Development and characterization of a new near-alpha-titanium alloy for high performance applications
Research output: Thesis › Diploma Thesis
Standard
2007.
Research output: Thesis › Diploma Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Development and characterization of a new near-alpha-titanium alloy for high performance applications
AU - Proprentner, Daniela
N1 - embargoed until null
PY - 2007
Y1 - 2007
N2 - Common near-alpha-titanium alloys are designed for high-temperature applications up to 600°C. These alloys combine excellent creep behavior with high specific strength at elevated temperatures. Therefore, these materials are used for applications in aerospace and automotive industry. Prior to this diploma thesis a new near-alpha-titanium alloy with an restricted intermetallic content of 50 vol.% was developed for application up to 800°C service temperature. The microstructure, with and without heat-treatments, was analyzed by means of light optical and scanning electron microscopy. Tensile tests were performed at room and elevated temperatures to quantify the increase of strength after different heat-treatments. The annealed microstructure was described by means of quantitative phase analysis of light optical images, x-ray diffraction, electron back scattering diffraction and additional transmission electron microscopy. The deformation behavior of the material has been determined by a deformation dilatometer with additional characterization of the deformed microstructure. Furthermore, static high temperature oxidation test in air atmosphere were performed and compared with different titanium alloys.
AB - Common near-alpha-titanium alloys are designed for high-temperature applications up to 600°C. These alloys combine excellent creep behavior with high specific strength at elevated temperatures. Therefore, these materials are used for applications in aerospace and automotive industry. Prior to this diploma thesis a new near-alpha-titanium alloy with an restricted intermetallic content of 50 vol.% was developed for application up to 800°C service temperature. The microstructure, with and without heat-treatments, was analyzed by means of light optical and scanning electron microscopy. Tensile tests were performed at room and elevated temperatures to quantify the increase of strength after different heat-treatments. The annealed microstructure was described by means of quantitative phase analysis of light optical images, x-ray diffraction, electron back scattering diffraction and additional transmission electron microscopy. The deformation behavior of the material has been determined by a deformation dilatometer with additional characterization of the deformed microstructure. Furthermore, static high temperature oxidation test in air atmosphere were performed and compared with different titanium alloys.
KW - titanium alloys near-alpha titanium alloys microstructure deformation behavior high temperature strength oxidation behavior
KW - Titan-Legierung near-alpha-Titanlegierungen Mikrostruktur Umformverhalten Warmfestigkeit Oxidationsverhalten
M3 - Diploma Thesis
ER -