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Abstract: The applicability of nano-crystalline W/Cu composites is governed by their mechanical
properties and microstructural stability at high temperatures. Therefore, mechanical and structural
investigations of a high-pressure torsion deformed W/Cu nanocomposite were performed up to a
temperature of 600 ◦C. Furthermore, the material was annealed at several temperatures for 1 h within
a high-vacuum furnace to determine microstructural changes and surface effects. No significant
increase of grain size, but distinct evaporation of the Cu phase accompanied by Cu pool and faceted
Cu particle formation could be identified on the specimen′s surface. Additionally, high-temperature
nanoindentation and strain rate jump tests were performed to investigate the materials mechanical
response at elevated temperatures. Hardness and Young′s modulus decrease were noteworthy due
to temperature-induced effects and slight grain growth. The strain rate sensitivity in dependent
of the temperature remained constant for the investigated W/Cu composite material. Also, the
activation volume of the nano-crystalline composite increased with temperature and behaved similar
to coarse-grained W. The current study extends the understanding of the high-temperature behavior
of nano-crystalline W/Cu composites within vacuum environments such as future fusion reactors.

Keywords: W/Cu composite; nanocrystalline; high-pressure torsion; microstructure; nanoindentation

1. Introduction

W/Cu composites are typically used as heat sinks in power electronics and construc-
tion material for high-power switches, but are also intended as a shielding material in
environments exposed to radiation [1–3]. Thereby, the material is subjected to high local
and cyclic loads due to temperature changes as well as additional irradiation or ion bom-
bardment [2,4]. These composite materials exhibit high thermal stability concerning their
microstructure combined with predictable thermal and mechanical properties. Depending
on their composition, strength or ductility is limited at room temperature and, therefore,
the vulnerability for cyclic damage or fatal crack propagation due to overload events is
prevalent. To further increase the applicability and counteract the brittle behavior, strength,
but also ductility, of the composite material must be increased [5,6]. One possibility to
do so, and concurrently increase both material parameters, is to constitute a proper grain
refinement [7–9]. This strategy was successfully applied by performing a high-pressure
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torsion (HPT) process on a coarse-grained (cg) W/Cu alloy [10]. This results in a homoge-
nous nano-crystalline (nc) W/Cu composite with enhanced mechanical properties at room
temperature (RT) [10].

Studies regarding nano-lamellar W/Cu multilayer coatings revealed a decomposition
of the W and Cu layers to globular W grains within a Cu matrix starting at 700 ◦C [11].
Additionally, the formation of voids and pores on the surface of W/Cu specimens when
annealed within a vacuum furnace at this temperature is reported [11]. This circumstance
was further exploited to produce a nc W foam on the surface of a nc W/Cu alloy [12].
During in situ deformation experiments on Cu/TiN, Cu/W or Cu/Cr layered micro-pillars
at elevated temperatures, the formation of differently shaped Cu particles along their
surface were identified [13–15]. Their presence is explained by a shear-assisted diffusion
process along with these interfaces. The Cu-multilayer composite materials exhibit stable
mechanical properties with increasing temperature under compression during micro-pillar
experiments [15]. Furthermore, the investigation of nc W foam yielded promising results
concerning hardness and Young′s modulus [12]. Situated on the surface of shielding
components, the nc W/Cu composite material is typically exposed to He+ implantation
causing the formation of He bubbles accompanied by crack propagation constituting
common irradiation damage. This may be avoided due to the introduction of open channels
and pores in a foam [16–19]. In addition, this composite material provides distinct self-
healing potential, as the Cu evaporates on the exposed surface and restores the protecting
W foam. Ductility may be improved by adjustment of the grain size, but also through
modified alloying concepts to enhance the brittle to ductile temperature or to increase
the grain boundary strength [10,20]. According to density-functional theory studies on W
regarding the cohesion strength between grains, the presence of Cu was found to have
no significant effect on the extent of embrittlement [20]. However, this class of nc W/Cu
composite material offers several application possibilities if the mechanical properties
are increased and the microstructural stability is enhanced. Therefore, the present study
aims to investigate the mechanical properties and microstructural stability of the nc W/Cu
composite concerning exposure to elevated temperatures.

