Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
Standard
Algorithmic Learning Theory - 25th International Conference, ALT 2014, Bled, October 8-10, 2014. 2014. p. 140-154.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - GEN
T1 - Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
AU - Ortner, Ronald
AU - Maillard, Odalric-Ambrym
AU - Ryabko, Daniil
PY - 2014
Y1 - 2014
U2 - 10.1007/978-3-319-11662-4_11
DO - 10.1007/978-3-319-11662-4_11
M3 - Conference contribution
SN - 978-3-319-11661-7
SP - 140
EP - 154
BT - Algorithmic Learning Theory - 25th International Conference, ALT 2014, Bled, October 8-10, 2014
T2 - 25th International Conference on Algorithmic Learning Theory, ALT 2014
Y2 - 8 October 2014 through 10 October 2014
ER -