Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks

Research output: Contribution to journalArticleResearchpeer-review

Standard

Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks. / Steinegger, Josef; Hammer, Andreas; Wallner, Stefan et al.
In: Applied energy, Vol. 372.2024, No. 15 October, 123769, 25.06.2024.

Research output: Contribution to journalArticleResearchpeer-review

Bibtex - Download

@article{16dc443c45174cd0ab261a59042762bd,
title = "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks",
abstract = "In both practice and literature, there is a lack of a concept for a supra-regional district heating network that efficiently transports heat from renewable and industrial waste heat sources to multiple heat sinks and regional district heating networks, like the high-voltage electricity transmission network in the electricity sector. This paper addresses this gap by presenting a novel method for the basic design of a supra-regional district heating network and its evaluation, along with key performance indicators for assessment. The method highlights essential data requirements and the derivation process necessary to enable the integration of such a heating network. Additionally, it describes how a basic design of such a network can be made feasible and evaluated. This method is then applied to a case study to demonstrate its implementation for a real-world application. Furthermore, this case study aims to either demonstrate or provisionally disprove the general feasibility of a supra-regional district heating network. The results indicate that the implementation of such a network has a positive impact on the CO2 balance and primary energy demand. The case study further demonstrates the technical feasibility of such a network, showing that a high linear heat density can be achieved through integration and that temperature levels within the network can be maintained adequately. This study confirmed that the developed method can effectively assess whether further investigations into implementing a supra-regional district heating network in a specific region are warranted. Additionally, the method offers a guideline on how to initially design such a network.",
author = "Josef Steinegger and Andreas Hammer and Stefan Wallner and Thomas Kienberger",
year = "2024",
month = jun,
day = "25",
doi = "10.1016/j.apenergy.2024.123769",
language = "English",
volume = "372.2024",
journal = "Applied energy",
issn = "0306-2619",
publisher = "Elsevier",
number = "15 October",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks

AU - Steinegger, Josef

AU - Hammer, Andreas

AU - Wallner, Stefan

AU - Kienberger, Thomas

PY - 2024/6/25

Y1 - 2024/6/25

N2 - In both practice and literature, there is a lack of a concept for a supra-regional district heating network that efficiently transports heat from renewable and industrial waste heat sources to multiple heat sinks and regional district heating networks, like the high-voltage electricity transmission network in the electricity sector. This paper addresses this gap by presenting a novel method for the basic design of a supra-regional district heating network and its evaluation, along with key performance indicators for assessment. The method highlights essential data requirements and the derivation process necessary to enable the integration of such a heating network. Additionally, it describes how a basic design of such a network can be made feasible and evaluated. This method is then applied to a case study to demonstrate its implementation for a real-world application. Furthermore, this case study aims to either demonstrate or provisionally disprove the general feasibility of a supra-regional district heating network. The results indicate that the implementation of such a network has a positive impact on the CO2 balance and primary energy demand. The case study further demonstrates the technical feasibility of such a network, showing that a high linear heat density can be achieved through integration and that temperature levels within the network can be maintained adequately. This study confirmed that the developed method can effectively assess whether further investigations into implementing a supra-regional district heating network in a specific region are warranted. Additionally, the method offers a guideline on how to initially design such a network.

AB - In both practice and literature, there is a lack of a concept for a supra-regional district heating network that efficiently transports heat from renewable and industrial waste heat sources to multiple heat sinks and regional district heating networks, like the high-voltage electricity transmission network in the electricity sector. This paper addresses this gap by presenting a novel method for the basic design of a supra-regional district heating network and its evaluation, along with key performance indicators for assessment. The method highlights essential data requirements and the derivation process necessary to enable the integration of such a heating network. Additionally, it describes how a basic design of such a network can be made feasible and evaluated. This method is then applied to a case study to demonstrate its implementation for a real-world application. Furthermore, this case study aims to either demonstrate or provisionally disprove the general feasibility of a supra-regional district heating network. The results indicate that the implementation of such a network has a positive impact on the CO2 balance and primary energy demand. The case study further demonstrates the technical feasibility of such a network, showing that a high linear heat density can be achieved through integration and that temperature levels within the network can be maintained adequately. This study confirmed that the developed method can effectively assess whether further investigations into implementing a supra-regional district heating network in a specific region are warranted. Additionally, the method offers a guideline on how to initially design such a network.

U2 - 10.1016/j.apenergy.2024.123769

DO - 10.1016/j.apenergy.2024.123769

M3 - Article

VL - 372.2024

JO - Applied energy

JF - Applied energy

SN - 0306-2619

IS - 15 October

M1 - 123769

ER -