2. Materials and Methods

The material examined in this study constitutes a nc W-Cu composite fabricated via the
HPT process. A cg W-33 wt% Cu composite was provided by Plansee SE, Reutte, Austria
as a cuboid, cut from a plate with a thickness of 10 mm. This cuboid was wire-eroded to
an 8 mm diameter rod, and subsequently cut into discs with a thickness of 0.9 mm. The
HPT process was performed on the cg W/Cu composite discs at room temperature (RT),
applying a pressure of 7.5 GPa and a rotational speed of 1.2 rpm. Sixty rotations were
applied to obtain a homogeneous and saturated nc microstructure at radii ranging from 0.5
to 4 mm of the discs. At a distance of 3.65 and 3.8 mm from the center of the disc, an applied
strain of about 950 ± 60 was reached [10,21]. A detailed introduction to the HPT procedure
of cg W/Cu composite can be found in reference [10]. Subsequently, a heat-treatment at
300 °C for 1 h within a vacuum furnace (X.Tube, Xerion Berlin Laboratories®GmbH, Berlin,
Germany) was performed at about 3.0 × 10−4 Pa. This allows for reduction of the amount
of forced mechanical intermixing between W and Cu during HPT process without resulting
in significant grain coarsening or recrystallization [10,22]. Hence, the mean grain size of W
and Cu grains was determined to 14.4 ± 6.3 nm in diameter [1]. This ranges in the same
regime as the as-deformed specimen, exhibiting a grain size of 5–15 nm [10]. Therefore,
only a minor influence of the heat treatment and, thus, testing at temperatures up to 300 ◦C,
are suggested. Representative images showing the nanostructure of the investigated W/Cu
composite can be found in ref. [12].

Subsequently, heat-treatments at 400, 500, 600, 700 and 900 ◦C for 1 h within a high-
vacuum furnace were conducted on separate specimens to determine the temperature
stability of the nc W/Cu microstructure. The specimens were previously mirror-polished
to ensure an appropriate surface condition for nanoindentation tests, as well as to disclose
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the effects on the surface. Subsequently, a scanning electron microscope (SEM, LEO1525,
Carl Zeiss GmbH, Oberkochen, Germany) was used to investigate the microstructure and
surface conditions of the heat-treated specimens. Here, an acceleration voltage of 15 kV,
typical magnifications ranging from 2000 to 30,000 times, working distances between 3.5
and 5.5 mm and an image resolution of 1024 × 768 pixel were used as imaging parameters.
To achieve a more detailed understanding of surface effects, cross-sections were excavated
by use of a Zeiss Auriga Laser FIB system containing a focused ion beam column (Orsay
Physics Ga+ ion FIB) and a scanning electron column (Gemini Schottky field emission, Carl
Zeiss GmbH, Oberkochen, Germany). To realize extended cross-sections, a femtosecond
laser from type Origami 10 XP (Onefive GmbH, Zürich, Switzerland) and a pulse duration
of about 500 fs was used [23]. Further polishing was performed by the use of the attached
FIB device using ion cutting currents from 2 nA to 200 pA.

The RT and nanoindentation experiments up to 400 ◦C were performed on a G200
platform (KLA Corporation, Milpitas, CA, USA). This setup, including a continuous
stiffness measurement (CSM) unit, enables the determination of hardness and Young′s
modulus continuously throughout the indentation depth. A diamond Berkovich tip (Synton
MDP, Nidau, Switzerland) exhibiting a tip radius of 250 nm was calibrated following the
Oliver-Pharr procedure and the indentation strain rate (

.
P/P) was kept constant at 0.05 s−1

during the measurement [24,25]. A maximum load of 700 mN at an indentation depth
of 2500 nm was applied during the measurements. The resultant hardness values were
determined and averaged within a range of 300 to 425 nm as well as 1200 and 1400 nm.
Furthermore, strain rate jump tests were performed at indentation depths of 500 and
1500 nm with respective constant indentation strain rates of 0.01 and 0.005 s−1 up to a total
indentation depth of 2500 nm [26]. To avoid oxidation during the experiments, a protective
gas atmosphere was applied including a constant gas flux of 0.4 to 0.6 L/min.

