Influence of Different Carbon Content on Reduction of Zinc Oxide via Metal Bath

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Electric arc furnace dust (EAFD) is an important secondary resource for the zinc industry. The most common process for its recycling is the pyro-metallurgical treatment in the Waelz process. However, this process focuses on the recycling of the zinc, whereas the recovery of other metals from the EAFD—such as iron and other alloying elements—is neglected. An up-to-date version of reprocessing can involve multi-metal recycling by means of a metal bath containing carbon. The use of a liquid iron alloy requires a higher processing temperature, which enables the reduction and melting of iron oxides as well as other compounds occurring in the dust. Furthermore, the Zn yield is higher and the reduction kinetics are faster than in the Waelz process. This paper is only focused on the zinc reduction in such a metal bath. In order to determine the influence of the carbon content in the molten metal on the reduction rate, experiments were carried out on the reduction behavior of zinc oxide using a synthetic slag. This slag, with a basicity B2 = 1, was applied to an iron bath with varying carbon contents. (0.85%, 2.16%, 2.89%, and 4.15%) The decrease in the zinc oxide concentration was monitored, along with the reaction rates calculated from these data. It was found that the reaction rate increases with rising carbon content in the melt.

Details

Original languageEnglish
Article number12020664
Number of pages10
JournalApplied Sciences : open access journal
Volume12.2022
Issue number2
DOIs
Publication statusPublished - 11 Jan 2022