Departments and Chairs

Organisational unit: Departments and Institutes

Research output

  1. Published

    Adaptive and self-confident online learning algorithms

    Auer, P., Cesa-Bianchi, N. & Gentile, C., 2002, In: Journal of computer and system sciences (JCSS). 64, p. 48-78

    Research output: Contribution to journalArticleResearchpeer-review

  2. Published

    Relevance Feedback Models for Content-Based Image Retrieval

    Auer, P. & Leung, P., 2009, Multimedia Analysis, Processing and Communications.

    Research output: Chapter in Book/Report/Conference proceedingChapterResearch

  3. Published

    The Perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are relevant

    Auer, P., Kivinen, J. & Warmuth, M. K., 1997, In: Artificial intelligence. p. 325-343

    Research output: Contribution to journalArticleResearchpeer-review

  4. Published

    On the Complexity of Function Learning

    Auer, P., Long, P. M., Maass, W. & Wöginger, G. J., 1993, Sixth Annual ACM Conference on Computational Learning Theory (COLT 1993). p. 392-401

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Published

    Some thoughts on Boosting and Neural Networks

    Auer, P., 1998, 3. Cottbuser Workshop "Aspekte des Neuronalen Lernens". p. 11-28

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  6. Published

    Near-optimal Regret Bounds for Reinforcement Learning

    Auer, P., Jaksch, T. & Ortner, R., 2009, Advances in neural information processing systems 21. MIT Press, p. 89-96

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  7. Published

    UCB Revisited: Improved Regret Bounds for the Stochastic Multi-Armed Bandit Problem

    Auer, P. & Ortner, R., 2010, In: Periodica Mathematica Hungarica. 61, p. 55-65

    Research output: Contribution to journalArticleResearchpeer-review

  8. Published

    Near-optimal Regret Bounds for Reinforcement Learning

    Auer, P., Jaksch, T. & Ortner, R., 2008.

    Research output: Contribution to conferencePosterResearchpeer-review

  9. Published

    A learning rule for very simple universal approximators consisting of a single layer of perceptrons

    Auer, P., Burgsteiner, H. & Maass, W., 2008, In: Neural networks. 21, p. 786-795

    Research output: Contribution to journalArticleResearchpeer-review

  10. Published

    Exploration and Exploitation in Online Learning

    Auer, P., 2011, International Conference on Adaptive and Intelligent Symstems - ICAIS 2011. p. 2-2

    Research output: Chapter in Book/Report/Conference proceedingConference contribution