff at

�c � �0 +
�2

�
= �0�1 +

�2

���ln 2
� . �A12�

We estimate the position of the peak of the total spectrum
and obtain the maximum at

�P = �0�1 +
�

2
−��2

4
+

2

���0�2� �A13�

��0�1 −
4�0

�3�3�ln 2�3/2� . �A14�

The approximation is valid whenever 6�4 /�0
2
1 holds and

�P is very close to �0 in this case.
Apparently in Eq. �A10� only a cosine turns up because in

case �=0 the vector potential is an odd function of t and the
field will be of even symmetry. The most general case con-
tains terms of both characters and can be represented by

E�t� =
1

�
�

0

�

d��Su���sin��t + �� + Sg���cos��t + ��� .

�A15�

In Appendix B we use this form to discuss multiple integrals
of the field pulse. We note that we could remove the phase �
by taking �=�t0, obtaining the usual Fourier composition.

APPENDIX B: MULTIPLE INTEGRALS
OF OSCILLATORY FUNCTIONS

For the proof in Sec. IV we need to estimate the size
of repeated integrals of the function b�x�ª i�l1iE�x�
�exp�−i��l1i�0

xdx�E�x���. Note in case of significant varia-
tion of E�t� the phase factor is close to 1 as its exponent is
small. Due to �b�x��� ��l1i��E�x�� an investigation of respec-
tive integrals of E�x� can be used to find an upper bound.

We write the spectrum of E�x� as a sum of an odd and
even part, S���ªSu���+Sg���, and consider the single in-
tegration problem,

�
0

t

dxE�x� =
1

�
�

0

�

d��
0

t

dx�Su���sin��x + ��

+ Sg���cos��x + ��� �
1

�
�

0

�

d�
S���

�
.

�B1�

Here � denotes a possible phase and we used the well-
known fact that the integral of sin��x+�� cannot be larger
than the contribution of half a period. However, already at
this point it is clear that this estimate is applicable only if
lim�→0 S��� goes as �n with n
1. We will generalize and
refine this estimate below.

We are interested in the repeated integral

�B2�

Using the following exact expressions:

�
0

t

dx sin��x + �� = − �cos��t + �� − cos����/� ,

�
0

t

dx cos��x + �� = �sin��t + �� − sin����/� , �B3�

we can perform the integrations over time. Iterating we ob-
tain the “boundary term” from the lower limits of the n-fold
integral, given by

Bn = Bn−1�/� + S��� · B�n,��/�n, �B4�
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S��� ª �Su��� − Sg��� � , �B5�

B�n,�� ª �− 1�int��n−1�/2���sin��� − cos����T, n even

�cos���sin����T, n odd
� ,

�B6�

when defining �ª�t and the spectral and boundary vectors
S��� and B�n ,��, respectively. Using the boundary contri-
butions we obtain the following general expression:

In�E,t� =
1

�
�

0

�

d�Su���Fu��,t� − Sg���Fg��,t� ,

Fu�n,�,t� ª �− 1�int��n+1�/2�� sinn��t + �� , n even

cosn��t + �� , n odd
�
�B7�

Fg�n,�,t� ª �− 1�int��n+2�/2��cosn��t + �� , n even

sinn��t + �� , n odd
� .

�B8�

where the odd and even functions Fu and Fg have been de-
fined in terms of what we denote modified sine and cosine
functions. The first few of these functions and the general
expressions are

sin1�� + �� = �sin�� + �� − sin����/� ,

cos1�� + �� = �cos�� + �� − cos����/� ,

sin2�� + �� = �sin�� + �� − �sin��� + cos�����
/�2,

cos2�� + �� = �cos�� + �� − �cos��� − sin�����
/�2,

]

sinn�� + �� = 	1 − ��
j=0

n−1
� j

j!

� j

�� j�
�=0


sin�� + ��/�n

cosn�� + �� = 	1 − ��
j=0

n−1
� j

j!

� j

�� j�
�=0


cos�� + ��/�n.

�B9�

The modified function of order n is constructed by removing
the first n terms of the power series expansion of the respec-
tive sine or cosine function.