In the case of HT nanoindentation tests from 400 to 600 ◦C, an InSEM-HT device
(Nanomechanics Inc. KLA, Oak Ridge, TN, USA) including a CSM module was utilized. To
ensure stable temperature conditions and guarantee an isothermal contact between tip and
specimen, both are heated and controlled separately [27]. To avoid specimen oxidation or
degradation of the indenter tip at high testing temperatures, the system is mounted within
a Tescan Vega3 SEM (Tescan, Brno, Czech Republic) and is operated under high-vacuum
conditions [28]. The used Berkovich type indenter tip consists of silicon carbide (Synton-
MDP, Nidau, Switzerland). The machine compliance and area function calibration of the
tip were determined by indentation tests on fused silica at RT [25]. Possible degradation of
the tip was monitored by regular indentations on fused silica. A maximum indentation
depth of 600 nm and maximum force of 50 mN were utilized. Strain rate jump tests were
performed with a constant indentation strain rate of 0.4 s−1 to a displacement of 300 nm,
followed by a 0.04 s−1 jump for 125 nm, and a subsequent return to 0.4 s−1. Following
Maier et al. [26], the strain rate sensitivity (m) and the apparent activation volume (v*)
were determined.

Notably, high-temperature nanoindentation tests were performed from RT up to
600 ◦C on the same HPT deformed and subsequently polished specimen with both testing
setups. Here, similar distances from the center point were selected to ensure comparable
deformation ratios and consequently, the corresponding identic microstructure. The exact
positions are visible in Figure S1a and are located directly next to each other.

3. Results
3.1. Microstructural Development

Secondary electron (SE) SEM images of the HPT deformed specimens′ surface after
the heat-treatments are displayed in Figure 1a–f. The specimens were heated to 300, 400,
500, 600, 700 and 900 ◦C for 1 h and subsequently cooled to RT within a vacuum furnace.
The W grain size is slightly increased after annealing at 400 ◦C compared to 300 ◦C, as can
be seen in Figure 1a,b. Upon further increasing the temperature, Cu droplets and pools
are emerging on the surface of the specimen within a temperature range of 600 to 700 ◦C.
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Their number and size increase with rising temperature Figure 1d,e. Specimens annealed
at 900 ◦C show again a homogenous surface structure without any Cu particles or pools
visible in Figure 1f. However, the formation of dimples and pores on the surface indicates
the evaporation of Cu from the surface. Due to the rough surface, a higher contrast between
the nc W grains and evolving pores is evoked in SE imaging mode.

Figure 1. SE SEM images of the HPT processed W/Cu specimens after 1 h annealing at temperatures
of (a) 300, (b) 400, (c) 500, (d) 600, (e) 700 and (f) 900 ◦C. Within (d,e) faceted Cu particles become
visible on the polished surfaces. In (f) the formation of pores along the surface is visible and marked
by white arrows.

To further investigate the effect of Cu pools located on the surface of the respective
specimen, a cross-section was realized using FIB. In Figure 2a several Cu pools are visible
on the surface of the specimen heat-treated at 700 ◦C. Additionally, several faceted Cu
particles are situated next to and atop a selected Cu pool in Figure 2b. A more detailed
SE image of one of the faceted Cu particles is displayed in Figure 2c. The exposed edge
of a Cu pool including two different regions below the surface is visible in Figure 2e. The
cross-section reveals a shallow appearance of the Cu pools with no noticeable in-depth
effects on the microstructure.

Figure 2. SE SEM images of a W/Cu composite annealed at 700 ◦C: (a) overview of the polished
surface, (b) representative Cu pool, (c) faceted Cu particle, (d) sub-surface region not covered by a
Cu pool, (e) overview of the cross-section containing different areas and sub-surface structures and
(f) sub-surface region below the Cu pool. In (d,f) the dotted line restricts the porous zone and white
arrows indicate single pores, respectively.
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However, below the pool a lower porosity was determined (see Figure 2f) compared
to the uncovered material in Figure 2d. Here, the mean depth of an open porosity was
determined to be 330 nm. The Cu pool covered area solely contains some loose regions
including visible pores. The mean diameter of about 50 Cu pool determined from SEM
images at 700 ◦C was 18.3 ± 6.7 µm. The vertical contrast visible along the cross-sections
in Figure 2d,f can be attributed to curtaining effects originating from FIB preparation. Due
to the re-deposition of the sputtered material on the specimen′s surface, the top layer near
the edge visible in Figure 2d,f appears to exhibit a coarser appearance of the surface grains.

