Ronald Ortner
Research output
- 2025
- Accepted/In press
Online Regret Bounds for Satisficing in MDPs
Hajiabolhassan, H. & Ortner, R., 2025, (Accepted/In press) In: Mathematics of Operations Research. ??? Stand: 27. März 2025, ??? Stand: 27. März 2025, p. ??? Stand: 27. März 2025Research output: Contribution to journal › Article › Research › peer-review
- 2024
- Published
Understanding the Gaps in Satisficing Bandits
Rouyer, C., Ortner, R. & Auer, P., 2024.Research output: Contribution to conference › Poster › Research › peer-review
- 2023
- Published
Adaptive Algorithms for Meta-Induction
Ortner, R., 7 Oct 2023, In: Journal for general philosophy of science = Zeitschrift für allgemeine Wissenschaftstheorie. 54.2023, 3, p. 433–450 18 p.Research output: Contribution to journal › Article › Research › peer-review
- Published
Regret Bounds for Satisficing in Multi-Armed Bandit Problems
Michel, T., Hajiabolhassan, H. & Ortner, R., 7 Jun 2023, In: Transactions on machine learning research. 2023, August, 19 p.Research output: Contribution to journal › Article › Research › peer-review
- Published
A Reinforcement Learning Approach for Real-Time Autonomous Decision-Making in Well Construction
Keshavarz, S., Vita, P., Rückert, E., Ortner, R. & Thonhauser, G., 19 Jan 2023, SPE AI Symposium 2023: Leveraging Artificial Intelligence to Shape the Future of the Energy Industry. (Society of Petroleum Engineers - SPE Symposium: Leveraging Artificial Intelligence to Shape the Future of the Energy Industry, AIS 2023).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Autonomous Exploration for Navigating in MDPs Using Blackbox RL Algorithms
Gajane, P., Auer, P. & Ortner, R., 2023, Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23). p. 3714-3722Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Accepted/In press
Online Regret Bounds for Satisficing in MDPs
Hajiabolhassan, H. & Ortner, R., 2023, (Accepted/In press).Research output: Contribution to conference › Poster › Research › peer-review
- Published
When is Cartesian product a Cayley graph?
Dobson, E., Hujdurovic, A., Imrich, W. & Ortner, R., 2023, Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications. p. 362-367Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2022
- Published
Decision Making Under Uncertainty and Reinforcement Learning
Dimitrakakis, C. & Ortner, R., Dec 2022, Springer. (Intelligent Systems Reference Library; vol. 223)Research output: Book/Report › Book › Education
- Published
Quantification of Transfer in Reinforcement Learning via Regret Bounds for Learning Agents
Tuynman, A. & Ortner, R., Sept 2022.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Regret Bounds for Satisficing in Multi-Armed Bandit Problems
Michel, T., Hajiabolhassan, H. & Ortner, R., Sept 2022.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Predicting Packaging Sizes Using Machine Learning
Heininger, M. & Ortner, R., 22 Aug 2022, In: Operations research forum. 43.2022, 3, 14 p., 43.Research output: Contribution to journal › Article › Research › peer-review
- 2021
- Published
A new heuristic and an exact approach for a production planning problem
Auer, P., Dósa, G., Dulai, T., Fügenschuh, A., Näser, P., Ortner, R. & Werner-Starkne, A., Sept 2021, In: Central European Journal of Operations Research. 29, 3, p. 1079-1113 35 p.Research output: Contribution to journal › Article › Research › peer-review
- Published
Regret Bounds for Reinforcement Learning via Markov Chain Concentration
Ortner, R., 26 Aug 2021.Research output: Contribution to conference › Poster › Research › peer-review
- 2020
- Published
Regret Bounds for Reinforcement Learning via Markov Chain Concentration
Ortner, R., 23 Jan 2020, In: The journal of artificial intelligence research. 67.2020, 1, p. 115-128 14 p.Research output: Contribution to journal › Article › Research › peer-review
- 2019
- Published
Regret Bounds for Learning State Representations in Reinforcement Learning
Ortner, R., Pirotta, M., Lazaric, A., Fruit, R. & Maillard, O.-A., Dec 2019.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes
Auer, P., Gajane, P. & Ortner, R., 27 Jun 2019.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Achieving Optimal Dynamic Regret for Non-stationary Bandits without Prior Information
Auer, P., Chen, Y., Gajane, P., Lee, C.-W., Luo, H., Ortner, R. & Wei, C.-Y., 2019.Research output: Contribution to conference › Abstract › peer-review
- Published
Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes
Auer, P., Gajane, P. & Ortner, R., 2019, Proceedings of the 32nd Conference on Learning Theory, COLT 2019. p. 138-158Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- E-pub ahead of print
Regret Bounds for Learning State Representations in Reinforcement Learning
Ortner, R., Pirotta, M., Lazaric, A., Fruit, R. & Maillard, O.-A., 2019, (E-pub ahead of print) Advances in Neural Information Processing Systems. Vol. 32. p. 12717 12727 p.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Variational Regret Bounds for Reinforcement Learning
Ortner, R., Gajane, P. & Auer, P., 2019.Research output: Contribution to conference › Paper › peer-review
- Published
Variational Regret Bounds for Reinforcement Learning
Ortner, R., Gajane, P. & Auer, P., 2019, Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, UAI 2019. p. 81-90Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2018
- Published
Adaptively Tracking the Best Arm with an Unknown Number of Distribution Changes
Auer, P., Gajane, P. & Ortner, R., 2018.Research output: Contribution to conference › Paper › peer-review
- Published
Adaptively Tracking the Best Arm with an Unknown Number of Distribution Changes
Auer, P., Gajane, P. & Ortner, R., 2018.Research output: Contribution to conference › Poster › Research › peer-review
- Published
A Sliding-Window Approach for Reinforcement Learning in MDPs with Arbitrarily Changing Rewards and Transitions.
Gajane, P., Ortner, R. & Auer, P., 2018.Research output: Contribution to conference › Paper › peer-review
- Published
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning
Fruit, R., Pirotta, M., Lazaric, A. & Ortner, R., 2018, Proceedings of the 35th International Conference on Machine Learning, ICML 2018. Vol. PMLR 80. p. 1578-1586Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Guest Editors' Foreword
Ortner, R. & Ulrich Simon, H., 2018, In: Theoretical Computer Science. 742Research output: Contribution to journal › Article › Research
- 2016
- Published
Improved Learning Complexity in Combinatorial Pure Exploration Bandits
Gabillon, V., Lazaric, A., Ghavamzadeh, M., Ortner, R. & Bartlett, P., 10 May 2016.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Algorithmic Learning Theory: 27th International Conference, ALT 2016, Proceedings
Ortner, R. (Co-editor), Ulrich Simon, H. (Co-editor) & Zilles, S., 2016, Springer.Research output: Book/Report › Anthology › Research
- Published
Improved Learning Complexity in Combinatorial Pure Exploration Bandits
Gabillon, V., Lazaric, A., Ghavamzadeh, M., Ortner, R. & Bartlett, P., 2016, Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2016. p. 1004-1012 (JMLR Workshop and Conference Proceedings).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Optimal Behavior is Easier to Learn than the Truth
Ortner, R., 2016, In: Minds and Machines. 26, 3, p. 243-252Research output: Contribution to journal › Article › Research › peer-review
- Published
Pareto Front Identification from Stochastic Bandit Feedback
Auer, P., Chiang, C.-K., Ortner, R. & Drugan, M., 2016, Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2016. p. 939-947 (JMLR Workshop and Conference Proceedings).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2015
- Published
Improved Regret Bounds for Undiscounted Continuous Reinforcement Learning
Kailasam, L., Ortner, R. & Ryabko, D., 7 Jul 2015.Research output: Contribution to conference › Poster › Research › peer-review
- Published
Forcing Subarrangements in Complete Arrangements of Pseudocircles
Ortner, R., 2015, In: Journal of Computational Geometry. 6, 1, p. 235-248Research output: Contribution to journal › Article › Research › peer-review
- Published