In case ��1 we find an upper bound for these function as
follows:

�sinn�� + ��� = �	sin�� + �� − sin��� + cos����

+ sin���
���2

2
. . .
/�n�

� tn� 1

���n + �
j=0

n−1
1

j ! ���n−j� . �B10�

Within this approximation, the same upper bound applies to
cosn��+��, and for the absolute value of both modified func-
tions of order n we obtain the upper bound

�1 + e�
tn

�
, �B11�

by replacing each inverse power of � by 1 /� and using the
monotonic behavior of � j

n1 / j! with n. The limit �→� of the
modified functions is smaller but shows the same power in �,

lim
�→�

�sinn�� + ��� � tnO„��n − 1� ! ��−1
… . �B12�

For �→0 the right side of Eq. �B10� diverges like the nth
power whereas the modified functions stay finite, namely,

lim
�→0

sinn�� + �� =
�− 1�int�n/2�tn

n! �sin��� +
�− 1�int��n+1�/2�

n + 1
cos���� + O��2� , n even

cos��� +
�− 1�int��n+1�/2�

n + 1
sin���� + O��2� , n odd,�

lim
�→0

cosn�� + �� =
�− 1�int��n+1�/2�tn

n! �cos��� +
�− 1�int��n+2�/2�

n + 1
sin���� + O��2� , n even

sin��� +
�− 1�int��n+2�/2�

n + 1
cos���� + O��2� , n odd � . �B13�

We note that terms of equal order of the series for the modified sine and cosine function differ only by a sign and replacing
sin��� with cos���. Therefore we define auxiliary functions Sn��� ,Cn��� to write
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sinn�� + �� =
�− 1�int�n/2�tn

n!
sin����1 −

�2

�n + 1��n + 2�
+ ¯� +

�− 1�int��n+1�/2�tn

�n + 1�!
cos����� −

�3

�n + 1��n + 2��n + 3�
+ ¯�

¬

�− 1�int�n/2�tn

n!
sin���Cn��� +

�− 1�int��n+1�/2�tn

�n + 1�!
cos���Sn��� . �B14�

in case of even n, with similar expressions for odd n and for
cosn��+��. From the properties of alternating series it is
clear that for ��1 we have �Sn�����1, �Cn�����1. This leads
again to a common upper bound

�n + 2�tn

�n + 1�!
for � � 1. �B15�

for both modified functions.
We now collect the results from Eq. �B11� and Eq. �B15�

to estimate the size of In�E , t�. We split the integral over � at
�=1 which yields

�In�E,t�� �
tn−1

�
� �n + 2�

�n + 1�!�0

1

d�S��/t� + �1 + e��
1

�

d�
S��/t�

�
�

�B16�

	
tn

�
	 n + 2

�n + 1�!
+ 1 + e
��

0

�

d�S���� . �B17�

From the definition of the spectrum �see Eq. �A10�� and E�t�
of a pulse in Eq. �A2� we get E�0�=A cos����A and the
estimate becomes

�In�E,t�� 	 Atn	 n + 2

�n + 1�!
+ 1 + e
 . �B18�

APPENDIX C: RAPIDLY VARYING FIELDS

First we assume the approximation in Eq. �30� valid and
work out the general structure of the terms in �f by abbrevi-
ating the following quantities occurring in Mn,

pn�x� ª exp�i�
j=0

n−1

��lj+1lj
x��

j=0

n−1

�lj+1lj

w�� ª �
j=�

�−1

��lj+1lj

f���x� ª 1 − exp	− iw���
0

x

dt�E�t��
 . �C1�

Now we can write the first few Mn as

M1 = p1
f10

w10
,

M2 = p2� f21

w21w10
−

f20

w20w10
� ,

M3 = p3	 f32

w32w10
� 1

w21
−

1

w20
� −

f31

w31w21w10
+

f30

w30w20w10

 .

�C2�

It is apparent that there are exactly n terms in each Mn. The
increase of the number of terms with increasing subscript
comes from the two parts contained in f , namely, 1 and the
exponential, so that each term in Mn can be interpreted as a
transition from some level lj , j	n to ln. We do not pursue the
details of the calculation any further, as we are only inter-
ested in the qualitative behavior of Pf. We just note that these
factors can be organized in a scheme resembling Pascal’s
triangle.

