Ronald Ortner

Research output

  1. 2016
  2. Published

    Pareto Front Identification from Stochastic Bandit Feedback

    Auer, P., Chiang, C.-K., Ortner, R. & Drugan, M., 2016, Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2016. p. 939-947 (JMLR Workshop and Conference Proceedings).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Published

    Improved Learning Complexity in Combinatorial Pure Exploration Bandits

    Gabillon, V., Lazaric, A., Ghavamzadeh, M., Ortner, R. & Bartlett, P., 10 May 2016.

    Research output: Contribution to conferencePosterResearchpeer-review

  4. 2018
  5. Published

    Adaptively Tracking the Best Arm with an Unknown Number of Distribution Changes

    Auer, P., Gajane, P. & Ortner, R., 2018.

    Research output: Contribution to conferencePaperpeer-review

  6. Published

    Adaptively Tracking the Best Arm with an Unknown Number of Distribution Changes

    Auer, P., Gajane, P. & Ortner, R., 2018.

    Research output: Contribution to conferencePosterResearchpeer-review

  7. Published
  8. Published

    Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning

    Fruit, R., Pirotta, M., Lazaric, A. & Ortner, R., 2018, Proceedings of the 35th International Conference on Machine Learning, ICML 2018. Vol. PMLR 80. p. 1578-1586

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  9. Published

    Guest Editors' Foreword

    Ortner, R. & Ulrich Simon, H., 2018, In: Theoretical Computer Science. 742

    Research output: Contribution to journalArticleResearch

  10. 2019
  11. Published

    Achieving Optimal Dynamic Regret for Non-stationary Bandits without Prior Information

    Auer, P., Chen, Y., Gajane, P., Lee, C.-W., Luo, H., Ortner, R. & Wei, C.-Y., 2019.

    Research output: Contribution to conferenceAbstractpeer-review

  12. Published

    Adaptively Tracking the Best Bandit Arm with an Unknown Number of Distribution Changes

    Auer, P., Gajane, P. & Ortner, R., 2019, Proceedings of the 32nd Conference on Learning Theory, COLT 2019. p. 138-158

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  13. E-pub ahead of print

    Regret Bounds for Learning State Representations in Reinforcement Learning

    Ortner, R., Pirotta, M., Lazaric, A., Fruit, R. & Maillard, O.-A., 2019, (E-pub ahead of print) Advances in Neural Information Processing Systems. Vol. 32. p. 12717 12727 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution