Green and blue infrastructure as model system for emissions of technology-critical elements
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Science of the total environment, Vol. 934.2024, No. 15, 173364, 20.05.2024.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Green and blue infrastructure as model system for emissions of technology-critical elements
AU - Trimmel, Simone
AU - Spörl, Philipp
AU - Haluza, Daniela
AU - Lashin, Nagi
AU - Meisel, Thomas C.
AU - Pitha, Ulrike
AU - Prohaska, Thomas
AU - Puschenreiter, Markus
AU - Rückert, Elmar
AU - Spangl, Bernhard
AU - Wiedenhofer, Dominik
AU - Irrgeher, Johanna
N1 - Publisher Copyright: © 2024 The Authors
PY - 2024/5/20
Y1 - 2024/5/20
N2 - Over the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria.Leaf samples (n = 292) from 8 plant species and two green facades and water samples (n = 18) from the Wienfluss river were examined using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Surface dust contributions were assessed by washing one replicate of each leaf sample and analysing the washing water (n = 146). The impacts of sampling month, plant species and storey level on elemental distribution were assessed by statistical tools and generative deep neural network modelling. Higher TCE levels, including Li, V, Ga, Ge, Tl, Bi, and the REYs, were found in the winter months, likely due to the use of de-icing materials and fossil fuel combustion. A. millefolium and S. heufleriana displayed the highest levels of Li and Ge, respectively. In addition, increased elemental accumulation at lower storeys was observed, including Be, Sb, Bi and the REYs, indicating greater atmospheric dust deposition and recirculation closer to ground level.The results suggest a broad association of TCE levels with urban dust. This study enhances the current understanding of TCE distribution in urban settings and underscores the importance of their inclusion in pollution monitoring. It highlights the complex interplay of human activities, urban infrastructure, and environmental factors, offering valuable insights for managing urban environmental health risks and underlining the need for comprehensive urban ecosystem studies.
AB - Over the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria.Leaf samples (n = 292) from 8 plant species and two green facades and water samples (n = 18) from the Wienfluss river were examined using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Surface dust contributions were assessed by washing one replicate of each leaf sample and analysing the washing water (n = 146). The impacts of sampling month, plant species and storey level on elemental distribution were assessed by statistical tools and generative deep neural network modelling. Higher TCE levels, including Li, V, Ga, Ge, Tl, Bi, and the REYs, were found in the winter months, likely due to the use of de-icing materials and fossil fuel combustion. A. millefolium and S. heufleriana displayed the highest levels of Li and Ge, respectively. In addition, increased elemental accumulation at lower storeys was observed, including Be, Sb, Bi and the REYs, indicating greater atmospheric dust deposition and recirculation closer to ground level.The results suggest a broad association of TCE levels with urban dust. This study enhances the current understanding of TCE distribution in urban settings and underscores the importance of their inclusion in pollution monitoring. It highlights the complex interplay of human activities, urban infrastructure, and environmental factors, offering valuable insights for managing urban environmental health risks and underlining the need for comprehensive urban ecosystem studies.
KW - ICP-MS/MS
KW - REEs
KW - TCEs
KW - Urban aerosol
KW - Urban dust
KW - Multielement analysis
KW - Urban greening
KW - Air pollution
KW - Environmental monitoring
KW - Rare-earth elements
KW - Emerging pollutants
UR - http://www.scopus.com/inward/record.url?scp=85193699130&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.173364
DO - 10.1016/j.scitotenv.2024.173364
M3 - Article
VL - 934.2024
JO - Science of the total environment
JF - Science of the total environment
SN - 0048-9697
IS - 15
M1 - 173364
ER -