Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Energies : open-access journal of related scientific research, technology development and studies in policy and management, Vol. 16.2023, No. 20, 7058, 12.10.2023.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
AU - Neuschitzer, David
AU - Scheiblehner, David
AU - Antrekowitsch, Helmut
AU - Wibner, Stefan
AU - Sprung, Andreas
PY - 2023/10/12
Y1 - 2023/10/12
N2 - In light of the growing interest in hydrogen as an energy carrier and reducing agent, various industries, including the iron and steel sector, are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries, the production of hydrogen must be significantly expanded and further developed. However, current hydrogen production heavily relies on fossil-fuel-based methods, resulting in a considerable environmental burden, with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge, methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4) into hydrogen and solid carbon, significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence, increasing methane conversion from 35% at 1150 °C to 74% at 1250 °C. In contrast, the effect of the methane flow rate remains relatively small in the investigated range. Moreover, an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally, a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
AB - In light of the growing interest in hydrogen as an energy carrier and reducing agent, various industries, including the iron and steel sector, are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries, the production of hydrogen must be significantly expanded and further developed. However, current hydrogen production heavily relies on fossil-fuel-based methods, resulting in a considerable environmental burden, with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge, methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4) into hydrogen and solid carbon, significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence, increasing methane conversion from 35% at 1150 °C to 74% at 1250 °C. In contrast, the effect of the methane flow rate remains relatively small in the investigated range. Moreover, an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally, a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
KW - methane pyrolysis
KW - hydrogen production
KW - carbon
KW - bubble column reactor
KW - liquid metal
U2 - 10.3390/en16207058
DO - 10.3390/en16207058
M3 - Article
VL - 16.2023
JO - Energies : open-access journal of related scientific research, technology development and studies in policy and management
JF - Energies : open-access journal of related scientific research, technology development and studies in policy and management
SN - 1996-1073
IS - 20
M1 - 7058
ER -