Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece

Research output: Contribution to journalArticleResearchpeer-review

Standard

Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. / Mavrogonatos, Costantinos ; Voudouris, Panagiotis ; Spry , Paul G. et al.
In: Minerals, Vol. 8.2018, No. 11, 479, 24.10.2018.

Research output: Contribution to journalArticleResearchpeer-review

Harvard

Mavrogonatos, C, Voudouris, P, Spry , PG, Melfos, V, Klemme , S, Berndt, J, Baker, T, Moritz, R, Bissig, T, Monecke , T & Zaccarini, F 2018, 'Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece', Minerals, vol. 8.2018, no. 11, 479. https://doi.org/10.3390/min8110479

APA

Mavrogonatos, C., Voudouris, P., Spry , P. G., Melfos, V., Klemme , S., Berndt, J., Baker, T., Moritz, R., Bissig, T., Monecke , T., & Zaccarini, F. (2018). Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals, 8.2018(11), Article 479. https://doi.org/10.3390/min8110479

Vancouver

Mavrogonatos, C, Voudouris P, Spry PG, Melfos V, Klemme S, Berndt J et al. Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals. 2018 Oct 24;8.2018(11):479. doi: 10.3390/min8110479

Author

Mavrogonatos, Costantinos ; Voudouris, Panagiotis ; Spry , Paul G. et al. / Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. In: Minerals. 2018 ; Vol. 8.2018, No. 11.

Bibtex - Download

@article{efc295e2c8724cd5ab58442214e66511,
title = "Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece",
abstract = "The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry occurrence overprinted by deep-level high-sulfidation mineralization. Porphyry-style mineralization is exposed in the deeper parts of the system and comprises quartz stockwork veins hosted in subvolcanic intrusions of granodioritic composition. Ore minerals include pyrite, molybdenite, chalcopyrite, and rheniite. In the upper part of the system, intense hydrothermal alteration resulted in the formation of a silicified zone and the development of various advanced argillic alteration assemblages, which are spatially related to N–S, NNW–SSE, and E–W trending faults. More distal and downwards, advanced argillic alteration gradually evolves into phyllic assemblages dominated by quartz and sericite. Zunyite, along with various amounts of quartz, alunite, aluminum phosphate–sulfate minerals (APS), diaspore, kaolinite, and minor pyrophyllite, are the main minerals in the advanced argillic alteration. Mineral-chemical analyses reveal significant variance in the SiO2, F, and Cl content of zunyite. Alunite supergroup minerals display a wide compositional range corresponding to members of the alunite, beudantite, and plumbogummite subgroups. Diaspore displays an almost stoichiometric composition. Mineralization in the lithocap consists of pyrite, enargite, tetrahedrite/tennantite, and colusite. Bulk ore analyses of mineralized samples show a relative enrichment in elements such as Se, Mo, and Bi, which supports a genetic link between the studied lithocap and the underlying Konos Hill porphyry-style mineralization. The occurrence of advanced argillic alteration assemblages along the N–S, NNW–SSE, and E–W trending faults suggests that highly acidic hydrothermal fluids were ascending into the lithocap environment. Zunyite, along with diaspore, pyrophyllite, and Sr- and Rare Earth Elements-bearing APS minerals, mark the proximity of the hypogene advanced argillic alteration zone to the porphyry environment.",
author = "Costantinos Mavrogonatos, and Panagiotis Voudouris and Spry, {Paul G.} and Vasilios Melfos and Stephan Klemme and Jasper Berndt and Tim Baker and Robert Moritz and Thomas Bissig and Thomas Monecke and Federica Zaccarini",
year = "2018",
month = oct,
day = "24",
doi = "10.3390/min8110479",
language = "English",
volume = "8.2018",
journal = "Minerals",
issn = "2075-163X",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "11",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece

AU - Mavrogonatos,, Costantinos

AU - Voudouris, Panagiotis

AU - Spry , Paul G.