Improved Regret Bounds for Undiscounted Continuous Reinforcement Learning
Kailasam, L., Ortner, R. & Ryabko, D., 2015, Proceedings of The 32nd International Conference on Machine Learning.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2014
- Published
Regret Bounds for Restless Markov Bandits
Ortner, R., Ryabko, D., Auer, P. & Munos, R., 2014, In: Theoretical Computer Science. 558, p. 62-76Research output: Contribution to journal › Article › Research › peer-review
- Published
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
Ortner, R., Maillard, O.-A. & Ryabko, D., 2014, Algorithmic Learning Theory - 25th International Conference, ALT 2014, Bled, October 8-10, 2014. p. 140-154Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2013
- Published
Adaptive Aggregation for Reinforcement Learning in Average Reward Markov Decision Processes
Ortner, R., 2013, In: Annals of operations research. 208, p. 321-336Research output: Contribution to journal › Article › Research › peer-review
- Published
Competing with an Infinite Set of Models in Reinforcement Learning
Nguyen, P., Maillard, O.-A., Ryabko, D. & Ortner, R., 2013, JMLR Workshop and Conference Proceedings Volume 31 : Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics. p. 463-471Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Optimal regret bounds for selecting the state representation in reinforcement learning.
Maillard, O.-A., Nguyen, P., Ortner, R. & Ryabko, D., 2013, JMLR Workshop and Conference Proceedings Volume 28 : Proceedings of The 30th International Conference on Machine Learning. p. 543-551Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2012
- Published
Online Regret Bounds for Undiscounted Continuous Reinforcement Learning
Ortner, R. & Ryabko, D., 2012, Advances in Neural Information Processing Systems 25. MIT Press, p. 1772-1780Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Online Regret Bounds for Undiscounted Continuous Reinforcement Learning
Ortner, R. & Ryabko, D., 2012.Research output: Contribution to conference › Poster › Research › peer-review
- Published
PAC-Bayesian Analysis of Contextual Bandits
Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J. S. & Ortner, R., 2012, Advances in Neural Information Processing Systems 24. MIT Press, p. 1683-1691Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Regret Bounds for Restless Markov Bandits
Ortner, R., Ryabko, D., Auer, P. & Munos, R., 2012, Algorithmic Learning Theory 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings. p. 214-228Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- 2011
- Published
Mechanizing Induction
Ortner, R. & Leitgeb, H., 2011, Handbook of the History of Logic, Volume 10: Inductive Logic. p. 719-772Research output: Chapter in Book/Report/Conference proceeding › Chapter › Research
- Published
PAC-Bayesian Analysis of Contextual Bandits
Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J. S. & Ortner, R., 2011.Research output: Contribution to conference › Poster › Research › peer-review
- 2010
- Published
Exploiting Similarity Information in Reinforcement Learning. Similarity Models for Multi-Armed Bandits and MDPs
Ortner, R., 2010, Proceedings of the 2nd International Conference on Agents and Artificial Intelligence, Volume 1 (Artificial Intelligence). p. 203-210Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
- Published
Near-optimal Regret Bounds for Reinforcement Learning
Jaksch, T., Ortner, R. & Auer, P., 2010, In: Journal of machine learning research (JMLR). 11, p. 1563-1600Research output: Contribution to journal › Article › Research › peer-review
- Published
Online Regret Bounds for Markov Decision Processes with Deterministic Transitions
Ortner, R., 2010, In: Theoretical Computer Science. 411, p. 2684-2695Research output: Contribution to journal › Article › Research › peer-review
- Published
UCB Revisited: Improved Regret Bounds for the Stochastic Multi-Armed Bandit Problem
Auer, P. & Ortner, R., 2010, In: Periodica Mathematica Hungarica. 61, p. 55-65Research output: Contribution to journal › Article › Research › peer-review