Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbance
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Nature Communications, Vol. 14.2023, No. 1, 8387, 16.12.2023.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbance
AU - Chen, Zhuo
AU - Huang, Yong
AU - Koutná, Nikola
AU - Gao, Zecui
AU - Sangiovanni, Davide
AU - Fellner, Simon
AU - Haberfehlner, Georg
AU - Jin, Shengli
AU - Mayrhofer, Paul H.
AU - Kothleitner, Gerald
AU - Zhang, Zaoli
N1 - Funding Information: The authors thank Dr. J. Buchinger for the thin film synthesis. Dr. Matthias Bartosik is acknowledged for his initial discussion of experiments. The authors thank Prof. Jian Wang (Department of Mechanical and Materials of Engineering, University of Nebraska-Lincoln) for the helpful discussion about interpreting mechanical properties and deformation mechanisms. This work is financially supported by FWF P 33696 (Z.C., Y.H., Z.Z.). Z.G. thanks the China Scholarship Council (CSC, 201908440933) for the support. D.G.S. gratefully acknowledges financial support from the Competence Center Functional Nanoscale Materials (FunMat-II) (Vinnova Grant No. 2022-03071) and the Swedish Research Council (VR) through Grant N° VR-2021-04426. Calculations and simulations were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through Grant Agreement N° VR-2015-04630. Funding Information: The authors thank Dr. J. Buchinger for the thin film synthesis. Dr. Matthias Bartosik is acknowledged for his initial discussion of experiments. The authors thank Prof. Jian Wang (Department of Mechanical and Materials of Engineering, University of Nebraska-Lincoln) for the helpful discussion about interpreting mechanical properties and deformation mechanisms. This work is financially supported by FWF P 33696 (Z.C., Y.H., Z.Z.). Z.G. thanks the China Scholarship Council (CSC, 201908440933) for the support. D.G.S. gratefully acknowledges financial support from the Competence Center Functional Nanoscale Materials (FunMat-II) (Vinnova Grant No. 2022-03071) and the Swedish Research Council (VR) through Grant N° VR-2021-04426. Calculations and simulations were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through Grant Agreement N° VR-2015-04630. Publisher Copyright: © 2023, The Author(s).
PY - 2023/12/16
Y1 - 2023/12/16
N2 - Tailoring vacancies is a feasible way to improve the mechanical properties of ceramics. However, high concentrations of vacancies usually compromise the strength (or hardness). We show that a high elasticity and flexural strength could be achieved simultaneously using a nitride superlattice architecture with disordered anion vacancies up to 50%. Enhanced mechanical properties primarily result from a distinctive deformation mechanism in superlattice ceramics, i.e., unit-cell disturbances. Such a disturbance substantially relieves local high-stress concentration, thus enhancing deformability. No dislocation activity involved also rationalizes its high strength. The work renders a unique understanding of the deformation and strengthening/toughening mechanism in nitride ceramics.
AB - Tailoring vacancies is a feasible way to improve the mechanical properties of ceramics. However, high concentrations of vacancies usually compromise the strength (or hardness). We show that a high elasticity and flexural strength could be achieved simultaneously using a nitride superlattice architecture with disordered anion vacancies up to 50%. Enhanced mechanical properties primarily result from a distinctive deformation mechanism in superlattice ceramics, i.e., unit-cell disturbances. Such a disturbance substantially relieves local high-stress concentration, thus enhancing deformability. No dislocation activity involved also rationalizes its high strength. The work renders a unique understanding of the deformation and strengthening/toughening mechanism in nitride ceramics.
UR - http://www.scopus.com/inward/record.url?scp=85179936308&partnerID=8YFLogxK
U2 - 10.1038/s41467-023-44060-x
DO - 10.1038/s41467-023-44060-x
M3 - Article
C2 - 38104109
AN - SCOPUS:85179936308
VL - 14.2023
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 8387
ER -