AU - Melfos, Vasilios

AU - Klemme , Stephan

AU - Berndt, Jasper

AU - Baker, Tim

AU - Moritz, Robert

AU - Bissig, Thomas

AU - Monecke , Thomas

AU - Zaccarini, Federica

PY - 2018/10/24

Y1 - 2018/10/24

N2 - The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry occurrence overprinted by deep-level high-sulfidation mineralization. Porphyry-style mineralization is exposed in the deeper parts of the system and comprises quartz stockwork veins hosted in subvolcanic intrusions of granodioritic composition. Ore minerals include pyrite, molybdenite, chalcopyrite, and rheniite. In the upper part of the system, intense hydrothermal alteration resulted in the formation of a silicified zone and the development of various advanced argillic alteration assemblages, which are spatially related to N–S, NNW–SSE, and E–W trending faults. More distal and downwards, advanced argillic alteration gradually evolves into phyllic assemblages dominated by quartz and sericite. Zunyite, along with various amounts of quartz, alunite, aluminum phosphate–sulfate minerals (APS), diaspore, kaolinite, and minor pyrophyllite, are the main minerals in the advanced argillic alteration. Mineral-chemical analyses reveal significant variance in the SiO2, F, and Cl content of zunyite. Alunite supergroup minerals display a wide compositional range corresponding to members of the alunite, beudantite, and plumbogummite subgroups. Diaspore displays an almost stoichiometric composition. Mineralization in the lithocap consists of pyrite, enargite, tetrahedrite/tennantite, and colusite. Bulk ore analyses of mineralized samples show a relative enrichment in elements such as Se, Mo, and Bi, which supports a genetic link between the studied lithocap and the underlying Konos Hill porphyry-style mineralization. The occurrence of advanced argillic alteration assemblages along the N–S, NNW–SSE, and E–W trending faults suggests that highly acidic hydrothermal fluids were ascending into the lithocap environment. Zunyite, along with diaspore, pyrophyllite, and Sr- and Rare Earth Elements-bearing APS minerals, mark the proximity of the hypogene advanced argillic alteration zone to the porphyry environment.

AB - The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry occurrence overprinted by deep-level high-sulfidation mineralization. Porphyry-style mineralization is exposed in the deeper parts of the system and comprises quartz stockwork veins hosted in subvolcanic intrusions of granodioritic composition. Ore minerals include pyrite, molybdenite, chalcopyrite, and rheniite. In the upper part of the system, intense hydrothermal alteration resulted in the formation of a silicified zone and the development of various advanced argillic alteration assemblages, which are spatially related to N–S, NNW–SSE, and E–W trending faults. More distal and downwards, advanced argillic alteration gradually evolves into phyllic assemblages dominated by quartz and sericite. Zunyite, along with various amounts of quartz, alunite, aluminum phosphate–sulfate minerals (APS), diaspore, kaolinite, and minor pyrophyllite, are the main minerals in the advanced argillic alteration. Mineral-chemical analyses reveal significant variance in the SiO2, F, and Cl content of zunyite. Alunite supergroup minerals display a wide compositional range corresponding to members of the alunite, beudantite, and plumbogummite subgroups. Diaspore displays an almost stoichiometric composition. Mineralization in the lithocap consists of pyrite, enargite, tetrahedrite/tennantite, and colusite. Bulk ore analyses of mineralized samples show a relative enrichment in elements such as Se, Mo, and Bi, which supports a genetic link between the studied lithocap and the underlying Konos Hill porphyry-style mineralization. The occurrence of advanced argillic alteration assemblages along the N–S, NNW–SSE, and E–W trending faults suggests that highly acidic hydrothermal fluids were ascending into the lithocap environment. Zunyite, along with diaspore, pyrophyllite, and Sr- and Rare Earth Elements-bearing APS minerals, mark the proximity of the hypogene advanced argillic alteration zone to the porphyry environment.

U2 - 10.3390/min8110479

DO - 10.3390/min8110479

M3 - Article

VL - 8.2018

JO - Minerals

JF - Minerals

SN - 2075-163X

IS - 11

M1 - 479

ER -