3.2. Nanoindentation and HT Nanoindentation Tests

Selected nanoindentation results of the G200 setup at RT, 100, 200, 300 and 400 ◦C are
displayed in Figure 3. Representative load-indentation depth curves including strain rate
jumps are displayed in Figure 3a. The corresponding hardness values as a function of the
indentation depth are displayed in Figure 3b. Considering RT data, the force limit was hit;
therefore, the aimed maximum indentation depth of 2500 nm was not reached. To compare
measurements from different temperatures and later the InSEM-HT testing setup, values
were determined in a depth of 300 to 450 nm, where the hardness remains almost constant.

Figure 3. Representative indentation data of nc W/Cu specimen from indentation experiments
gathered by the G200 setup (a,b) and the InSEM-HT nanoindentation testing setup(c,d). In (a) typical
load and in (c) hardness vs. indentation depth curves at RT, 100, 200, 300 and 400 ◦C are displayed.
In (c) load and (d) hardness values are displayed over indentation depth for testing temperatures
at RT, 400, 500, and 600 ◦C, respectively. Within an indentation depth of 300 to 425 nm the constant
strain rate was decreased from 0.4 to 0.04 s−1 for strain rate jump tests at the same temperatures.
Additional indentation experiments with a constant strain rate were performed for comparison and
are displayed as black lines in (d). For a colored representation, the reader is referred to the web
version of this article.
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Furthermore, representative load-indentation depth curves from the InSEM-HT setup
at RT, 400, 500 and 600 ◦C up to either a maximal indentation depth of 600 nm or a load
of 50 mN are shown in Figure 3c Their corresponding hardness values are displayed in
Figure 3d and were determined with a

.
P/P of 0.4 s−1. Continuous mechanical data is

available due to the used CSM testing setup [26]. Additionally, hardness profiles deter-
mined from strain rate jump tests are displayed in Figure 3d. To compare different data
points at varying temperatures and also to the G200 setup, mean values from 300 to 450 nm
were used. Also, the associated Young′s modulus was determined within this indentation
depth [29]. Here, initial surface and contact effects can be excluded, resulting in almost
constant values. As expected for nc materials, no indentation size-effect was identified
with increasing indentation depth [30].

For comparison, the hardness and Young′s modulus values determined from different
testing setups and temperatures are summarized in Figure 4. As the material is strain
rate sensitive and two different constant indentation strain rates were used, the evaluated
hardness from the InSEM-HT device is higher compared to the values from the G200 setup.
Thus, to obtain comparable hardness values, a correction of the constant strain rate of the
respective test setup was performed: values from the InSEM-HT device and G200 setup
were corrected to a

.
P/P of 0.05 and 0.4 s−1, which correspond to the open symbols in

Figure 4a. However, at RT and 400 ◦C, mean deviations of 0.58 and 0.78 GPa between the
InSEM-HT and corrected G200 values (open circles) were determined. Hence, hardness
values from the InSEM-HT indenter remain slightly elevated compared to data gathered
using the G200 setup.

Figure 4. In (a) the evolution of the hardness as a function of the temperature of the nc W/Cu
composite material is displayed. The data include a standard deviation calculated from at least
five indents and was corrected according to the given constant indentation strain rate. The Young′s
modulus as a function of the temperature is shown in (b). Guidelines based on literature data
were included to guide the reader′s eyes [31,32]. Therefore, the anisotropic Young′s modulus of
Cu was calculated after Shtrikman (S) and Reuss (R) bounds. The open symbols constitute strain-
rate-corrected data points, and the red triangles display data points recorded subsequently to the
high-temperature experiments at RT. Here, only a minor deviation of 16 and 5% from the hardness
and Young′s modulus was determined, respectively. For a colored version of this article, the reader is
referred to the online edition.

