The Exergy Analysis in Production Engineering
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2021.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - The Exergy Analysis in Production Engineering
AU - Smaoui, Ines
N1 - embargoed until 07-05-2026
PY - 2021
Y1 - 2021
N2 - In order to improve the efficiency of oil wells equipped with gas lift, a thermodynamic analysis has led to creating a simulation model with a design modification that mitigates the innate losses of the system. The results are compared to other simulation models representing the original state of these wells. The new approach is based on both the nodal and exergy analyses and aims at identifying inefficiency nodes within the well. An assessment of the completion and the gas lift system of two selected wells focused on the quantification of the exergy losses and destructions. A GAP® model, linked to a PROSPER® file of each well, has been constructed and included modifications to minimize these losses. The comparison considered oil production rates, gas injection rates, the potential economic costs, and benefits, along with the efficiency of the system. By combining the nodal and exergy analyses, it was possible to identify two main sources of exergy destruction: the gas lift valve and the flow control valve. Using the GAP® model, the simulations show that even when a fraction of the exergy lost in these two nodes is recycled, there is an increase in production rates. The study of the behavior of the wells, when varying the gas injection rate, demonstrated that, starting from a specific rate, the exergy model presents higher production rates than the conventional gas lift model. To strengthen the analysis, an exergy-economic evaluation along with an efficiency index have completed the technical method by setting specific conditions from which the proposed exergetic alternative is better suited than the conventional gas lift method. The novelty of this paper is that it provides concluding insights on the limitations of the conventional energetic method and provides solutions to mitigate them. Moreover, it highlights the benefits of adopting the exergy methodology: essentially a higher efficiency and a lower environmental impact.
AB - In order to improve the efficiency of oil wells equipped with gas lift, a thermodynamic analysis has led to creating a simulation model with a design modification that mitigates the innate losses of the system. The results are compared to other simulation models representing the original state of these wells. The new approach is based on both the nodal and exergy analyses and aims at identifying inefficiency nodes within the well. An assessment of the completion and the gas lift system of two selected wells focused on the quantification of the exergy losses and destructions. A GAP® model, linked to a PROSPER® file of each well, has been constructed and included modifications to minimize these losses. The comparison considered oil production rates, gas injection rates, the potential economic costs, and benefits, along with the efficiency of the system. By combining the nodal and exergy analyses, it was possible to identify two main sources of exergy destruction: the gas lift valve and the flow control valve. Using the GAP® model, the simulations show that even when a fraction of the exergy lost in these two nodes is recycled, there is an increase in production rates. The study of the behavior of the wells, when varying the gas injection rate, demonstrated that, starting from a specific rate, the exergy model presents higher production rates than the conventional gas lift model. To strengthen the analysis, an exergy-economic evaluation along with an efficiency index have completed the technical method by setting specific conditions from which the proposed exergetic alternative is better suited than the conventional gas lift method. The novelty of this paper is that it provides concluding insights on the limitations of the conventional energetic method and provides solutions to mitigate them. Moreover, it highlights the benefits of adopting the exergy methodology: essentially a higher efficiency and a lower environmental impact.
KW - Exergy
KW - Analysis
KW - Efficiency
KW - Production
KW - Artifical Lift
KW - Gas Lift
KW - Exergo-economy
KW - Sustainability
KW - Environmental Impact
KW - Oil and Gas
KW - Energy
KW - Exergie
KW - Analyse
KW - Effizienz
KW - Produktion
KW - Artifical Lift
KW - Gas Lift
KW - Exergo-Economy
KW - Nachhaltigkeit
KW - Umweltbelastung
KW - Öl und Gas
KW - Energie
M3 - Master's Thesis
ER -