Next we give the proof of the approximation in Eq. �30�.
We investigate the integral corresponding to the level lj for
which the energy difference to the initial level is maximal.
For convenience we define �ª ���lji

�= �a��x�� �a�x� is defined
in Eq. �29�� and �ª ���lji

�.
In the present case we assume that the spectrum is peaked

at a sufficiently high frequency �0, with the property �0

�. In addition the width of the peak is assumed much
smaller than �0. In this case �� �0,�� hardly makes any
contribution and can be ignored for finding an upper bound
to �In�E , t��.

In the following we set the lower limit of integration to
the moment t0 when the field was switched on. Because the
derivative of the field up to any order is zero at t	 t0 it is
clear that the lower boundary does not make a contribution
and sinn��t+�� is replaced by sin��t+�� /�n and similar
for the modified cosine. From Eq. �B8� we obtain the upper
bound

�In�E,t�� �
A

�
��

�

�

d�
S���
�n � , �C3�

which is equal to the maximally attained value of the oscil-
lating function In�E , t�. Noting that the peak of S��� is much
larger than its half-width we obtain the order estimate

�In�E,t�� =
A

�
O��0

−n� , �C4�

which we use in the proof below.
Now we show that ���0 indeed implies the approxima-

tion made in Eq. �30� for n0=1 and extend to n0�1 later.
The approximation clearly is valid whenever
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��
0

t1

dxa��x�B�x�� � �a�x�B�x�� �C5�

holds; the abbreviations are defined in Eq. �29�. In order to
motivate the strategy of the proof we note that multiple in-
tegrals of b�x� are oscillating functions, that is, strictly the
lower bound of their magnitude is zero. Therefore we cannot
proceed to construct an upper/lower bound for the left/right
side of Eq. �C5� in order to prove it. We then use the estimate
Eq. �C4�, noting that the inequality Eq. �C5� becomes invalid
in small intervals around isolated zeros of B�x�. However,
these intervals occupy a fraction of O�� /�0� of the whole
integration time and noting that within these intervals we
have n0 incremented by 1, which multiplies an extra factor
� /�0 to the wave function, the contributions from these in-
tervals to the population are by a factor O��� /�0�2��1
smaller than from the remaining intervals.

Using Eq. �C4� we immediately get

��
0

t

dxa��x�B�x�� =
A

�
O� �

�0
2� . �C6�

Next we have to obtain a suitable lower bound to the
right-hand side of Eq. �C5�. We note that introducing z�x�
ª−exp�−i��0

xdx�E�x��� we obtain dz�x� /dx= i�E�x�z�x�
=b�x�. B�x� can then be integrated analytically to give

B�x� =
1

��1 − exp	− i��
0

x

dt�E�t��
� . �C7�

The exponent evaluates to �0
xdt�E�t��=O�A /��0�

�O�� /�0��1 when we consider field strengths of the order

of the one from the dipole resonance condition �see Sec.
III B 1�. Due to the fact that the length of 1−exp�−i�� in-
creases monotonically with increasing �� �0,�� we are safe
to postulate

�1 − exp	− i��
0

x

dt�E�t��
� � ���
0

x

dt�E�t���
=

A�

�
O��0

−1� . �C8�

Inserting this result in Eq. �C7� we get

�B�x�� =
A

�
O��0

−1� , �C9�

which tells us that �IB�1, t����I1�E , t�� is a good approxima-
tion in our case.

Putting it all together we immediately arrive at the desired
result,

� � �0. �C10�

In case of n0�1 we note the relation �IB�k , t��� �Ik�E , t��
for any k, with decreasing difference �Ik�E , t��− �IB�k , t�� for
increasing �0. We again use the estimate from Eq. �C4� for
both sides of the inequality to arrive at

�n0

�0
n0+1 �

�n0−1

�0
n0

, �C11�

which clearly is equivalent to Eq. �C10� and therefore the
approximation in Eq. �30� holds for general n0.
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