The measured Young′s moduli including some trend lines calculated from literature
data are shown in Figure 4b. Hence, Young′s moduli of Cu and W from Chang et al. [31]
and Lowrie et al. [32] with a phase ratio of 49/51 were used. With increasing temperature,
the measured Young′s modulus decreases and shows good accordance with the trend lines
calculated after the Reuss model (R). Here, RT Young′s moduli from InSEM-HT setup are
slightly under- and in the case of 400 ◦C measurements overestimate values from G200
setup, but in general, nicely follow literature predictions [31,32].
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4. Discussion

The microstructural investigation (Figure 1) confirmed that the surface structure of
heat-treated nc W/Cu composite material witnesses a distinct change of surface character-
istics at varying temperatures. With increasing temperature, the nc Cu matrix phase tends
to sublimate into the high-vacuum oven atmosphere. Furthermore, Cu pool-like structures
are observed on the surface starting at temperatures of 600 ◦C. Their number and size rise
with increasing temperature but vanish at 900 ◦C. As the temperatures increase, an accumu-
lation of Cu pool could be determined with increasing distance from the center of the HPT
deformed specimen. This indicates an influence of the applied deformation strain, as this
effect amplifies with increasing distance from the center. By raising the deformation ratio,
the grain size, mechanical intermixing, homogeneity but also internal stresses are enhanced
and ultimately reach a saturation level [10]. Mechanical intermixing and stresses were
reduced during the preliminary heat-treatment at 300 ◦C for 1 h within a vacuum furnace.
In this condition, the mean grain size of W and Cu grains was determined to 14.4 ± 6.3 nm.
In the following, no visible changes on the surface or microstructure could be determined
during SE SEM investigations. Post-indentation images of the specimen′s surface indicate
an additional accumulation of Cu pool in and around the area where the indentation tests
were performed (see supplementary SP-1). This substantiates a stress-assisted diffusion
of Cu along different interfaces, as previously observed during micropillar experiments
on heat-treated Cu/TiN multilayers by R. Raghavan et al. [13]. The authors identified
faceted Cu particles on the surface of tested pillars and Cu infiltrated pores along with
deformation-related shear bands [13]. In our study, faceted Cu particles were identified on
the specimen′s surface by SEM investigations starting at temperatures of 600 ◦C. Similar to
the Cu pool, their number and size increase with increasing temperature and they vanish
during a heat-treatment of 900 ◦C for 1 h within a vacuum furnace. Studies of W/Cu
multilayer specimens indicate a correlation of cracks along W grain boundaries and the
presence of faceted Cu particles on the surface [11,33]. Therefore, a coupled mechanism
of preferred diffusion pathways and stress-induced diffusion of Cu to the surface was
postulated [11,13]. As the presence of faceted Cu particles is randomly distributed on the
respective surfaces visible in Figure 1d,e, a site unspecific availability of diffusion pathways
within the nc microstructure is assumed. The presence and morphology of the Cu pool were
further investigated from a cross-section of the specimen heat-treated at 700 ◦C (Figure 2).
Here, the area below the surface, which is not covered by a Cu pool, exhibits a pronounced
porosity up to a mean depth of 330 nm, assuming an effective loss of 70% of Cu up to this
depth under consideration of the prevalent volume share of 49 vol.% Cu, theoretically 0.62
faceted Cu particles with a mean diameter of 716 nm should be present per µm2 on the
surface of the specimen. This fraction would be equivalent to a mean coverage of 25.0%
of the available surface area by Cu particles. The mean particle diameter of 716 ± 153 nm
was determined from high-resolution SEM images analysis. However, the determination
of SE SEM images of this specimen state yields a mean coverage from 4.3 to 5.2% of faceted
Cu particles besides the Cu pools. This observation indicates a strong loss of Cu into the
vacuum due to sublimation from the specimen′s surface. Similar effects were observed
in the case of ZnCu alloys, as the Zn starts to evaporate at temperatures of 450 ◦C, and
the remaining Cu forms a microporous foam [34]. This effect was described as physical
vacuum dealloying, as the vapor pressure of the volatile phase is by far higher compared
to the Cu phase. In the case of the nc W/Cu composite, the vapor pressure of Cu at 700 ◦C
is more than 27 magnitudes higher compared to that of the W phase [35]. Hence, at this
temperature, the vacuum pressure of Cu amounts to 5.0 × 10−7 Pa and ranges, therefore,
below typical high-vacuum pressures of 10−4 to 10−6 Pa. This enables the deposition of
Cu on the surface as Cu pools and later as faceted Cu particles due to the stress-induced
diffusion mechanism. At a temperature of 900 ◦C, the Cu vacuum pressure increases to
5.8 × 10−4 Pa, resulting in the sublimation of Cu from the surface [35]. Here, the limiting
factor is the replenishment of Cu via diffusional processes along or through the depleted
nano-porous W-rich zone.
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Underneath the Cu pool in the cross-section view (see Figure 2f) by themselves, a
few agglomerated pores are visible. This indicates an easier diffusion pathway or stronger
driving forces to relocate Cu from deeper regions of the specimen. Therefore, the presence of
microcracks is assumed to promote the formation of Cu pools on the surface. Furthermore,
faceted Cu particles are also located on these Cu pool, indicating no or at least a minor
influence on the distribution and size of the pools.

