Simulation des Kugelstrahlens zur prozessbasierten Bauteilauslegung
Research output: Thesis › Diploma Thesis
Standard
2016.
Research output: Thesis › Diploma Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Simulation des Kugelstrahlens zur prozessbasierten Bauteilauslegung
AU - Messner, Marcel
N1 - gesperrt bis 09-05-2021
PY - 2016
Y1 - 2016
N2 - Die Lebensdauer von zyklisch belasteten Bauteilen wird wesentlich von Eigenspannungen in der Randschicht beeinflusst. Dieser Eigenspannungszustand wird durch Oberflächenbehandlungen, wie zum Beispiel Kugelstrahlen, eingestellt. Um die beim Kugelstrahlprozess entstehenden Effekte zu berechnen ist es notwendig eine computerunterstützte Kugelstrahlsimulation durchzuführen. Da aus wirtschaftlichen und technischen Gründen die virtuelle, flächendeckende Bestrahlung von komplexen Bauteilen nicht zielführend ist, wird in dieser Arbeit ein alternativer Lösungsweg vorgestellt. Dabei wird die Kugelstrahlsimulation an einer einfachen Geometrie durchgeführt und die resultierenden Ergebnisse auf ein komplexes Bauteil übertragen. Das Ziel dieser Diplomarbeit ist es, eine Simulation des Kugelstahlprozesses aufzubauen und die entstehenden Eigenspannungen, Verfestigungen und plastischen Dehnungen in Bezug auf die Eindringtiefe zu ermitteln. Dazu wird eine einfache Probengeometrie modelliert und unter Variation der Strahlparameter, sowie unter Berücksichtigung der Überdeckung gestrahlt. Die Simulationsergebnisse in Form von Spannungen, Verfestigungen und plastischen Dehnungen, sowie die Verformungen auf der Oberfläche (Rauheit) werden evaluiert und erkennbare Trends aufgezeigt. Bei den Parameterstudien werden die Größe und Geschwindigkeit der Kugeln sowie der Reibwert zwischen Kugel und Probe variiert. Mit Zunahme der beiden erstgenannten Einflussfaktoren nehmen die Beträge der Eigenspannung und Verfestigung zu und verschieben sich in Richtung höherer Eindringtiefe. Analog dazu verschiebt sich auch der Übergang von Druck- zu Zugspannungen. Zusätzlich wird eine automatisierte Routine entwickelt, welche die aus der Kugelstrahlsimulation ermittelten Eigenspannungen und Verfestigungen auf beliebige Bauteile überträgt. Außerdem können bestimmte Bereiche im FE-Modell definiert werden, die mit alternativen Eigenspannungs- und Verfestigungsverläufen beaufschlagt werden. Die entwickelten Tools ermöglichen eine automatisierte Erstellung und Auswertung der Kugelstrahlsimulation sowie eine Übertragung der Simulationsergebnisse auf beliebige Bauteile. Dadurch wird eine Berücksichtigung des Randschichtzustandes bei der Auslegung von Bauteilen in der Praxis wirtschaftlich ermöglicht.
AB - Die Lebensdauer von zyklisch belasteten Bauteilen wird wesentlich von Eigenspannungen in der Randschicht beeinflusst. Dieser Eigenspannungszustand wird durch Oberflächenbehandlungen, wie zum Beispiel Kugelstrahlen, eingestellt. Um die beim Kugelstrahlprozess entstehenden Effekte zu berechnen ist es notwendig eine computerunterstützte Kugelstrahlsimulation durchzuführen. Da aus wirtschaftlichen und technischen Gründen die virtuelle, flächendeckende Bestrahlung von komplexen Bauteilen nicht zielführend ist, wird in dieser Arbeit ein alternativer Lösungsweg vorgestellt. Dabei wird die Kugelstrahlsimulation an einer einfachen Geometrie durchgeführt und die resultierenden Ergebnisse auf ein komplexes Bauteil übertragen. Das Ziel dieser Diplomarbeit ist es, eine Simulation des Kugelstahlprozesses aufzubauen und die entstehenden Eigenspannungen, Verfestigungen und plastischen Dehnungen in Bezug auf die Eindringtiefe zu ermitteln. Dazu wird eine einfache Probengeometrie modelliert und unter Variation der Strahlparameter, sowie unter Berücksichtigung der Überdeckung gestrahlt. Die Simulationsergebnisse in Form von Spannungen, Verfestigungen und plastischen Dehnungen, sowie die Verformungen auf der Oberfläche (Rauheit) werden evaluiert und erkennbare Trends aufgezeigt. Bei den Parameterstudien werden die Größe und Geschwindigkeit der Kugeln sowie der Reibwert zwischen Kugel und Probe variiert. Mit Zunahme der beiden erstgenannten Einflussfaktoren nehmen die Beträge der Eigenspannung und Verfestigung zu und verschieben sich in Richtung höherer Eindringtiefe. Analog dazu verschiebt sich auch der Übergang von Druck- zu Zugspannungen. Zusätzlich wird eine automatisierte Routine entwickelt, welche die aus der Kugelstrahlsimulation ermittelten Eigenspannungen und Verfestigungen auf beliebige Bauteile überträgt. Außerdem können bestimmte Bereiche im FE-Modell definiert werden, die mit alternativen Eigenspannungs- und Verfestigungsverläufen beaufschlagt werden. Die entwickelten Tools ermöglichen eine automatisierte Erstellung und Auswertung der Kugelstrahlsimulation sowie eine Übertragung der Simulationsergebnisse auf beliebige Bauteile. Dadurch wird eine Berücksichtigung des Randschichtzustandes bei der Auslegung von Bauteilen in der Praxis wirtschaftlich ermöglicht.
KW - shot peening
KW - residual stresses
KW - hardening
KW - numerical simulation
KW - finite element method
KW - Kugelstrahlen
KW - Eigenspannungen
KW - Verfestigung
KW - numerische Simulation
KW - Finite Elemente Methode
M3 - Diplomarbeit
ER -