Photoinduced edge-specific nanoparticle decoration of two-dimensional tungsten diselenide nanoribbons
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- Tomsk Polytechnic University
- Erich Schmid Institute of Materials Science
- Research Center for Functional Materials, National Institute for Materials Science
- Zentrum f Elektronenmikroskopie Graz
Abstract
Metallic nanoparticles are widely explored for boosting light-matter coupling, optoelectronic response, and improving photocatalytic performance of two-dimensional (2D) materials. However, the target area is restricted to either top or bottom of the 2D flakes. Here, we introduce an approach for edge-specific nanoparticle decoration via light-assisted reduction of silver ions and merging of silver seeds. We observe arrays of the self-limited in size silver nanoparticles along tungsten diselenide WSe2 nanoribbon edges. The density of nanoparticles is tunable by adjusting the laser fluence. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to investigate the size, distribution, and photo-response of the deposited plasmonic nanoparticles on the quasi-one-dimensional nanoribbons. We report an on-surface synthesis path for creating mixed-dimensional heterostructures and heterojunctions with potential applications in opto-electronics, plasmonics, and catalysis, offering improved light matter coupling, optoelectronics response, and photocatalytic performance of 2D materials.
Details
Original language | English |
---|---|
Article number | 166 |
Number of pages | 9 |
Journal | Communications chemistry |
Volume | 6.2023 |
Issue number | 1 |
DOIs | |
Publication status | Published - 14 Aug 2023 |