The faceted morphology of the Cu particles is suggested to rely on the fact that the
material is striving to achieve an optimal shape to reduce its total surface energy [36]. A
visualization of this, named the Wulff plot, resembles the shape of faceted Cu nanoparticles
for face-centered cubic (fcc) specimens [37]. Their shape was proven to change as the forma-
tion of specific Miller planes is favorable. under different atmospheric conditions [38–40].
However, the morphology of the nc W grains on the surface of the heat-treated specimens
was not noticeably changed, due to the annealing process at different temperatures, which
was due to the low diffusivity of W in this temperature regime.

The results from the RT and high-temperature nanoindentation experiments must be
regarded in the light of developing surface porosity and thus, changing microstructure.
As the Cu phase sublimates to a larger extent with increasing temperature and time, an
increasing number of open channels and pores are prevalent in the near-surface layer
of the nc W/Cu composite material. As the indentation experiments were performed
up to an indentation depth of 600 or 2500 nm in the case of InSEM-HT or G200 testing
setup, respectively, and the respective hardness and Young′s modulus were determined
within a range of 300 to 450 nm, only minor influences of the evolving porosity and
other microstructural changes are assumed up to a temperature of 400 ◦C. This is further
supported by the hardness determination of the G200 experiments within a depth of 1200
to 1400 nm, resulting in comparable values within the given standard deviation. Also,
hardness and modulus are deduced from the plastic and elastic deformation regions,
which reach to a depth of around 5–15 times deeper than the actual indentation depth.
Hence, the hardness is almost constant for indentation depths exceeding 200 nm at any
temperature. Furthermore, after strain rate jump tests and returning to the initial strain
rate, similar hardness values were reached with both used test setups (see Figure 4a). In
a study on a nc W foam with a similar initial grain size but higher deformation applied
using a severe plastic deformation process, lower hardness values of the pure foam of
2.8 GPa were determined at RT [12]. Furthermore, the minor influence of pores on the
surface of nc W/Cu composite is substantiated by elevated hardness values determined
from the InSEM-HT test setup at RT after the performed G200 experiments (see Figure 4a).
Here, the strain rate corrected hardness from the InSEM-HT device exceeds the G200 RT
hardness by 0.66 GPa and amounts to 6.67 ± 0.13 GPa. At the given temperature, this
value is similar to hardness values of cg W specimens investigated by Kappacher et al. [41].
Furthermore, there is a good consistency of hardness and Young′s modulus values with
deposited and heat-treated nc W-Cu thin films [22,29,42]. With increasing temperature, the
hardness of the nc W/Cu composite decreases steadily. This behavior may be attributed
to the drastic drop in flow-stress of body-centered cubic (bcc) materials with increasing
temperature [41,43]. Hence, the thermal activation of kink-pairs along the 1

