Reservoir Characterisation using Tracers: Analytical versus Numerical Methods

Research output: Thesis › Master's Thesis

Abstract

In the quest for recovery factor improvement for existing petroleum reservoir, there is a continuously growing interest in enhanced recovery methods. Enhanced oil recovery is the application of advanced processes and technologies in order to increase recovery factor in already produced reservoirs. The success of enhanced recovery projects rely to a large extent on a sound understanding of flow dynamics and pore volume distribution. Interwell tracer tests present an approach with unique abilities that can be used to obtain information about the reservoir connectivity and heterogeneity. In interwell tracer tests, a soluble material is added to the fluid in an injection well. The timing and the shape of the back produced tracer curve revels information about the interwell pore volume. In the last several years, new tools for tracer tests have been developed. The main goal of this thesis was to improve the understanding of analytically derived connected pore volume and heterogeneity index from conservative tracer data and how can they be interpreted in the vicinity of numerical simulation. Finite element reservoir simulation is conducted to model the flow of the tracer in the reservoir and to generate synthetic tracer production curve. Tracer data will be analyzed and afterwards interpreted in relationship to the model parameters. It was proven through the thesis that connected pore volume estimated from tracer data is a measure of the swept pore volume and can used to estimate real time sweep efficiency. Heterogeneity coefficient delineated in F-PHI curve extracted from tracer data is a combined measure of static and dynamic heterogeneity of the system.

Details

Translated title of the contributionReservoir Charakterisierung mit Tracer: analytische vs numerische Methoden
Original languageEnglish
QualificationDipl.-Ing.
Supervisors/Advisors
Award date20 Oct 2017
Publication statusPublished - 2017