Peroxide-Based Crosslinking of Solid Silicone Rubber, Part I: Insights into the Influence of Dicumylperoxide Concentration on the Curing Kinetics and Thermodynamics Determined by a Rheological Approach

Research output: Contribution to journalArticleResearchpeer-review

Authors

External Organisational units

  • Polymer Competence Center Leoben GmbH

Abstract

Predicting the curing behaviour of industrially employed elastomeric compounds under typical processing conditions in a reliable and scientifically driven way is important for rubber processing simulation routines, such as injection moulding. Herein, a rubber process analyser was employed to study the crosslinking kinetics of solid silicone rubber based on the concentration of dicumylperoxide. A model was proposed to describe the optimal cure time variation with peroxide concentration and temperature, based on the analysis of processing parameters applying kinetic and thermodynamic judgments. Additionally, the conversion rate was described with the aid of a phenomenological model, and the effect of dicumylperoxide concentration on the final crosslink state was investigated using kinetic and thermodynamic explanations. Optimal curing time was affected both by temperature and dicumylperoxide concentration. However, the effects were less pronounced for high temperatures (>170°C) and high concentrations (>0.70 phr). A limit on the crosslink state was detected, meaning that the dicumylperoxide capacity to crosslink the silicone network is restricted by the curing mechanism. Curing restrictions were presumed to be primarily thermodynamic, based on the proton abstraction mechanism that drives the crosslinking reaction. In addition to providing more realistic crosslinking models for rubber injection moulding simulation routines, the results of this study may also explain the chemical behaviour of organic peroxides widely used for silicone crosslinking.

Details

Original languageEnglish
Article number4404
Number of pages22
JournalPolymers
Volume14.2022
Issue number20
DOIs
Publication statusPublished - 18 Oct 2022