Mapping elemental solutes at sub-picogram levels during aqueous corrosion of Al alloys using diffusive gradients in thin films (DGT) with LA-ICP-MS
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- Christian Doppler Laboratory for Inclusion Metallurgy in Advanced Steelmaking, Leoben
- Laboratory of Steel Structures, LUT University
Abstract
A novel approach using diffusive gradients in thin films (DGT) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for two-dimensional mapping of elemental solute release at sub-picogram levels during aqueous corrosion of Al alloys is presented. Evaluation of different DGT gels with mixed micro-sized binding phases (polyacrylamide-Chelex-Metsorb, polyurethane (PU)-Chelex-Metsorb, PU-Chelex-Zr(OH) 4) demonstrated the superior performance of PU gels due to their tear-proof handling, low shrinkage, and compliance with green chemistry. DGT devices containing PU-Chelex-Zr(OH) 4 gels, which have not been characterized for Al sampling before, showed quantitative uptake of Al, Zn, and Cu solutes over time (t = 4–48 h) with higher Al capacity (Γ DGT = 6.25 µg cm −2) than different gels. Application of PU-Chelex-Zr(OH) 4 gels on a high-strength Al-Cu alloy (Al2219) exposed to NaCl (w = 1.5%, pH = 4.5, T = 21 °C) for 15 min in a novel piston-type configuration revealed reproducible patterns of Al and Zn co-solubilization with a spatial expansion ranging between 50 and 1000 µm. This observation, together with complementary solid-state data from secondary electron microscopy with energy-dispersive X-ray spectroscopy, showed the presence of localized pitting corrosion at the material surface. Detection limits for total solute masses of Al, Zn, and Cu were ≤0.72 pg, ≤8.38 pg, and ≤0.12 pg, respectively, for an area of 0.01 mm 2, demonstrating the method’s unique capability to localize and quantify corrosion processes at ultra-trace levels and high resolution. Our study advances the assessment of Al alloy degradation in aqueous environments, supporting the design of corrosion-resistant materials for fostering technological safety and sustainability. Graphical Abstract: (Figure presented.)
Details
Original language | English |
---|---|
Pages (from-to) | 3373–3388 |
Number of pages | 16 |
Journal | Analytical and bioanalytical chemistry |
Volume | 416.2024 |
Issue number | June |
DOIs | |
Publication status | Published - 16 Apr 2024 |