2 <111> screw
dislocation lines at a temperature of about 0.2 Tm enables plastic deformation under applied
shear stresses [44]. Above this temperature, the athermal regime is governed by both, edge
and screw, dislocation processes which are independent of thermal activation [41,44]. Since
the drop in hardness with increasing temperature in the here investigated nc W/Cu is even
more pronounced compared to the cg W, a major influence of the Cu phase is suggested.
Moreover, the critical temperature of 0.2 Tm of W was not reached during the in situ
nanoindentation experiments. Different studies are proposing a hardness between 9 and
11 GPa for nc Cu at RT, with a strong influence of the grain size and a Hall-Petch breakdown
below a grain size of 7 to 10 nm [45–47]. However, the specimen′s mean grain size after the
heat-treatment at 300 ◦C for 1 h amounts to 14.4 ± 6.3 nm for the W and Cu grains. This is
in the same range as the as-deformed HPT processed W/Cu [10]. Therefore, a minor effect
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of the heat-treatment and testing temperatures up to 300 ◦C on the initial microstructure
is assumed.

Young′s modulus also decreases with increasing temperature. To guide the reader′s
eyes, different trendlines were included in Figure 4b. They were calculated including their
phase composition according to the Voigt and Reuss model [31,32,48,49]. In the case of
the strong anisotropic Young′s modulus of Cu, methods after Shtrikman (S) and Reuss (R)
were implemented [31,50,51]. Hence, the best accordance was achieved with the Reuss
model (R), visible in Figure 4b, representing the lowest bound of Cu, which was adapted
to the temperature [50]. Under consideration of the InSEM-HT data points (green triangles
in Figure 4b), a deviation of the linear behavior at temperatures of 500 and 600 ◦C of the
two different models can be evidenced. This drop in Young′s modulus amounts to about
17 or 26 GPa at temperatures of 500 and 600 ◦C, respectively. After the performed G200
and InSEM-HT measurements, a reference measurement was conducted at RT, depicted
as the red triangle in Figure 4b. Here, a Young′s modulus reduction of 10 GPa indicates
a minor change of testing conditions due to the formation of pores along the surface, a
distinct evaporation of Cu or minor grain growth after heating to a temperature of 600 ◦C.

The strain rate sensitivity (m) and activation volume (v*) were calculated using strain
rate jump tests during indentation experiments according to the method of Maier et al. [26].
Typically, m is determined as a function of grain size—leading to a decreased m value with
decreasing grain size for bcc materials at RT [52–55]. In the case of fcc crystals, this trend is
reversed, as the governing mechanism turns from cutting of forest dislocations in coarse
grains to a dislocation-grain boundary interaction along nc grains [53,56,57].

As demonstrated for ultra-fine grained Cr, m increases above the critical temperature
of 0.2 Tm. This fact is attributed to a mechanism change when the critical temperature
is reached and fcc-like behavior governs the plastic processes along with grain bound-
ary contributions [44]. In more detail, thermally activated grain boundary-dislocation
interactions become dominant against the contribution of screw dislocation movement
by kink-pair interactions [44,54]. This was also determined with un- and deformed W,
where m increases in the deformed state with increasing temperature [55,58]. In general,
fcc materials exhibit lower m values compared to bcc materials, as Peierl′s stress is lower
and, therefore, the effect of temperature and further time-dependent influences are not as
pronounced. However, especially in ufg or nc conditions, an increasing m with increasing
temperature is reported [59].

In the case of nc W/Cu composites, differently pronounced and mutually overlap-
ping effects are affecting the temperature-dependent condition of m. Since the critical
temperature of W is typically reached at temperatures above 600 ◦C, an increase of m
due to the thermally activated grain boundary-dislocation interaction mechanism can
be neglected [58]. Furthermore, a constant influence of nc W grains on m is suspected
within the tested temperature range [28]. The literature unveils a strong increase of m
with increasing temperature within nc Cu, but is solely available up to a temperature of
300 ◦C [59,60]. The determined strain rate sensitivity of the nc W/Cu composite increases
slightly with increasing temperature up to 400 ◦C (see Figure 5a). However, no clear
trend can be evaluated, as all values range within the measured standard deviation. At
temperatures from 400 to 600 ◦C, a decrease of m was determined from the InSEM-HT data.
This may be attributed to the decreasing influence of the Cu phase, since a distinct amount
of Cu was evaporated. To verify the measurement, a second RT test was performed and a
strain rate sensitivity decrease of about 0.01 was determined. This deviation represents the
drop in m from 500 to 600 ◦C, substantiating the effect of pores along with the surface layer.

