Hydrogen Production by Methane Pyrolysis in Molten Cu-Ni-Sn Alloys
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Metals, Vol. 13.2023, No. 7, 1310, 21.07.2023.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Hydrogen Production by Methane Pyrolysis in Molten Cu-Ni-Sn Alloys
AU - Scheiblehner, David
AU - Antrekowitsch, Helmut
AU - Neuschitzer, David
AU - Wibner, Stefan
AU - Sprung, Andreas
PY - 2023/7/21
Y1 - 2023/7/21
N2 - Hydrogen is an essential vector for transitioning today’s energy system. As a fuel or reactant in critical industrial sectors such as transportation and metallurgy, H2 can diversify the energy mix and supply and provide an opportunity to mitigate greenhouse-gas emissions. The pyrolysis of methane in liquid catalysts represents a promising alternative to producing hydrogen, as its energy demand is comparable to steam methane reforming, and no CO2 is produced in the base reaction. In this work, methane pyrolysis experiments were conducted using a graphite crucible filled with liquid ternary Cu-Ni-Sn alloys at 1160.0 °C. A statistical design of experiments allowed the generation of a model equation that predicts the achievable conversion rates in the ranges of the experiments. Furthermore, the experimental results are evaluated considering densities as well as surface tensions and viscosities in the investigated system, calculated with Butler and KRP equations, respectively. The highest methane conversion rate of 40.15% was achieved utilizing a melt of pure copper. The findings show that a combination of high catalytic activity with a high density and a low viscosity and surface tension of the melt results in a higher hydrogen yield. Furthermore, the autocatalytic effect of pyrolysis carbon is measured.
AB - Hydrogen is an essential vector for transitioning today’s energy system. As a fuel or reactant in critical industrial sectors such as transportation and metallurgy, H2 can diversify the energy mix and supply and provide an opportunity to mitigate greenhouse-gas emissions. The pyrolysis of methane in liquid catalysts represents a promising alternative to producing hydrogen, as its energy demand is comparable to steam methane reforming, and no CO2 is produced in the base reaction. In this work, methane pyrolysis experiments were conducted using a graphite crucible filled with liquid ternary Cu-Ni-Sn alloys at 1160.0 °C. A statistical design of experiments allowed the generation of a model equation that predicts the achievable conversion rates in the ranges of the experiments. Furthermore, the experimental results are evaluated considering densities as well as surface tensions and viscosities in the investigated system, calculated with Butler and KRP equations, respectively. The highest methane conversion rate of 40.15% was achieved utilizing a melt of pure copper. The findings show that a combination of high catalytic activity with a high density and a low viscosity and surface tension of the melt results in a higher hydrogen yield. Furthermore, the autocatalytic effect of pyrolysis carbon is measured.
U2 - 10.3390/met13071310
DO - 10.3390/met13071310
M3 - Article
VL - 13.2023
JO - Metals
JF - Metals
SN - 2075-4701
IS - 7
M1 - 1310
ER -