Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grains

Research output: Contribution to journalArticleResearchpeer-review

External Organisational units

  • LKR Leichtmetallkompetenzzentrum Ranshofen GmbH
  • Christian Doppler Laboratory of Advanced Coated Cutting Tools

Abstract

Crossover aluminium alloys have recently been introduced as a new class of coarse-grained age-hardenable alloys. Here, we study the evolution of precipitation of the T-phase — Mg32(Zn,Al)49
-phase — in a 5xxx/7xxx crossover alloy with coarse- and ultrafined microstructures. Both alloys were examined using differential scanning calorimetry, X-ray diffraction and in situ transmission electron microscopy. The ultrafine-grained alloy revealed significant different and accelerated precipitation behaviour due to grain boundaries acting as fast diffusion paths. Additionally, the ultrafine-grained alloy revealed high resistance to grain growth upon heating, an effect primarily attributed to inter-granular precipitation synergistically with trans-granular precipitation of T-phase.

Details

Original languageEnglish
Pages (from-to)1063-1072
Number of pages10
JournalMaterials Research Letters
Volume11.2023
Issue number12
DOIs
Publication statusPublished - 15 Nov 2023