Toughness enhancement in TiN/Zr0.37Al0.63N1.09 multilayer films
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Acta Materialia, Jahrgang 2024, Nr. 273, 119979, 04.05.2024.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Toughness enhancement in TiN/Zr0.37Al0.63N1.09 multilayer films
AU - Lorentzon, Marcus
AU - Meindlhumer, Michael
AU - Palisaitis, Justinas
AU - Greczynski, Grzegorz
AU - Keckes, Jozef
AU - Rosen, Johanna
AU - Hultman, Lars
AU - Birch, Jens
AU - Ghafoor, Naureen
PY - 2024/5/4
Y1 - 2024/5/4
N2 - The hardness and fracture toughness of high-temperature wear-resistant transition metal aluminum nitride multilayer films depend largely on the constituting layer’s structure, compositional modulation, morphology, and interface coherency. We present a study on 1-micron thick multilayered films consisting of stacked layers of TiN and Zr0.37Al0.63N1.09, each layer being 10 nm thick. The films were grown using ion-assisted reactive magnetron sputtering on MgO(001) and Si(001) at substrate temperatures ranging from ambient to 900◦C. By increasing growth temperature, we found that the ZrAlN layers transition from near amorphous to nano- crystalline wurtzite to decomposed c-ZrN and w-AlN domains. Concurrently, the TiN layers exhibit strong fiber texture, polycrystallinity, and epitaxial growth carried by the ZrN domains. Both hardness and fracture stress, evaluated by nanoindentation and micromechanical tests, increase with temperature from H=24 GPaMgO, 23 GPaSi to 36 GPaMgO, 30 GPaSi, and σFSi= 6.1-7.7 GPa, respectively. An improved fracture toughness of KIC=2.4-2.8MPa√m is related to different toughening mechanisms for the various microstructures. The difference in hardness between the substrates is related to compressive stress due to the deposition conditions and thermal contraction. The superior fracture stress is attributed to dense multilayers, free from macroscopic defects due to ion-assisted growth. After being deposited at 200◦C, the multilayers remained thermally stable when vacuum annealed for 15 hours at 900◦C, with no significant change in phase composition or hardness. The improved hardness, toughness, and temperature stability of the otherwise brittle nitrides are promising for industrial applications.1.
AB - The hardness and fracture toughness of high-temperature wear-resistant transition metal aluminum nitride multilayer films depend largely on the constituting layer’s structure, compositional modulation, morphology, and interface coherency. We present a study on 1-micron thick multilayered films consisting of stacked layers of TiN and Zr0.37Al0.63N1.09, each layer being 10 nm thick. The films were grown using ion-assisted reactive magnetron sputtering on MgO(001) and Si(001) at substrate temperatures ranging from ambient to 900◦C. By increasing growth temperature, we found that the ZrAlN layers transition from near amorphous to nano- crystalline wurtzite to decomposed c-ZrN and w-AlN domains. Concurrently, the TiN layers exhibit strong fiber texture, polycrystallinity, and epitaxial growth carried by the ZrN domains. Both hardness and fracture stress, evaluated by nanoindentation and micromechanical tests, increase with temperature from H=24 GPaMgO, 23 GPaSi to 36 GPaMgO, 30 GPaSi, and σFSi= 6.1-7.7 GPa, respectively. An improved fracture toughness of KIC=2.4-2.8MPa√m is related to different toughening mechanisms for the various microstructures. The difference in hardness between the substrates is related to compressive stress due to the deposition conditions and thermal contraction. The superior fracture stress is attributed to dense multilayers, free from macroscopic defects due to ion-assisted growth. After being deposited at 200◦C, the multilayers remained thermally stable when vacuum annealed for 15 hours at 900◦C, with no significant change in phase composition or hardness. The improved hardness, toughness, and temperature stability of the otherwise brittle nitrides are promising for industrial applications.1.
KW - Sputtering
KW - Multilayers
KW - STEM HAADF
KW - Interface toughness
KW - Micromechanics
U2 - 10.1016/j.actamat.2024.119979
DO - 10.1016/j.actamat.2024.119979
M3 - Article
VL - 2024
JO - Acta Materialia
JF - Acta Materialia
SN - 1359-6454
IS - 273
M1 - 119979
ER -