Synthesis and Characterization of Mass and Charge Transport Properties of the New Rare Earth Nickelate Pr2Ni0.9Co0.1O4+δ
Research output: Thesis › Master's Thesis
Standard
2017.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Synthesis and Characterization of Mass and Charge Transport Properties of the New Rare Earth Nickelate Pr2Ni0.9Co0.1O4+δ
AU - Strasser, Anna
N1 - embargoed until null
PY - 2017
Y1 - 2017
N2 - The focus of the present study is on the synthesis and characterization of the novel K2NiF4-type oxide Pr2Ni0.9Co0.1O4+δ (PNCO). Nickel in Pr2NiO4+δ is partially substituted with cobalt in order to increase the surface exchange coefficient of oxygen. The crystal structure, as well as mass and charge transport properties, especially oxygen exchange kinetics, of PNCO are studied. PNCO shows promising properties for application in air electrodes of solid oxide fuel cells or electrolyzer cells, electrochemical sensors, oxygen permeable membranes etc. To obtain higher quantities of chemically homogenous, single phase Pr2Ni0.9Co0.1O4+δ powder in one batch, a new freeze drying method based on aqueous acetate precursor solutions was developed. The solutions were mixed, snap-frozen in liquid nitrogen, and freeze-dried. During calcination the complex oxide was formed. X-ray powder diffraction (XRD) and Rietveld refinement verified that the material was single phase, and confirmed the K2NiF4 structure. The Pr2Ni0.9Co0.1O4+δ powder was further characterized by dilatometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). In pure argon, a transition from the orthorhombic to the tetragonal K2NiF4 modification occurred, which was also reported for Pr2NiO4+δ. Based on the dilatometry curve a pellet was sintered at 1120°C to obtain a dense sample for oxygen exchange measurements. However, XRD of the sintered pellet, as well as DSC and TG of powder samples, indicated that phase decomposition of Pr2Ni0.9Co0.1O4+δ into Pr4(Ni,Co)3O10-x and Pr-oxide occurs at T≥750°C and pO2=0.2 bar as previously reported also for Pr2NiO4+δ. Finally, by optimization of the sintering program, it was possible to obtain a phase-pure Pr2Ni0.9Co0.1O4+δ pellet with 97 % of the theoretical density, which was used for studies of the oxygen exchange kinetics by the dc-conductivity relaxation method. In addition to that, a Pr2NiO4+δ pellet was prepared as a reference sample. For all three specimens (phase decomposed Pr2Ni0.9Co0.1O4+δ, phase pure Pr2Ni0.9Co0.1O4+δ, and Co-free reference Pr2NiO4+δ) the electronic conductivity and the surface exchange coefficient were determined and compared with each other in order to evaluate the validity of the results.
AB - The focus of the present study is on the synthesis and characterization of the novel K2NiF4-type oxide Pr2Ni0.9Co0.1O4+δ (PNCO). Nickel in Pr2NiO4+δ is partially substituted with cobalt in order to increase the surface exchange coefficient of oxygen. The crystal structure, as well as mass and charge transport properties, especially oxygen exchange kinetics, of PNCO are studied. PNCO shows promising properties for application in air electrodes of solid oxide fuel cells or electrolyzer cells, electrochemical sensors, oxygen permeable membranes etc. To obtain higher quantities of chemically homogenous, single phase Pr2Ni0.9Co0.1O4+δ powder in one batch, a new freeze drying method based on aqueous acetate precursor solutions was developed. The solutions were mixed, snap-frozen in liquid nitrogen, and freeze-dried. During calcination the complex oxide was formed. X-ray powder diffraction (XRD) and Rietveld refinement verified that the material was single phase, and confirmed the K2NiF4 structure. The Pr2Ni0.9Co0.1O4+δ powder was further characterized by dilatometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). In pure argon, a transition from the orthorhombic to the tetragonal K2NiF4 modification occurred, which was also reported for Pr2NiO4+δ. Based on the dilatometry curve a pellet was sintered at 1120°C to obtain a dense sample for oxygen exchange measurements. However, XRD of the sintered pellet, as well as DSC and TG of powder samples, indicated that phase decomposition of Pr2Ni0.9Co0.1O4+δ into Pr4(Ni,Co)3O10-x and Pr-oxide occurs at T≥750°C and pO2=0.2 bar as previously reported also for Pr2NiO4+δ. Finally, by optimization of the sintering program, it was possible to obtain a phase-pure Pr2Ni0.9Co0.1O4+δ pellet with 97 % of the theoretical density, which was used for studies of the oxygen exchange kinetics by the dc-conductivity relaxation method. In addition to that, a Pr2NiO4+δ pellet was prepared as a reference sample. For all three specimens (phase decomposed Pr2Ni0.9Co0.1O4+δ, phase pure Pr2Ni0.9Co0.1O4+δ, and Co-free reference Pr2NiO4+δ) the electronic conductivity and the surface exchange coefficient were determined and compared with each other in order to evaluate the validity of the results.
KW - Rare earth nickelates
KW - freeze drying
KW - crystal structure
KW - phase stability
KW - oxygen exchange kinetics
KW - electronic conductivity
KW - Seltenerdnickelate
KW - Gefriertrocknung
KW - Kristallstruktur
KW - Phasenstabilität
KW - Sauerstoffaustauschkinetik
KW - elektronische Leitfähigkeit
M3 - Master's Thesis
ER -