Beurteilung eines Optimierungssystems zur Prognose von thermodynamisch korrekten Kraftwerksfahrweisen im integrierten Hüttenwerk
Research output: Thesis › Master's Thesis
Standard
2017.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Beurteilung eines Optimierungssystems zur Prognose von thermodynamisch korrekten Kraftwerksfahrweisen im integrierten Hüttenwerk
AU - Wagner, Alexander
N1 - gesperrt bis 03-05-2022
PY - 2017
Y1 - 2017
N2 - In integrierten Hüttenwerken, welche zur Herstellung von Roheisen und Stahl dienen, fallen Koks-, Gicht- und Tiegelgas an. Der Kraftwerkspark in diesen Hüttenwerken dient hauptsächlich der Verwertung dieser Kuppelgase und der damit einhergehenden Bereitstellung von Energie als Prozessdampf und Elektrizität. Durch nicht kontinuierliche Prozesse in der Produktion ergeben sich sehr volatile gasförmige Volumenströme. Der Kraftwerkspark muss unter Zuhilfenahme von Gasspeichern auf die veränderlichen Situationen reagieren und das Kraftwerk dementsprechend steuern. Um jedoch nicht nur die anfallenden Kuppelgase zu verarbeiten, sondern auch noch ein wirtschaftliches Optimum durch den Betrieb im höchsten Wirkungsgradbereich zu erzielen, findet eine Energieeinsatzoptimierung statt. Das dabei verwendete Softwaresystem, basierend auf einem evolutionären Algorithmus, unterstützt das Personal in der Kraftwerkswarte durch Fahrweisenvorschläge für einen wirtschaftlich optimalen Betrieb der nachfolgenden zwei Stunden. Die Abbildung des komplexen Modells eines integrierten Hüttenwerks erfolgt dabei über Vereinfachungen der Gas- und Dampfnetze sowie thermodynamisch korrekt modellierte Kraftwerksblöcke. Diese Masterarbeit behandelt im praktischen Teil die Beurteilung der Energieeinsatzoptimierung zur Erstellung von thermodynamisch korrekten Kraftwerksfahrweisen im integrierten Hüttenwerk. Zu Beginn erfolgt die Überprüfung der Stabilität von Berechnungsergebnissen unter der Voraussetzung gleicher Inputs, daran schließt die Betrachtung des Verhaltens bei veränderter Beschränkung der Rechendauer an. Weiters beinhaltet die Arbeit eine Sensitivitätsanalyse zur Betrachtung der einflussreichsten Parameter auf das Optimierungssystem. Ein wesentlicher Teil der Analysen beschäftigt sich mit zeitlich variierenden Ausgleichsenergiepreisen über die Dauer eines Optimierungshorizontes und die daraus folgenden Auswirkungen auf das Verhalten des Systems sowie die Effekte auf die Stabilität der Berechnung. Zuletzt folgt die Analyse des Optimierungspotenzials um die Fahrweise des Kraftwerks monetär mit der durch die Software verbesserten Fahrweise zu vergleichen.
AB - In integrierten Hüttenwerken, welche zur Herstellung von Roheisen und Stahl dienen, fallen Koks-, Gicht- und Tiegelgas an. Der Kraftwerkspark in diesen Hüttenwerken dient hauptsächlich der Verwertung dieser Kuppelgase und der damit einhergehenden Bereitstellung von Energie als Prozessdampf und Elektrizität. Durch nicht kontinuierliche Prozesse in der Produktion ergeben sich sehr volatile gasförmige Volumenströme. Der Kraftwerkspark muss unter Zuhilfenahme von Gasspeichern auf die veränderlichen Situationen reagieren und das Kraftwerk dementsprechend steuern. Um jedoch nicht nur die anfallenden Kuppelgase zu verarbeiten, sondern auch noch ein wirtschaftliches Optimum durch den Betrieb im höchsten Wirkungsgradbereich zu erzielen, findet eine Energieeinsatzoptimierung statt. Das dabei verwendete Softwaresystem, basierend auf einem evolutionären Algorithmus, unterstützt das Personal in der Kraftwerkswarte durch Fahrweisenvorschläge für einen wirtschaftlich optimalen Betrieb der nachfolgenden zwei Stunden. Die Abbildung des komplexen Modells eines integrierten Hüttenwerks erfolgt dabei über Vereinfachungen der Gas- und Dampfnetze sowie thermodynamisch korrekt modellierte Kraftwerksblöcke. Diese Masterarbeit behandelt im praktischen Teil die Beurteilung der Energieeinsatzoptimierung zur Erstellung von thermodynamisch korrekten Kraftwerksfahrweisen im integrierten Hüttenwerk. Zu Beginn erfolgt die Überprüfung der Stabilität von Berechnungsergebnissen unter der Voraussetzung gleicher Inputs, daran schließt die Betrachtung des Verhaltens bei veränderter Beschränkung der Rechendauer an. Weiters beinhaltet die Arbeit eine Sensitivitätsanalyse zur Betrachtung der einflussreichsten Parameter auf das Optimierungssystem. Ein wesentlicher Teil der Analysen beschäftigt sich mit zeitlich variierenden Ausgleichsenergiepreisen über die Dauer eines Optimierungshorizontes und die daraus folgenden Auswirkungen auf das Verhalten des Systems sowie die Effekte auf die Stabilität der Berechnung. Zuletzt folgt die Analyse des Optimierungspotenzials um die Fahrweise des Kraftwerks monetär mit der durch die Software verbesserten Fahrweise zu vergleichen.
KW - Optimierungssystem
KW - integriertes Hüttenwerk
KW - Energieverbund
KW - Kraftwerk
KW - Kraftwerksfahrweise
KW - genetischer Algorithmus
KW - Energiemarkt
KW - Ausgleichsenergie
KW - Sensitivitätsanalyse
KW - Potenzialanalyse
KW - optimization system
KW - itegrated steel works
KW - power plant
KW - mode of operation
KW - genetic algorithm
KW - energy market
KW - balancing energy
KW - sensitivity analysis
KW - financial potential analysis
KW - energy network
M3 - Masterarbeit
ER -