Rate-depending plastic deformation behaviour in a nickel-base alloy under hydrogen influence
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- voestalpine BÖHLER Edelstahl GmbH & Co KG
- Erich Schmid Institute of Materials Science
Abstract
Despite a lot of research activities, the influence of hydrogen on the plastic deformation process is controversially discussed and often underestimated. Therefore, in this work strain rate jump tests were performed, using an electrochemical nanoindentation setup to investigate the deformation processes in a nickel-based alloy 725 under the influence of hydrogen, with the aim of determining thermally activated parameters such as strain rate sensitivity and activation volume. A hydrogen-induced hardness increase of about 8% was detected for all applied strain rates. The measured increase in strain rate sensitivity and the decrease in activation volume could be related to short-range order effects, which can lead to a more localized deformation. Furthermore, the optical evaluation of the remaining imprints showed a clear change in the formation of the plastically deformed zone during hydrogen charging. These insights into the deformation behaviour give further understanding regarding hydrogen-induced localized plasticity.
Details
Original language | English |
---|---|
Pages (from-to) | 38132-38143 |
Number of pages | 12 |
Journal | International Journal of Hydrogen Energy |
Volume | 46.2021 |
Issue number | 76 |
Early online date | 22 Sept 2021 |
DOIs | |
Publication status | Published - 3 Nov 2021 |