As can be seen in Figure 5b, the calculated v* increases from ~3.6 b3 at RT to about
57 b3 at 600 ◦C. A similar trend was reported by Kappacher et al. regarding the activation
volume of cg W [41]. However, measured RT values in the present study are below nc
or ufg representatives from the literature, wherein, typically, values around 10 b3 were
determined for both, fcc and bcc materials [28,61,62]. This suggests an even lower grain
size for the nc W/Cu composite. Contrary to this, with increasing temperature, a steady
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rise of v* was determined. This agrees well with the literature, where stabilisation of v*
above 0.2 Tm could be determined after rising values for ufg W and Cr [28,62]. In the
present work, the regarded unit cell was defined as the W cell, since the W grain size stays
almost constant and no drastic evaporation effects could be determined for this element. In
addition to the increasing temperature, the decreasing hardness further results in higher v*
values at elevated temperatures. Very limited literature data is available for the mechanical
properties of nc or ufg materials at temperatures as high as 600 ◦C. Also, the influence of
the 300 ◦C annealing heat-treatment may influence the number of preexisting dislocations,
thus, affecting the mechanical behavior of the material up to the respective annealing
temperature. However, the increasing activation volume indicates a strong influence of the
W phase on the deformation behavior. Another aspect may be the coarsening of Cu grains,
forming a continuous matrix phase around the nc W grains. This, also, would consequently
result in an increased v*, as longer pinned dislocation segments become possible.

Figure 5. In (a) the strain rate sensitivity and (b) the calculated activation volume of the nc W/Cu
composite are plotted as a function of testing temperature. The activation volume was normalized
to the cubed Burgers vector (b3) to enable comparison between different material systems [26,28].
The round markers indicate G200 and the triangular ones the InSEM-HT data points, respectively.
Red triangles depict measurements at RT, which were performed after heating and testing up to a
temperature of 600 ◦C. For a colored version of this article, the reader is referred to the online version.

5. Conclusions

Within this study, a nano-crystalline W/Cu composite processed via the HPT process
was investigated regarding the microstructure and mechanical properties at elevated
temperatures. The material was heat-treated in a vacuum furnace at various temperatures
to achieve information about the stability of each phase as well as the grain size during
annealing. High-temperature nanoindentation allowed for the quantification of hardness
and Young′s modulus of the material in situ between room temperature and 600 ◦C.
Furthermore, strain rate jump tests were performed to calculate m and the related v* and
assess the underlying deformation mechanisms.

Scanning electron microscope investigations on the heat-treated specimens unveiled
only minor changes of the microstructure up to 600 ◦C. At 900 ◦C, a distinct coarsening of
W and Cu grains was evident. On the polished surface of these specimens, the formation
of pores, faceted Cu particles and Cu pools was determined. Owing to the higher vapor
pressure, Cu is more prone to evaporate into the high vacuum chamber of the furnace
or nanoindentation device compared to W. However, with increasing temperature, the
number and size of Cu pools, as well as faceted Cu particles, increases. At a temperature of
700 ◦C, the porous layer exhibits a thickness of about 330 nm. Below the Cu pools, fewer
pores were observed since the Cu supply is enabled by deformation-induced diffusion
along open Cu channels from deeper regions.

With increasing temperature, the hardness and Young′s modulus decrease contin-
uously. This behavior is reasoned by the temperature-dependent motion of dislocation;
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therefore, easier deformability is achieved at higher temperatures. Concerning the strain
rate sensitivity with increasing temperature, overlapping effects lead to a constant value
within the measurement uncertainty. At the same time, the activation volume increases
with temperature and thus behaves similar to the high-temperature behavior of coarse-
grained W.

Based on the results of this investigation, a deeper understanding of the high-vacuum
behavior and temperature dependence of nano-crystalline W/Cu composites could be
gathered. With complementary nanoindentation investigations, the mechanical response
at elevated temperatures was determined in regard of the present microstructure.

Supplementary Materials: The Figure S1 is available online at https://www.mdpi.com/article/10.3
390/nano11112951/s1, Figure S1: Cu pools.
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