Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3-δ in SO2-containing atmospheres
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Solid State Ionics, Vol. 272.2015, No. April, 06.02.2015, p. 112-120.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3-δ in SO2-containing atmospheres
AU - Bucher, Edith
AU - Gspan, Christian
AU - Sitte, Werner
PY - 2015/2/6
Y1 - 2015/2/6
N2 - The impact of long-term exposure of La0.6Sr0.4CoO3 − δ to SO2-containing atmospheres was investigated. In-situ dc-conductivity relaxation measurements showed a decrease in the chemical surface exchange coefficient of oxygen (kchem) during the course of 1000 h in an atmosphere with either a few ppb or 2 ppm SO2 at 700 °C. Post-test analyses by scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and analytical transmission electron microscopy indicated that SrSO4 crystals with diameters of 100 nm–1 μm are formed during the degradation, in addition to a nanocrystalline 100–300 nm thick multi-phase layer and LaCoO3 − δ at grain boundaries. In order to regenerate the degraded sample, a thermal treatment was applied. It could be shown that a partial re-activation of the degraded specimen takes place at 750–850 °C even in an atmosphere with 2 ppm SO2. This regeneration is ascribed to the in-situ formation of catalytically active LaCoO3 − δ nanoparticles at the surface. However, a subsequent degradation follows independently of the SO2 content of the atmosphere when the sample is kept for 1000 h at 850–900 °C. Post-test analyses indicate that this effect is due to a strong grain growth of the LaCoO3 − δ nanocrystals which leads to a loss in the catalytic activity.
AB - The impact of long-term exposure of La0.6Sr0.4CoO3 − δ to SO2-containing atmospheres was investigated. In-situ dc-conductivity relaxation measurements showed a decrease in the chemical surface exchange coefficient of oxygen (kchem) during the course of 1000 h in an atmosphere with either a few ppb or 2 ppm SO2 at 700 °C. Post-test analyses by scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and analytical transmission electron microscopy indicated that SrSO4 crystals with diameters of 100 nm–1 μm are formed during the degradation, in addition to a nanocrystalline 100–300 nm thick multi-phase layer and LaCoO3 − δ at grain boundaries. In order to regenerate the degraded sample, a thermal treatment was applied. It could be shown that a partial re-activation of the degraded specimen takes place at 750–850 °C even in an atmosphere with 2 ppm SO2. This regeneration is ascribed to the in-situ formation of catalytically active LaCoO3 − δ nanoparticles at the surface. However, a subsequent degradation follows independently of the SO2 content of the atmosphere when the sample is kept for 1000 h at 850–900 °C. Post-test analyses indicate that this effect is due to a strong grain growth of the LaCoO3 − δ nanocrystals which leads to a loss in the catalytic activity.
U2 - 10.1016/j.ssi.2015.01.009
DO - 10.1016/j.ssi.2015.01.009
M3 - Article
VL - 272.2015
SP - 112
EP - 120
JO - Solid State Ionics
JF - Solid State Ionics
SN - 0167-2738
IS - April
ER -